-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathoomaoSpiePoster.tex
529 lines (500 loc) · 21.3 KB
/
oomaoSpiePoster.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
\documentclass{beamer}
\mode<presentation> {
\usetheme{I6pd2}
}
\usepackage[orientation=portrait,size=a0,scale=1.1]{beamerposter}
\usepackage{xspace,tikz}
\usetikzlibrary{arrows,calc,scopes,patterns,decorations.pathmorphing,snakes,shapes,shapes.callouts,positioning,backgrounds,topaths,fit,shapes.multipart}
\usetikzlibrary{decorations.text}
\newcommand{\waveA}[3][90]{
\draw[red,ultra thick,rotate around={#1:(#2,#3)},decorate] (#2,#3) sin ++(0.25,0.1) cos ++(0.25,-0.1) sin ++(0.25,-0.1) cos ++(0.25,0.1);
}
\newcommand{\waveB}[3][90]{
\draw[red,ultra thick,rotate around={#1:(#2,#3)},decorate] (#2,#3) sin ++(0.25,0.1) cos ++(0.25,-0.1) sin ++(0.25,-0.1) cos ++(0.25,0.1);
}
\newcommand{\whirl}[3][1]{
\draw[domain=0:4.2*3.141,smooth,variable=\t,blue!75,line width=5pt] plot ({0.06*#1*\t*sin(\t r)+#2},{0.02*#1*\t*cos(\t r)+#3});
}
\def\lightColor{red!20}
\def\dmIncidence{10}
\def\boxColor{red}
\def\matlab{\emph{Matlab}$^{\textrm{\scriptsize \textregistered}}$\xspace}
\def\oomao{\textsf{OOMAO}\xspace}
\title{\Huge Object--Oriented \matlab\\ Adaptive Optics Toolbox}
\author{\Large R. Conan$^\ast$ and C. Correia$^\dagger$}
\institute[ANU CPME RSAA]{$^\ast$~RSAA, The Australian National University, Weston Creek, ACT 2611, Australia\\
$^\dagger$~Centre for Astrophysics, University of Porto, Rua das Estrelas 4150-762 Porto, Portugal}
\date[July 2012]{July 2012}
\setlength\parindent{0pt}
\begin{document}
\begin{frame}[fragile]
\begin{columns}
\begin{column}{0.33\linewidth}
\begin{block}{\oomao}
\oomao is a \alert{\matlab toolbox} to model Adaptive Optics systems;\\
\oomao is \alert{object--oriented} with classes for the AO components and for the stochastic description of the optical turbulence;\\
\oomao extends Matlab \alert{vectorization} capability to AO modeling;\\
\oomao optimizes the use of the computer resources by relying of special matrices like \alert{sparse} and \alert{Toeplitz} matrices;\\
\oomao uses Matlab \alert{multi--threaded} native routines and its own \alert{parallel} algorithms;\\
\oomao can be used to model \alert{closed--, open-- and pseudo--open-- loop, NGS and LGS, ``classical'' and tomographic AO} systems;\\
\oomao is used in the \alert{control software} of the MOAO demonstrator \alert{RAVEN} at the Subaru telescope;\\
\oomao has been used to define and to estimate the performance of the \alert{LTAO} system of the \alert{Giant Magellan Telescope}.
