-
Notifications
You must be signed in to change notification settings - Fork 9
/
triplet_model.py
109 lines (96 loc) · 3.7 KB
/
triplet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
'''
@File : triplet_model.py
@Time : 2019/11/27 14:38:41
@Author : Yan Yang
@Contact : [email protected]
@Desc : None
'''
# .::::.
# .::::::::.
# :::::::::::
# ..:::::::::::'
# '::::::::::::'
# .::::::::::
# '::::::::::::::..
# ..::::::::::::.
# ``::::::::::::::::
# ::::``:::::::::' .:::.
# ::::' ':::::' .::::::::.
# .::::' :::: .:::::::'::::.
# .:::' ::::: .:::::::::' ':::::.
# .::' :::::.:::::::::' ':::::.
# .::' ::::::::::::::' ``::::.
# ...::: ::::::::::::' ``::.
# ```` ':. ':::::::::' ::::..
# '.:::::' ':'````..
# 美女保佑 永无BUG
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from utils import load_pickle, TextToVec
import numpy as np
class EmbeddingNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv1d(1, 1, 3)
# self.maxpool1 = nn.MaxPool1d(3)
self.conv2 = nn.Conv1d(1, 1, 2)
# self.maxpool2 = nn.MaxPool1d(2)
self.drop = nn.Dropout(p=0.2)
self.fc = nn.Linear(297, 32)
def forward(self, x):
x = F.relu(self.conv1(x))
# x = self.maxpool1(x)
x = F.relu(self.conv2(x))
# x = self.maxpool2(x)
x = self.drop(x)
x = self.fc(x)
return torch.squeeze(x)
class TripletModel(nn.Module):
def __init__(self):
super().__init__()
self.embeddingnet = EmbeddingNet()
def forward(self, anchor, posi, neg):
anchor_emb = self.embeddingnet(anchor)
posi_emb = self.embeddingnet(posi)
neg_emb = self.embeddingnet(neg)
return anchor_emb, posi_emb, neg_emb
def get_emb(self, x):
return self.embeddingnet(x)
class ReadData(Dataset):
def __init__(self, posi_pair_path, neg_pair_path, whole_profile_pub, aid2cate, cate='title'):
super().__init__()
self.posi_pair = load_pickle(posi_pair_path)
self.neg_pair = load_pickle(neg_pair_path)
self.whole_profile_pub = whole_profile_pub
self.posi_pid2aid = {}
for pair in self.posi_pair:
self.posi_pid2aid[pair[1]] = pair[0]
self.neg_pid2aid = {}
for pair in self.neg_pair:
self.neg_pid2aid[pair[1]] = pair[0]
self.cate = cate
self.texttovec = TextToVec()
self.aid2cate = aid2cate
posi_pids = set(self.posi_pid2aid.keys())
neg_pids = set(self.neg_pid2aid.keys())
self.innter_pid_set = list(posi_pids & neg_pids)
def __len__(self):
return len(self.innter_pid_set)
def __getitem__(self, index):
pid_with_index = self.innter_pid_set[index]
pid, _ = pid_with_index.split('-')
info = self.whole_profile_pub[pid].get(self.cate)
if info is None:
anchor_data = np.zeros(300)
else:
anchor_data = self.texttovec.get_vec(info)
posi_data = self.aid2cate[self.posi_pid2aid[pid_with_index]]
neg_data = self.aid2cate[self.neg_pid2aid[pid_with_index]]
anchor_data = torch.from_numpy(np.expand_dims(anchor_data, axis=0)).to(torch.float)
posi_data = torch.from_numpy(np.expand_dims(posi_data, axis=0)).to(torch.float)
neg_data = torch.from_numpy(np.expand_dims(neg_data, axis=0)).to(torch.float)
return anchor_data, posi_data, neg_data