forked from HariSekhon/DevOps-Python-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspark_csv_to_parquet.py
executable file
·192 lines (169 loc) · 8.32 KB
/
spark_csv_to_parquet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/bin/env python
# vim:ts=4:sts=4:sw=4:et
#
# Author: Hari Sekhon
# Date: 2015-11-03 21:38:52 +0000 (Tue, 03 Nov 2015)
#
# https://github.com/harisekhon/devops-python-tools
#
# License: see accompanying Hari Sekhon LICENSE file
#
# If you're using my code you're welcome to connect with me on LinkedIn and optionally send me feedback
# to help improve or steer this or other code I publish
#
# https://www.linkedin.com/in/harisekhon
#
"""
PySpark program to convert CSV file(s) to Parquet
Must either infer schema from header or define schema (column names) on the command line.
If CSV --has-headers then all fields are assumed to be 'string' unless explicitly specified via --schema.
Written to work across Python 2.x and Spark versions, especially Spark given that the Spark API changed after 1.3
Tested on Spark 1.3.1, 1.4.0, 1.5.1, 1.6.2, 2.0.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# from __future__ import unicode_literals
import os
import sys
libdir = os.path.join(os.path.dirname(__file__), 'pylib')
sys.path.append(libdir)
try:
# pylint: disable=wrong-import-position
from harisekhon.utils import log, isMinVersion, support_msg, isVersionLax, die, getenv, pyspark_path
from harisekhon import CLI
except ImportError as _:
print('module import failed: %s' % _, file=sys.stderr)
print("Did you remember to build the project by running 'make'?", file=sys.stderr)
print("Alternatively perhaps you tried to copy this program out without it's adjacent libraries?", file=sys.stderr)
sys.exit(4)
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages com.databricks:spark-csv_2.11:1.5.0 %s' \
% os.getenv('PYSPARK_SUBMIT_ARGS', '')
pyspark_path()
from pyspark import SparkContext # pylint: disable=wrong-import-position,import-error
from pyspark import SparkConf # pylint: disable=wrong-import-position,import-error
from pyspark.sql import SQLContext # pylint: disable=wrong-import-position,import-error
from pyspark.sql.types import * # pylint: disable=wrong-import-position,import-error,wildcard-import
from pyspark.sql.types import StructType, StructField # pylint: disable=wrong-import-position,import-error
__author__ = 'Hari Sekhon'
__version__ = '0.8.0'
class SparkCSVToParquet(CLI):
def __init__(self):
# Python 2.x
super(SparkCSVToParquet, self).__init__()
# Python 3.x
# super().__init__()
# logging.config.fileConfig(os.path.join(libdir, 'resources', 'logging.conf'))
# log = logging.getLogger(self.__class__.__name__)
self.verbose_default = 2
self.timeout_default = 86400
self.schema = None
self.types_mapping = {}
# dynamically generate types mapping from available types in PySpark
from pyspark.sql import types # pylint: disable=wrong-import-position,import-error
for _ in dir(types):
if _.endswith('Type'):
self.types_mapping[_[:-4].lower()] = _
if 'integer' in self.types_mapping:
# because I like typing int better than integer
self.types_mapping['int'] = self.types_mapping['integer']
# @override
def add_options(self):
self.add_opt('-c', '--csv', metavar='<file/dir>',
help='CSV input file/dir ($CSV)',
default=getenv('CSV'))
self.add_opt('-p', '--parquet-dir', metavar='<dir>',
help='Parquet output dir ($PARQUETDIR)',
default=getenv('PARQUETDIR'))
self.add_opt('-e', '--has-header', action='store_true',
help='CSV has header. Infers schema if --schema is not given in which case all ' +
"types are assumed to be 'string'. Must specify --schema to override this")
self.add_opt('-s', '--schema', metavar='name:type,name2:type2,...',
help="Schema for CSV. Types default to 'string'. Possible types are: %s" \
% ', '.join(sorted(self.types_mapping)))
def parse_args(self):
self.no_args()
if not self.get_opt('csv'):
self.usage('--csv not defined')
if not self.get_opt('parquet_dir'):
self.usage('--parquet-dir not defined')
if not (self.get_opt('has_header') or self.get_opt('schema')):
self.usage('must specify either --has-header or --schema')
# no longer mutually exclusive now this support schema override
# if self.get_opt('has_header') and self.get_opt('schema'):
# self.usage('--has-header and --schema are mutually exclusive')
def run(self):
csv_file = self.get_opt('csv')
parquet_dir = self.get_opt('parquet_dir')
has_header = self.get_opt('has_header')
# I don't know why the Spark guys made this a string instead of a bool
header_str = 'false'
if has_header:
header_str = 'true'
schema = self.get_opt('schema')
# let Spark fail if csv/parquet aren't available
# can't check paths exist as want to remain generically portable
# to HDFS, local filesystm or any other uri scheme Spark supports
log.info("CSV Source: %s" % csv_file)
log.info("Parquet Destination: %s" % parquet_dir)
if schema:
def get_type(arg):
arg = str(arg).lower()
if arg not in self.types_mapping:
self.usage("invalid type '%s' defined in --schema, must be one of: %s"
% (arg, ', '.join(sorted(self.types_mapping.keys()))))
# return self.types_mapping[arg]
module = __import__('pyspark.sql.types', globals(), locals(), ['types'], -1)
class_ = getattr(module, self.types_mapping[arg])
_ = class_()
return _
def create_struct(arg):
name = str(arg).strip()
data_type = 'string'
if ':' in arg:
(name, data_type) = arg.split(':', 1)
data_class = get_type(data_type)
return StructField(name, data_class, True)
# see https://github.com/databricks/spark-csv#python-api
self.schema = StructType([create_struct(_) for _ in schema.split(',')])
log.info('generated CSV => Spark schema')
conf = SparkConf().setAppName('HS PySpark CSV => Parquet')
sc = SparkContext(conf=conf) # pylint: disable=invalid-name
if self.verbose < 3 and 'setLogLevel' in dir(sc):
sc.setLogLevel('WARN')
sqlContext = SQLContext(sc) # pylint: disable=invalid-name
spark_version = sc.version
log.info('Spark version detected as %s' % spark_version)
if not isVersionLax(spark_version):
die("Spark version couldn't be determined. " + support_msg('pytools'))
# pylint: disable=invalid-name
df = None
if isMinVersion(spark_version, 1.4):
if has_header and not schema:
log.info('inferring schema from CSV headers')
df = sqlContext.read.format('com.databricks.spark.csv')\
.options(header=header_str, inferschema='true')\
.load(csv_file)
else:
log.info('using explicitly defined schema')
df = sqlContext.read\
.format('com.databricks.spark.csv')\
.options(header=header_str)\
.load(csv_file, schema=self.schema)
df.write.parquet(parquet_dir)
else:
log.warn('running legacy code for Spark <= 1.3')
if has_header and not schema:
log.info('inferring schema from CSV headers')
df = sqlContext.load(source="com.databricks.spark.csv", path=csv_file,
header=header_str, inferSchema='true')
elif self.schema:
log.info('using explicitly defined schema')
schema = self.schema
df = sqlContext.load(source="com.databricks.spark.csv", path=csv_file,
header=header_str, schema=schema)
else:
die('no header and no schema, caught late')
df.saveAsParquetFile(parquet_dir)
if __name__ == '__main__':
SparkCSVToParquet().main()