\end{block}
\end{column}
\begin{column}{0.64\linewidth}
\begin{block}{\oomao Class Tree}
\begin{tikzpicture}[>=stealth',
class/.style={draw=blue!30!black!50,top color=white,bottom color=blue!30!black!20,thick,rounded corners,minimum height=7mm,align=center},
classdev/.style={class,dotted,opacity=0.5},
light/.style={<-,ultra thick,red!50!blue!50,decorate,decoration={snake,post length=5pt,pre length=10pt}},
operator/.style={draw,black,thin,circle,minimum size=4mm,dotted,inner sep=2pt,fill=white},
operator path/.style={->,draw,thin,dotted},
inherit/.style={<-,thick},
encapsulate/.style={<-,thick,dashed},
node distance=3cm]
% Optical path
\node[class,label=below right:\emph{ngs}] (src) {source};
\node[class,right=50mm of src,label=below right:\emph{tel}] (tel) {telescope} edge[light] node[operator,inner sep=1pt](op){$\cdot\times$} (src);
\draw[operator path] (op) to[out=140,in=60,looseness=0.6] (src);
\node[class,right=50mm of tel,label=below right:\emph{dm}] (dm) {deformableMirror} edge[light] node[operator](op){$\times$} (tel);
\draw[operator path] (op) to[out=130,in=60,looseness=0.4] (src);
\node[class,right=50mm of dm,label=below right:\emph{wfs}] (wfs) {shackHartmann} edge[light] node[operator](op){$\times$} (dm);
\draw[operator path] (op) to[out=140,in=60,looseness=0.35] (src);
\node[class,above=40mm of dm] (img) {imager} edge[light] node[operator](op){$\times$} (dm);
\draw[operator path] (op) to[out=180,in=60,looseness=0.5] (src);
% Inheritance and encapsulation
\node[class,left=of src] (lgs) {laserGuideStar} edge[inherit,->] (src);
\node[class,above=40mm of src] (stw) {stochasticWave} edge[inherit] (src);
\node[class,below=of tel] (telA) {telescopeAbstract} edge[inherit] (tel);
\node[class,below=40mm of telA,label=below right:\emph{atm}] (atm) {atmosphere} edge[encapsulate] node[operator,inner sep=0pt](op){+/-} (telA);
\node[class,right=of atm] (turb) {turbulenceLayer} edge[encapsulate] (atm);
\draw[operator path] (op) to[out=160,in=230,in min distance=5mm] (telA);
\node[class,left=of telA] (gmt) {giantMagellanTelescope} edge[inherit,->] (telA);
\node[class,below=of gmt] (zern) {zernike} edge[inherit,->,in=185,out=0] (telA)
edge[encapsulate] (gmt);
\node[class,below= of dm] (IF) {influenceFunction} edge[encapsulate] (dm);
\node[class,above=15mm of wfs.north west,anchor=south east]
(la) {lensletArray} edge[encapsulate,in=100,out=-90] (wfs)
edge[encapsulate,out=90,in=-10] (img);
\node[class,above right=15mm of la,anchor=south west]
(ccd) {detector} edge[encapsulate,in=80,out=-90] (wfs)
edge[inherit,in=0,out=180] (img);
\node[classdev,right=of ccd,anchor=south west,yshift=5mm] (pyr) {pyramid} edge[encapsulate,->,in=30,out=180] (ccd);
\node[classdev,right=of ccd,anchor=north west,yshift=-5mm] (curv) {curvature} edge[encapsulate,->,in=-30,out=180] (ccd);
% Legend
\coordinate[right=of IF,yshift=2cm,xshift=-1cm] (a00);
\node[class,anchor=west] at (a00) (class) {class};
\coordinate[right=of a00] (b);
\node[anchor=west] at (b.east) (opt00) {\small \oomao class};
%--
\coordinate[below=10mm of class.south west] (a01);
