forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crc32c.c
595 lines (537 loc) · 19.4 KB
/
crc32c.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/* crc32c.c -- compute CRC-32C using software table or available hardware instructions
* Copyright (C) 2013 Mark Adler
* Version 1.1 1 Aug 2013 Mark Adler
*
* Code retrieved in August 2016 from August 2013 post by Mark Adler on
* http://stackoverflow.com/questions/17645167/implementing-sse-4-2s-crc32c-in-software
* Modified for use in libjulia:
* - exported function renamed to jl_crc32c, DLL exports added.
* - removed main() function
* - architecture and compiler detection
* - precompute crc32c tables and store in a generated .c file
* - ARMv8 support
*/
/*
This software is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Mark Adler
*/
/* This computes a CRC-32C, *not* the CRC-32 used by Ethernet and zip, gzip, etc.
* A software version is provided as a fall-back, as well as for speed comparisons. */
/* Version history:
1.0 10 Feb 2013 First version
1.1 1 Aug 2013 Correct comments on why three crc instructions in parallel
*/
#include "julia.h"
#include "julia_internal.h"
#include "processor.h"
#ifdef _CPU_AARCH64_
# include <sys/auxv.h>
#endif
/* CRC-32C (iSCSI) polynomial in reversed bit order. */
#define POLY 0x82f63b78
/* Block sizes for three-way parallel crc computation. LONG and SHORT must
both be powers of two. The associated string constants must be set
accordingly, for use in constructing the assembler instructions. */
#define LONG 8192
#define LONGx1 "8192"
#define LONGx2 "16384"
#define SHORT 256
#define SHORTx1 "256"
#define SHORTx2 "512"
#ifndef GEN_CRC32C_TABLES
#include "crc32c-tables.c"
#if JL_USE_IFUNC
// Archs that can't use ifunc to do feature detection (e.g. ARM) should undef this below.
# define JL_CRC32C_USE_IFUNC
#endif
JL_DLLEXPORT uint32_t jl_crc32c_sw(uint32_t crci, const char *buf, size_t len);
typedef uint32_t (*crc32c_func_t)(uint32_t crc, const char *buf, size_t len);
/* Apply the zeros operator table to crc. */
JL_UNUSED static inline uint32_t crc32c_shift(const uint32_t zeros[][256], uint32_t crc)
{
return zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24];
}
#if (defined(_CPU_X86_64_) || defined(_CPU_X86_)) && !defined(_COMPILER_MICROSOFT_)
# ifdef _CPU_X86_64_
# define CRC32_PTR "crc32q"
# else
# define CRC32_PTR "crc32l"
# endif
/* Compute CRC-32C using the SSE4.2 hardware instruction. */
static uint32_t crc32c_sse42(uint32_t crc, const char *buf, size_t len)
{
/* need to be 64 bits for crc32q */
/* pre-process the crc */
uintptr_t crc0 = crc ^ 0xffffffff;
/* compute the crc for up to seven leading bytes to bring the data pointer
to an eight-byte boundary */
while (len && ((uintptr_t)buf & 7) != 0) {
__asm__("crc32b\t" "(%1), %0"
: "=r"(crc0)
: "r"(buf), "0"(crc0));
buf++;
len--;
}
/* compute the crc on sets of LONG*3 bytes, executing three independent crc
instructions, each on LONG bytes -- this is optimized for the Nehalem,
Westmere, Sandy Bridge, and Ivy Bridge architectures, which have a
throughput of one crc per cycle, but a latency of three cycles */
