-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictor.py
98 lines (64 loc) · 2.62 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import tensorflow.keras as keras
import librosa
import math
import json
import os
# model.summary()
#################
test_folder_path = '../test'
json_path = '../test.json'
#################
SAMPLE_RATE = 22050
DURATION = 3
SAMPLES_PER_TRACK = SAMPLE_RATE * DURATION
def save_mfcc(test_folder_path, json_path, n_mfcc = 13, n_fft = 2048, hop_length = 512, num_segments = 5):
# dictionary to store data
data = {
"mfcc": [],
}
num_samples_per_segment = int(SAMPLES_PER_TRACK/num_segments)
expected_num_mfcc_vectors_per_segment = math.ceil(num_samples_per_segment / hop_length) # rounding
for i, (dirpath, dirnames, filenames) in enumerate(os.walk(test_folder_path)):
# ensure that we are not at the root directory
# if dirpath is not test_folder_path:
for f in filenames:
# load audio file
file_path = os.path.join(dirpath, f)
signal, sr = librosa.load(file_path)
# process segments extracting mfcc and storing data
for s in range(num_segments):
start_sample = num_samples_per_segment * s # starting point for each segment
finish_sample = start_sample + num_samples_per_segment # end point
mfcc = librosa.feature.mfcc(signal[start_sample:finish_sample],
sr=sr,
n_fft=n_fft,
n_mfcc=n_mfcc,
hop_length=hop_length)
mfcc = mfcc.T
if len(mfcc) == expected_num_mfcc_vectors_per_segment:
data["mfcc"].append(mfcc.tolist())
print("{}, segment:{}".format(file_path, s+1))
with open(json_path, "w") as fp:
json.dump(data, fp, indent=4)
def load_data(data_path):
with open(data_path, "r") as fp:
data = json.load(fp)
# convert lists to numpy arrays
X = np.array(data["mfcc"])
# y = np.array(data["labels"])
print("Data succesfully loaded!")
return X
if __name__=="__main__":
save_mfcc(test_folder_path, json_path, num_segments = 5)
DATA_PATH = "../test.json"
# load data
X = load_data(DATA_PATH)
print(X)
# loading the trained model
model = keras.models.load_model('my_model')
# predicting the class as labels
y_hat = model.predict(X)
# for i in range(len(y_hat)):
# y_hat[i] = np.round(y_hat[i])
print(y_hat)