\node[classdev,anchor=west] at (a01) (classdev) {class};
\coordinate[right=of a01] (b);
\node[anchor=west,text width=10.6cm] at (b.east) (opt01) {\small \oomao class in development};
%--
\coordinate[below=6mm of classdev.south west] (a0);
\coordinate[right=of a0] (b) edge[->,inherit] (a0);
\node[anchor=west] at (b.east) (opt0) {\small Inherit from};
%--
\coordinate[below=12mm of a0] (a1);
\coordinate[right=of a1] (b) edge[->,encapsulate] (a1);
\node[anchor=west] at (b.east) (opt1) {\small Embed};
%--
\coordinate[below=12mm of a1] (a2);
\coordinate[right=of a2] (b) edge[->,operator path] (a2);
\node[anchor=west] at (b.east) {\small Class method};
%--
\coordinate[below=12mm of a2] (a3);
\node[anchor=west] at (a3) {\emph{object}};
\coordinate[right=of a3] (b);
\node[anchor=west] at (b.east) (opt3) {\small Class instance};
%--
\coordinate[below=20mm of a3] (a4);
\coordinate[right=of a4] (b) edge[->,light] (a4);
\node[anchor=west,text width=9cm] at (b.east) (opt4) {\small Optical path: \emph{ngs}$\cdot\times$\emph{tel}$\times$\emph{dm}$\times$\emph{wfs}};
%--
% \node[draw,rounded corners,fit=(class) (opt0) (opt01) (opt4)] {};
\end{tikzpicture}
\end{block}
\end{column}
\end{columns}
\begin{block}{Adaptive Optics Modeling with \oomao}
\begin{tikzpicture}[x=4cm,y=4cm]
\tikzstyle{beamSplitter}=[black!50,very thick,opacity=0.5]
\tikzstyle{light}=[color=\lightColor ,opacity=0.5]
\tikzstyle{lightShade}=[opacity=0.5,top color=red!20,bottom color=red!20,middle color=red!40,shading angle=47.5]
\tikzstyle{rtc}=[draw=black!50,thick,double,rounded
corners,inner sep=2mm,top color=black!20,bottom
color=black!20,middle color=white,font=\ttfamily]
\tikzstyle{rtcLinks}=[>=stealth',->,ultra thick,dashed]
\tikzstyle{dm}=[draw=blue!20,rectangle,minimum width=6cm,minimum
height=2.75cm,rotate=90,anchor=south,fill=blue!50,rounded
corners]
\tikzstyle{wfs}=[fill=blue!20!green!40,draw=blue!40!green!40,opacity=0.5,rectangle,minimum
width=5cm,minimum height=1.75cm,anchor=north,rounded corners]
\tikzstyle{decoWaveA}=[decoration={snake,amplitude=2pt,segment
length=7mm}]
\tikzstyle{decoWaveB}=[decoration={snake,amplitude=1.75pt,segment length=8mm}]
\tikzstyle{oomao}=[draw,rounded corners=5mm,text
width=7cm,rectangle callout,callout pointer width=1.5cm]
\coordinate (dm00) at (5,4);
% light-path
\fill[light,rotate around={-\dmIncidence:(dm00)}] (4.75,3.5) --
(11,3.5) -- (13,4) -- (11,4.5) -- (4.75,4.5) -- cycle;
\fill[light,rotate around={\dmIncidence:(dm00)}] (4.75,3.5) --
(11,3.5) -- (11,4.5) -- (4.75,4.5) -- cycle;
% dm
{ [] \path[clip,rotate around={90:(5,3.5)}] (5,3.52) sin
++(0.25,0.05) cos ++(0.25,-0.05) sin ++(0.25,-0.05) cos
++(0.25,0.05) -- ++(0.5,0) -- ++(0,0.5) -- ++(-2,0) --
++(0,-0.5) -- cycle; \node[dm] (dm) at ($(dm00)+(0.25,0)$) {};
} \draw[black!20,thick,rotate around={90:(5,3.5)}] (4.75,3.52)
-- (5,3.52) sin ++(0.25,0.05) cos ++(0.25,-0.05) sin
++(0.25,-0.05) cos ++(0.25,0.05) -- (6.25,3.52);
{ [rotate around={\dmIncidence:(dm00)}]
%% SOURCE
\draw[light,decorate,decoration={expanding
waves,angle=10,segment length=10mm},line width=8pt] (16,4) -- (11,4);