while (len >= LONG * 3) {
uintptr_t crc1 = 0;
uintptr_t crc2 = 0;
const char *end = buf + LONG;
do {
__asm__(CRC32_PTR "\t" "(%3), %0\n\t"
CRC32_PTR "\t" LONGx1 "(%3), %1\n\t"
CRC32_PTR "\t" LONGx2 "(%3), %2"
: "=r"(crc0), "=r"(crc1), "=r"(crc2)
: "r"(buf), "0"(crc0), "1"(crc1), "2"(crc2));
buf += sizeof(void*);
} while (buf < end);
crc0 = crc32c_shift(crc32c_long, crc0) ^ crc1;
crc0 = crc32c_shift(crc32c_long, crc0) ^ crc2;
buf += LONG * 2;
len -= LONG * 3;
}
/* do the same thing, but now on SHORT*3 blocks for the remaining data less
than a LONG*3 block */
while (len >= SHORT * 3) {
uintptr_t crc1 = 0;
uintptr_t crc2 = 0;
const char *end = buf + SHORT;
do {
__asm__(CRC32_PTR "\t" "(%3), %0\n\t"
CRC32_PTR "\t" SHORTx1 "(%3), %1\n\t"
CRC32_PTR "\t" SHORTx2 "(%3), %2"
: "=r"(crc0), "=r"(crc1), "=r"(crc2)
: "r"(buf), "0"(crc0), "1"(crc1), "2"(crc2));
buf += sizeof(void*);
} while (buf < end);
crc0 = crc32c_shift(crc32c_short, crc0) ^ crc1;
crc0 = crc32c_shift(crc32c_short, crc0) ^ crc2;
buf += SHORT * 2;
len -= SHORT * 3;
}
/* compute the crc on the remaining eight-byte units less than a SHORT*3
block */
const char *end = buf + (len - (len & 7));
while (buf < end) {
__asm__(CRC32_PTR "\t" "(%1), %0"
: "=r"(crc0)
: "r"(buf), "0"(crc0));
buf += sizeof(void*);
}
len &= 7;
/* compute the crc for up to seven trailing bytes */
while (len) {
__asm__("crc32b\t" "(%1), %0"
: "=r"(crc0)
: "r"(buf), "0"(crc0));
buf++;
len--;
}
/* return a post-processed crc */
return (uint32_t)crc0 ^ 0xffffffff;
}
// HW feature detection
# ifdef __SSE4_2__
// The C code is compiled with SSE42 being required. Skip runtime dispatch.
JL_DLLEXPORT uint32_t jl_crc32c(uint32_t crc, const char *buf, size_t len)
{
return crc32c_sse42(crc, buf, len);
}
# else
static crc32c_func_t crc32c_dispatch(void)
{
// When used in ifunc, we cannot call external functions (i.e. jl_cpuid)
uint32_t eax = 1, ebx, ecx, edx;
asm (
#if defined(__i386__) && defined(__PIC__)
"xchg %%ebx, %%esi;"
"cpuid;"
"xchg %%esi, %%ebx;":
"=S" (ebx) ,
#else
"cpuid":
"=b" (ebx),
#endif
"+a" (eax),
"=c" (ecx),
"=d" (edx));
if ((ecx >> 20) & 1)
return crc32c_sse42;
return jl_crc32c_sw;
}
// For ifdef detection below
# define crc32c_dispatch crc32c_dispatch
# define crc32c_dispatch_ifunc "crc32c_dispatch"
# endif
#elif defined(_CPU_AARCH64_)
#define CRC_TARGET __attribute__((target("+crc")))
/* Compute CRC-32C using the ARMv8 CRC32 extension. */
CRC_TARGET static inline uint32_t crc32cx(uint32_t crc, uint64_t val)
{
uint32_t res;
asm("crc32cx %w0, %w1, %2" : "=r"(res) : "r"(crc), "r"(val));
return res;
}
CRC_TARGET static inline uint32_t crc32cw(uint32_t crc, uint32_t val)
{
uint32_t res;
asm("crc32cw %w0, %w1, %w2" : "=r"(res) : "r"(crc), "r"(val));
return res;
}
CRC_TARGET static inline uint32_t crc32ch(uint32_t crc, uint32_t val)
{
uint32_t res;
asm("crc32ch %w0, %w1, %w2" : "=r"(res) : "r"(crc), "r"(val));
return res;
}
CRC_TARGET static inline uint32_t crc32cb(uint32_t crc, uint32_t val)
{
uint32_t res;
asm("crc32cb %w0, %w1, %w2" : "=r"(res) : "r"(crc), "r"(val));
return res;
}
// Modified from the SSE4.2 version.
