-
Notifications
You must be signed in to change notification settings - Fork 9
/
train_triplet_model.py
125 lines (112 loc) · 5.38 KB
/
train_triplet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
'''
@File : train_triplet_model.py
@Time : 2019/11/27 19:51:15
@Author : Yan Yang
@Contact : [email protected]
@Desc : None
'''
# .::::.
# .::::::::.
# :::::::::::
# ..:::::::::::'
# '::::::::::::'
# .::::::::::
# '::::::::::::::..
# ..::::::::::::.
# ``::::::::::::::::
# ::::``:::::::::' .:::.
# ::::' ':::::' .::::::::.
# .::::' :::: .:::::::'::::.
# .:::' ::::: .:::::::::' ':::::.
# .::' :::::.:::::::::' ':::::.
# .::' ::::::::::::::' ``::::.
# ...::: ::::::::::::' ``::.
# ```` ':. ':::::::::' ::::..
# '.:::::' ':'````..
# 美女保佑 永无BUG
from triplet_model import ReadData, TripletModel
from utils import load_json, load_pickle
import os
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import numpy as np
TRAIN_AUTHOR_PATH = './data2/train/train_author.json'
TRAIN_PUB_PATH = './data2/train/train_pub.json'
WHOLE_AUTHOR_PROFILE_PATH = './data2/cna_data/whole_author_profile.json'
WHOLE_AUTHOR_PROFILE_PUB_PATH = './data2/cna_data/whole_author_profile_pub.json'
VALID_PUB_PATH = './data2/cna_data/cna_valid_pub.json'
VALID_UNASS_PATH = './data2/cna_data/cna_valid_unass_competition.json'
NEW_DATA_DIR = './new-data' # original info, for test
NEW_DATA_V2_DIR = './new-data-v2' # last 1 year info
NEW_DATA_V3_DIR = './new-data-v3' # last 2 year info
OUT_DIR_v2 = './out-v2'
SPLIT_DIR = './split-data'
TEST_FEATURE_DIR_V2 = './test-feature-v2'
STACK_MODEL_DIR_v2 = './stack_model_aid2abstractvecv2'
RANDOM_SEED = 1129
BATCH_SIZE = 512
LR = 0.01
EPOCHS = 20
def AccuracyDis(anchor_emb, posi_emb, neg_emb):
pos_distance = torch.sqrt(torch.sum(torch.pow((anchor_emb - posi_emb), 2), dim=1))
neg_distance = torch.sqrt(torch.sum(torch.pow((anchor_emb - neg_emb), 2), dim=1))
acc = torch.mean((pos_distance < neg_distance).to(torch.float))
return acc
if __name__ == "__main__":
whole_author_profile_pub = load_json(WHOLE_AUTHOR_PROFILE_PUB_PATH)
train_posi_pair_path = os.path.join(NEW_DATA_V3_DIR, 'train-posi-pair-list.pkl')
train_neg_pair_path = os.path.join(NEW_DATA_V3_DIR, 'train-neg-pair-list.pkl')
test_posi_pair_path = os.path.join(NEW_DATA_V3_DIR, 'test-posi-pair-list.pkl')
test_neg_pair_path = os.path.join(NEW_DATA_V3_DIR, 'test-neg-pair-list.pkl')
# all_posi_pair_path = os.path.join(NEW_DATA_V3_DIR, 'posi-pair-list-extend1.pkl')
# all_neg_pair_path = os.path.join(NEW_DATA_V3_DIR, 'neg-pair-list-extend1.pkl')
aid2abstractvec = load_pickle(os.path.join(NEW_DATA_V2_DIR, 'aid2abstractvec.pkl'))
aid2titlevec = load_pickle(os.path.join(NEW_DATA_V2_DIR, 'aid2titlevec.pkl'))
keyarg = {
'aid2cate': aid2titlevec,
'cate': 'title',
# 'aid2cate': aid2abstractvec,
# 'cate': 'abstract'
}
print(keyarg['cate'])
train_dataset = ReadData(train_posi_pair_path, train_neg_pair_path, whole_author_profile_pub, **keyarg)
test_dataset = ReadData(test_posi_pair_path, test_neg_pair_path, whole_author_profile_pub, **keyarg)
# all_dataset = ReadData(all_posi_pair_path, all_neg_pair_path, whole_author_profile_pub, **keyarg)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, num_workers=2)
test_loader = DataLoader(test_dataset, batch_size=len(test_dataset))
# loader = DataLoader(train_loader, batch_size=BATCH_SIZE, num_workers=2)
triplet_model = TripletModel().to(device)
criterion = nn.TripletMarginLoss()
optimizer = torch.optim.Adam(triplet_model.parameters(), lr=LR)
lr_schedule = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10)
for epoch in range(EPOCHS):
triplet_model.train()
train_loss = []
for anchor, posi, neg in train_loader:
anchor, posi, neg = anchor.to(device), posi.to(device), neg.to(device)
optimizer.zero_grad()
embs = triplet_model(anchor, posi, neg)
loss = criterion(*embs)
loss.backward()
optimizer.step()
train_loss.append(loss.item())
triplet_model.eval()
test_loss = []
accuracy = []
with torch.no_grad():
for test_anchor, test_posi, test_neg in test_loader:
test_anchor, test_posi, test_neg = test_anchor.to(device), test_posi.to(device), test_neg.to(device)
test_embs = triplet_model(test_anchor, test_posi, test_neg)
loss = criterion(*test_embs)
acc = AccuracyDis(*test_embs)
accuracy.append(acc.item())
test_loss.append(loss.item())
lr_schedule.step()
print('Epoch: [%d/%d], train loss: %f, test loss %f, acc: %f' % (epoch + 1, EPOCHS, np.mean(train_loss), np.mean(test_loss), np.mean(accuracy)))
# print('Epoch: [%d/%d], train loss: %f\n' % (epoch + 1, EPOCHS, np.mean(train_loss)))
os.makedirs('./text-model', exist_ok=True)
torch.save(triplet_model.state_dict(), './text-model/tm.%s.1.checkpoint.pth' % keyarg['cate'])