\node[draw=white,star,star points=5, star point
height=1.5cm,minimum size=2cm,inner color=white,outer
color=red!20,inner sep=0,scale=0.4](src) at (16,4) {src};
{ [rotate around={-5:(11,4)}]
%% SOURCE
\draw[light,decorate,decoration={expanding
waves,angle=10,segment length=10mm},line width=8pt] (16,4) -- (11,4);
\node[draw=white,star,star points=5, star point
height=1.5cm,minimum size=2cm,inner color=white,outer
color=red!20,inner sep=0,scale=0.4](ngs) at (16,4) {ngs};
}
% \draw[red,ultra thick ] (13.75,3.5) -- +(0,1);
%% TELESCOPE
\draw[black, dotted,ultra thick ] (11,3.5) -- +(0,1);
\fill[black] (10,3.3) rectangle (11,3.5);
\fill[black] (10,4.5) rectangle (11,4.7);
}
%% TURBULENCE
{ [yshift=-3cm]
\whirl{12.5}{6.5} \whirl[0.5]{13}{6} \whirl[0.6]{11.6}{6.1}
\whirl[1.5]{12}{5.5}
\whirl[0.3]{12.25}{6.05}
}
%% CLOSED LOOP PATH
{ [rotate around={-\dmIncidence:(dm00)}]
% wave
\draw[->,thin,black!40] (10,4) -- (10.75,4); { [decoWaveA]
\draw[red,ultra thick,decorate] (7.75,3.5) -- +(0,1);
\draw[red,ultra thick,decorate] (10.5,3.5) -- +(0,1); } {
[decoWaveB] \draw[red,ultra thick,decorate] (10.25,3.5) --
+(0,1); }
% light-path
\fill[light] (8.5,2.25)[rotate around={45:(9,4)}] -- (9,4.75)
-- (9,3.25)[rotate around={-45:(9,4)}] -- (9.5,2.25) -- cycle;
% beam splitter
\draw[beamSplitter,rotate around={45:(9,4)}] (9,3) -- +(0,2);
% beam lens
\draw[<->,beamSplitter] (11,3.25) -- +(0,1.5);
%% IMAGER
\fill[black!20,draw=black!50,rounded corners,opacity=0.5] (12.75,3.5) rectangle (13.75,4.5);
% wave
{ [decoWaveA] \draw[red,ultra thick,decorate] (8.5,2.25) --
+(1,0); }
% closed-loop wfs
\node[wfs,rotate=-\dmIncidence] (clWfs) at (9,2.5) {}; }
%% --------------------- OPEN LOOP PATH
{ [rotate around={\dmIncidence:(dm00)}]
% wave
\draw[->,very thick,black!40] (10.75,4) -- (10,4); {
[decoWaveA] \waveA{10.25}{3.5} \waveA{7}{3.5} } {
[decoWaveB] \waveB{10.5}{3.5} }
% light-path
{ [] \path[clip] (8.5,5.65) sin ++(0.25,0.1) cos ++(0.25,-0.1)
sin ++(0.25,-0.1) cos
++(0.25,0.1);%[rotate around={45:(9,4)}] -- (9,3.25) -- (9,4.75) -- cycle;
\fill[light] (8.5,5.75)[rotate around={45:(9,4)}] --
(9,4.75) --
(9,3.25);%[rotate around={-45:(9,4)}] -- (9.5,5.75) -- cycle;
} }
%% --------------------- LABEL
% \node[above,text width=4cm, text centered] at (dm.east)
% {\emph{Deformable Mirror}}; \node[below,text width=6cm, text
% centered] at (clWfs.south east) {\emph{Closed--loop wavefront
% sensor}};
%% \oomao
% _ source_
\node[below=3cm of ngs,oomao,text width=16.5cm,callout absolute
pointer={(ngs.south)}] (code) {
\begin{minipage}{\linewidth}
\begin{verbatim}
ngs =source('zenith',arcsec(20));
\end{verbatim}
\end{minipage}
};
\node[above=2cm of src,oomao,text width=21.5cm,callout absolute
pointer={(src.north)}] (code) {
\begin{minipage}{\linewidth}
\begin{verbatim}
science = source('wavelength',photometry.J);
\end{verbatim}
\end{minipage}
};
% _ atmosphere _
\node[oomao,anchor=south east,text width=21cm,callout absolute
pointer={(12.25,5.3)}] (atm code) at (9.75,5.5) {
\begin{minipage}{\linewidth}
\begin{verbatim}
atm = atmosphere(photometry.V,20e-2,30,...
