-
Notifications
You must be signed in to change notification settings - Fork 41
/
hydra_main.py
205 lines (162 loc) · 7.39 KB
/
hydra_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""
This script is modified from https://github.com/facebookresearch/ConvNeXt/blob/main/run_with_submitit.py
Modifications:
* Using hydra to manage arguments and generate experiment dir according to argument overrides
* Surpporting both tcp/file mode of DDP communication. Finding free tcp port automatically.
* Change slurm flags to support SenseTime cluster environment.
author: ZHU Lei
github: https://github.com/rayleizhu
email: [email protected]
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import uuid
from pathlib import Path
import hydra
import submitit
from omegaconf import DictConfig, OmegaConf
def _find_free_port():
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# Binding to port 0 will cause the OS to find an available port for us
sock.bind(("", 0))
port = sock.getsockname()[1]
sock.close()
# NOTE: there is still a chance the port could be taken by other processes.
return port
def get_shared_folder(share_root) -> Path:
if Path(share_root).parent.is_dir():
p = Path(f"{share_root}")
p.mkdir(exist_ok=True)
return p
raise RuntimeError(f"The parent of share_root ({share_root}) must exist!")
def get_init_file(share_root):
# Init file must not exist, but it's parent dir must exist.
os.makedirs(str(get_shared_folder(share_root)), exist_ok=True)
# FIXME: it seems that, processes on different machines may generate different init file
# This cuase failure when using multiple machines
init_file = get_shared_folder(share_root) / f"{uuid.uuid4().hex}_init"
if init_file.exists():
os.remove(str(init_file))
return init_file
def get_dist_url(ddp_comm_mode='tcp', share_root=None):
if ddp_comm_mode == 'file':
assert share_root is not None
return get_init_file(share_root).as_uri()
elif ddp_comm_mode == 'tcp':
return 'env://' # will be set inside trainer.main() later
else:
raise ValueError('Unknown DDP communication mode')
class Trainer(object):
def __init__(self, args):
self.args = args
def __call__(self):
import main as trainer
self._setup_gpu_args()
trainer.main(self.args)
def checkpoint(self): # for auto resume when on time-constrained slurm cluster
import os
import submitit
self.args.dist_url = get_dist_url(
ddp_comm_mode=self.args.slurm.ddp_comm_mode,
share_root=self.args.slurm.share_root)
self.args.auto_resume = True
print("Requeuing ", self.args)
empty_trainer = type(self)(self.args)
return submitit.helpers.DelayedSubmission(empty_trainer)
def _setup_gpu_args(self):
from pathlib import Path
import submitit
job_env = submitit.JobEnvironment()
# https://shomy.top/2022/01/05/torch-ddp-intro/
# self.args.dist_url = f'tcp://{job_env.hostname}:{self.args.slurm.port}'
self.args.output_dir = Path(self.args.slurm.job_dir)
self.args.gpu = job_env.local_rank
self.args.rank = job_env.global_rank
self.args.world_size = job_env.num_tasks
self.args.slurm_jobid = job_env.job_id
print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
@hydra.main(version_base=None, config_path="./configs", config_name="train_args.yaml")
def hydra_app(args:DictConfig):
# NOTE: enable write to unknow field of cfg
# hence it behaves like argparse.NameSpace
# this is required as some args (e.g. args.gpu) is determined at runtime
# https://stackoverflow.com/a/66296809
OmegaConf.set_struct(args, False)
if args.slurm.job_dir is None:
# by default, set slurm job output dir as the one for ddp communication
# args.slurm.job_dir = get_shared_folder(args.slurm.share_root) / "%j"
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
args.slurm.job_dir = hydra_cfg['runtime']['output_dir']
if args.slurm.master_port is None: # automatically find free port for ddp communication
args.slurm.master_port = _find_free_port()
if hasattr(args, 'pavi'):
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
if args.pavi.name is None:
args.pavi.name = hydra_cfg['job']['override_dirname']
cluster_id = hydra_cfg['runtime']['choices']['slurm']
job_dir = hydra_cfg['runtime']['output_dir']
desc = f"{cluster_id}, {job_dir}"
if args.pavi.description is None: # show cluster, job_dir
args.pavi.description = desc
else:
args.pavi.description = ','.join([desc, args.pavi.description])
executor = submitit.AutoExecutor(folder=args.slurm.job_dir, slurm_max_num_timeout=30)
############## NOTE: this part is highly dependent on slurm version ##############
num_gpus_per_node = args.slurm.ngpus
nodes = args.slurm.nodes
timeout_min = args.slurm.timeout * 60 # in minutes
cpus_per_task = args.slurm.cpus_per_task
partition = args.slurm.partition
kwargs = {}
# if args.use_volta32:
# kwargs['slurm_constraint'] = 'volta32gb'
if args.slurm.comment:
kwargs['slurm_comment'] = args.slurm.comment
# NOTE: slurm with different versions may have different flags
# slurm_additional_parameters is flexible to cope with this scenario
slurm_additional_parameters={'ntasks': num_gpus_per_node*nodes,
'gres': f'gpu:{num_gpus_per_node}',
'ntasks-per-node': num_gpus_per_node} # one task per GPU
if args.slurm.exclude_node:
slurm_additional_parameters['exclude'] = args.slurm.exclude_node
if args.slurm.quotatype:
slurm_additional_parameters['quotatype'] = args.slurm.quotatype
executor.update_parameters(
## original
# mem_gb=40 * num_gpus_per_node,
# gpus_per_node=num_gpus_per_node,
# tasks_per_node=num_gpus_per_node, # one task per GPU
# nodes=nodes,
# timeout_min=timeout_min, # max is 60 * 72
## https://github.com/facebookincubator/submitit/issues/1639
# mem_per_cpu=4000,
# gpus_per_node=num_gpus_per_node,
# cpus_per_task=4,
cpus_per_task=cpus_per_task,
nodes=nodes,
slurm_additional_parameters=slurm_additional_parameters,
timeout_min=timeout_min, # max is 60 * 72
# Below are cluster dependent parameters
slurm_partition=partition,
slurm_signal_delay_s=120,
**kwargs
)
##################################################################################
executor.update_parameters(name=args.slurm.job_name)
args.dist_url = get_dist_url(
ddp_comm_mode=args.slurm.ddp_comm_mode,
share_root=args.slurm.share_root)
args.output_dir = args.slurm.job_dir
# NOTE: upon submission, submitit will
# 1. serailize the function object to be executed to .pkl file
# 2. create a submitit.helpers.DelayedSubmission(fn) and
# submitit.helpers.DelayedSubmission(fn) in the queue of submitit (NOT queue of slurm)
# 3. if the fist job is successfully finished, the second job will be cancelled;
# otherwise, the second job will be executed
trainer = Trainer(args)
job = executor.submit(trainer)
print("Submitted job_id:", job.job_id)
if __name__ == "__main__":
hydra_app()