'fractionnalR0',[0.5,0.3,0.2],...
'altitude',[0e3,5e3,12e3],...
'windSpeed',[10,5,20],...
'windDirection',[0,pi/2,pi]);
\end{verbatim}
\end{minipage}
};
% _ telescope _
\node[oomao,anchor=south west,text width=25cm,callout absolute
pointer={(10.75,5)}] (code) at (10,3.5) {
\begin{minipage}{\linewidth}
\begin{verbatim}
tel = telescope(25,'resolution',600,...
'fieldOfViewInArcsec',30,'samplingTime',1/500);
\end{verbatim}
\end{minipage}
};
% _ wavefront sensor _
\node[oomao,left=2.5cm of clWfs,text width=17.5cm,callout
absolute pointer={(clWfs.west)},yshift=1cm] (code) {
\begin{minipage}{\linewidth}
\begin{verbatim}
wfs = shackHartmann(60,600,0.85);
ngs = ngs.*tel*wfs;
wfs.INIT
+wfs;
\end{verbatim}
\end{minipage}
};
% _ deformable mirror _
\node[oomao,left=2cm of dm.north,anchor=east,text
width=22cm,callout absolute pointer={(dm.north)}] (dm code) {
\begin{minipage}{\linewidth}
\begin{verbatim}
bif = influenceFunction('monotonic',0.75);
dm = deformableMirror(61,'modes',bif,...
'resolution',tel.resolution,...
'validActuator',wfs.validActuator);
ngs = ngs.*tel;
calibDm = calibration(dm,wfs,ngs,...
ngs.wavelength,nL+1,'cond',1e2);
\end{verbatim}
\end{minipage}
};
% _ imager _
\node[oomao,text
width=15.5cm,callout absolute pointer={(13.25,2.5)},anchor=north west] (code) at (14,3) {
\begin{minipage}{\linewidth}
\begin{verbatim}
cam = imager(tel);
science = science.*tel*cam;
cam.referenceFrame = cam.frame;
\end{verbatim}
\end{minipage}
};
\path let \p1 = (atm code.north west), \p2 = (dm code.north west) in node[draw,rounded corners,anchor=north west,text width=20cm] (code) at (\x2,\y1) {
\begin{minipage}[linewidth]{1.0\linewidth}
\textbf{Propagation of the sources:}
\begin{verbatim}
tel = tel + atm;
ngs = ngs.*tel*dm*wfs;
dm.coefs = -calibDm.M*wfs.slopes;
science = science.*tel*dm*cam;
\end{verbatim}
\end{minipage}
};
\end{tikzpicture}
\end{block}
%% __ IMAGE PLANE SAMPLING __
\begin{block}{Image Plane Sampling}
\begin{columns}
\begin{column}{0.75\linewidth}
\begin{center}
\begin{verbatim}
science = source('zenith',arcsec([0,logspace(0,log10(60),20)]),'azimuth',zeros(1,21),'wavelength',photometry.H);
source*tel*wfs;
dm.coefs = -calibDm.M*wfs.slopes;
science = science.*tel*dm*cam; figure, imagesc(cam)
figure, plot([science.zenith]*constants.radian2arcsec,cam.strehl,'.-')
\end{verbatim}
\begin{center}
\fbox{\includegraphics[trim=6.95cm 5.8cm 5.1cm
5.3cm,clip,width=0.95\linewidth]{imagerDemo.png}}
\end{center}
\end{center}
\end{column}
\begin{column}{0.2\linewidth}
\fbox{\includegraphics{imagerDemoStrehl.png}}
\end{column}
\end{columns}
\end{block}
%% __ __
\begin{columns}
\begin{column}{0.68\linewidth}
\begin{block}{Analytics}
\begin{tikzpicture}
\node (code 1) {
\begin{minipage}{0.36\linewidth}
\textbf{Zernike variance:}
\begin{verbatim}
zern = zernike(tel,...
1:zernike.nModeFromRadialOrder(12));
atm.L0 = 30;
zvVK = zernikeStats.variance(zern,atm);
atm.L0 = Inf;
zvK = zernikeStats.variance(zern,atm);
\end{verbatim}
\end{minipage}
};
\node[right=1pt of code 1.north east,anchor=north west,yshift=7pt] (image 1) {{\includegraphics[trim=0cm 0cm 0cm 0cm,clip,width=0.3\linewidth]{zernVar.png}}};
\node[below=20pt of code 1.south west,anchor=north west] (code 2) {
\begin{minipage}{0.5\linewidth}
\textbf{Residual variance:}
\begin{verbatim}
atm.L0 = 30; zveVK = arrayfun( @(x) ...
zernikeStats.residualVariance(x,atm,tel), zern.j );
atm.L0 = Inf; zveK = arrayfun( @(x) ...
zernikeStats.residualVariance(x,atm,tel), zern.j );
\end{verbatim}
\end{minipage}
};
\path let \p1 = (code 2.south east), \p2 = (image 1.north east) in node[anchor=south west,xshift=-10mm] (image 2) at (\x2,\y1) {{\includegraphics[trim=0cm 0cm 0cm 0cm,clip,width=0.3\linewidth]{zernResVar.png}}};
\end{tikzpicture}
\end{block}
\end{column}
%% __ LGS WAVEFRONT SENSING __
\begin{column}{0.31\linewidth}
\begin{block}{Sodium Laser Guide Star Wavefront Sensing}
\begin{verbatim}
nLgs = 21; u = linspace(-1,1,nLgs);
p=exp(-((u-0.35)*5).^2)+0.65*exp(-((u+0.45)*4).^2);
lgs = laserGuideStar(25/60,25,90e3,1,1e9,p,...
'wavelength',photometry.Na,...
'height',1e3*(linspace(-5,5,nLgs)+90),...
'viewPoint',[-25/2,0]);
tel = telescope(25,'resolution',60*48);
wfs = shackHartmann(60,60*16);
wfs.lenslets.fieldStopSize = 24;
lgs = lgs.*tel*wfs; imagesc(wfs.camera)
\end{verbatim}
\includegraphics[trim=3.5cm 15.5cm 2.6cm 9cm,clip,width=0.9\linewidth]{lgsWfs.png}
% \begin{tikzpicture}[line/.style={red,thick}]
% \node[inner sep=0] (image) at (0,0) {\includegraphics[trim=3.5cm 10.5cm 2.6cm 2.7cm,clip,width=0.95\linewidth]{lgsWfs.png}};
% \node[black!20,anchor=north west,fill=black!20,fill opacity=0.25,text opacity=1] (code) at (image.north west) {
% \begin{minipage}{0.9\linewidth}
% \begin{verbatim}
% nLgs = 21; u = linspace(-1,1,nLgs);
% p = exp(-((u-0.35)*5).^2) + ...
% 0.65*exp(-((u+0.45)*4).^2);
% lgs = laserGuideStar(25/60,25,90e3,1,1e9,p,...
% 'wavelength',photometry.Na,...
% 'height',1e3*(linspace(-5,5,nLgs)+90),...
% 'viewPoint',[-25/2,0]);
% tel = telescope(25,'resolution',60*48);
% wfs = shackHartmann(60,60*16);
% wfs.lenslets.fieldStopSize = 24;
% lgs = lgs.*tel*wfs; imagesc(wfs.camera)
% \end{verbatim}
% \end{minipage}
% };
% \begin{scope}[x={(image.south east)},y={(image.north west)}]
% \end{scope}
% \end{tikzpicture}
\end{block}
\end{column}
\end{columns}
%% __ LTAO __
\begin{block}{Open--Loop Laser Tomography Adaptive Optics}
\begin{tikzpicture}
\node (code 1) {
\begin{minipage}{0.14\linewidth}
\textbf{1. Science wavefront:}
\begin{verbatim}
science = science.*tel;
figure(11)
imagesc(...
science.meanRmOpd*1e6)
axis square
\end{verbatim}
\end{minipage}
};
\node[right=of code 1] (image 1) {\fbox{\includegraphics[trim=3.4cm 1.6cm 4.5cm 1.1cm,clip,width=0.095\linewidth]{ltao_scienceWavefront.png}}};
\node[right=of image 1] (code 2) {
\begin{minipage}{0.29\linewidth}
\textbf{2. Science wavefront estimation:}
\begin{verbatim}
lgsAst = source('asterism',{[6,arcsec(25),0]},...
'wavelength',photometry.Na,'height',90e3);
slmmse = slopesLinearMMSE(wfs,tel,atm,lgsAst,...
'mmseStar',science);
lgsAst = lgsAst.*tel*wfs;
ps_e = slmmse* wfs.slopes;
figure, imagesc(ps_e), axis square
\end{verbatim}
\end{minipage}
};
\node[right=of code 2] (image 2) {\fbox{\includegraphics[trim=2cm 1.2cm 3.4cm 0.85cm,clip,width=0.1\linewidth]{ltao_scienceWavefrontEstimate.png}}};
\path let \p1 = (code 1.west), \p2 = (code 2.south) in node[anchor=north west] (code 3) at ($(\x1,\y2)-(0,5mm)$) {
\begin{minipage}{0.28\linewidth}
\textbf{3. DM projection:}
\begin{verbatim}
bifaLowRes = influenceFunction('monotonic',0.5);
dmLowRes = deformableMirror(61,...
'modes',bifaLowRes,'resolution',61,...
'validActuator',wfs.validActuator);
F = 2*bifaLowRes.modes(wfs.validActuator,:);
iF = pinv(full(F),1e-1);
dm.coefs = iF*ps_e(dm.validActuator);
\end{verbatim}
\end{minipage}
};
\node[right=of code 3] (code 4) {
\begin{minipage}{0.18\linewidth}
\textbf{4. Residual wavefront \& PSF:}
\begin{verbatim}
science = science*dm*cam;
figure(13)
imagesc(science.meanRmOpd*1e9)
axis square
imagesc(cam)
title(...
sprintf('Strehl: %2.0f%%',cam.strehl*1e2))
\end{verbatim}
\end{minipage}
};
\node[right=of code 4.north east,anchor=north west,label=\small{WFE rms: 155nm}] (image 4 a) {\fbox{\includegraphics[trim=3.4cm 1.6cm 4.5cm 1.1cm,clip,width=0.095\linewidth]{ltao_scienceresidue.png}}};
\node[right=1pt of image 4 a,label=\small{Strehl: 67\%}] (image 4 b) {\fbox{\includegraphics[trim=3.4cm 1.6cm 4.5cm 1.1cm,clip,width=0.095\linewidth]{ltao_image.png}}};
\node[right=1cm of image 2.north east,anchor=north west] (code 5) {
\begin{minipage}{0.18\linewidth}
\textbf{WFS calibration:}
\begin{verbatim}
wfs.pointingDirection = zeros(2,1);
d = tel.D/wfs.lenslets.nLenslet;
pixelScale = lgsAst(1).wavelength/...
(2*d*wfs.lenslets.nyquistSampling);
nStep=floor(wfs.lenslets.nLensletImagePx/3)*2;
u = (0:nStep)*pixelScale/2;
u = [-fliplr(u) u(2:end) ];
ngs = source('zenith',u,...
'azimuth',zeros(1,length(u)),...
'wavelength',photometry.Na);
tel = tel - atm;
ngs = ngs.*tel*wfs;
u_wfs = median(wfs.slopes(1:end/2,:));
slopesLinCoef =polyfit(u,u_wfs.*pixelScale,1);
wfs.pointingDirection = [];
tel = tel + atm;
wfs.slopesUnits = abs(1/slopesLinCoef(1));
\end{verbatim}
\end{minipage}
};
\end{tikzpicture}
\end{block}
\end{frame}
\end{document}