CRC_TARGET static uint32_t crc32c_armv8(uint32_t crc, const char *buf, size_t len)
{
/* pre-process the crc */
crc = ~crc;
// Misaligned access doesn't seem to have any measurable performance overhead
// on Cortex-A57
// crc32c has a latency of 3 and throughput of 1 on Cortex-A57
// The latency and throughput are 2 and 1 on Cortex-A72
// In either case, the 3 wide parallel processing shouldn't hurt since the block size
// should be big enough.
/* compute the crc on sets of LONG*3 bytes, executing three independent crc
* instructions, each on LONG bytes. */
while (len >= LONG * 3) {
uint32_t crc1 = 0;
uint32_t crc2 = 0;
const char *end = buf + LONG;
const char *buf2 = end;
const char *buf3 = end + LONG;
do {
crc = crc32cx(crc, jl_load_unaligned_i64(buf));
buf += 8;
crc1 = crc32cx(crc1, jl_load_unaligned_i64(buf2));
buf2 += 8;
crc2 = crc32cx(crc2, jl_load_unaligned_i64(buf3));
buf3 += 8;
} while (buf < end);
crc = crc32c_shift(crc32c_long, crc) ^ crc1;
crc = crc32c_shift(crc32c_long, crc) ^ crc2;
buf += LONG * 2;
len -= LONG * 3;
}
/* do the same thing, but now on SHORT*3 blocks for the remaining data less
* than a LONG*3 block */
while (len >= SHORT * 3) {
uint32_t crc1 = 0;
uint32_t crc2 = 0;
const char *end = buf + SHORT;
const char *buf2 = end;
const char *buf3 = end + SHORT;
do {
crc = crc32cx(crc, jl_load_unaligned_i64(buf));
buf += 8;
crc1 = crc32cx(crc1, jl_load_unaligned_i64(buf2));
buf2 += 8;
crc2 = crc32cx(crc2, jl_load_unaligned_i64(buf3));
buf3 += 8;
} while (buf < end);
crc = crc32c_shift(crc32c_short, crc) ^ crc1;
crc = crc32c_shift(crc32c_short, crc) ^ crc2;
buf += SHORT * 2;
len -= SHORT * 3;
}
// The same shift table can be used to compute two SHORT blocks simultaneously
if (len >= SHORT * 2) {
uint32_t crc1 = 0;
const char *end = buf + SHORT;
const char *buf2 = end;
do {
crc = crc32cx(crc, jl_load_unaligned_i64(buf));
buf += 8;
crc1 = crc32cx(crc1, jl_load_unaligned_i64(buf2));
buf2 += 8;
} while (buf < end);
crc = crc32c_shift(crc32c_short, crc) ^ crc1;
buf += SHORT;
len -= SHORT * 2;
}
/* compute the crc on the remaining eight-byte units less than a SHORT*2
block */
const char *end = buf + len - 8;
while (buf <= end) {
crc = crc32cx(crc, jl_load_unaligned_i64(buf));
buf += 8;
}
if (len & 4) {
crc = crc32cw(crc, jl_load_unaligned_i32(buf));
buf += 4;
}
if (len & 2) {
crc = crc32ch(crc, jl_load_unaligned_i16(buf));
buf += 2;
}
if (len & 1)
crc = crc32cb(crc, *buf);
/* return a post-processed crc */
return ~crc;
}
// HW feature detection
# ifdef __ARM_FEATURE_CRC32
// The C code is compiled with CRC32 being required. Skip runtime dispatch.
JL_DLLEXPORT uint32_t jl_crc32c(uint32_t crc, const char *buf, size_t len)
{
return crc32c_armv8(crc, buf, len);
}
# else
static crc32c_func_t crc32c_dispatch(unsigned long hwcap)
{
if (hwcap & (1 << JL_AArch64_crc))
return crc32c_armv8;
return jl_crc32c_sw;
}
// For ifdef detection below
# define crc32c_dispatch() crc32c_dispatch(getauxval(AT_HWCAP))
# define crc32c_dispatch_ifunc "crc32c_dispatch"
# endif
#else
// If we don't have any accelerated version to define, just make the _sw version define
// the real version and then define a _sw version as test wrapper.
JL_DLLEXPORT uint32_t jl_crc32c(uint32_t crc, const char *buf, size_t len);
JL_DLLEXPORT uint32_t jl_crc32c_sw(uint32_t crc, const char *buf, size_t len)
{
return jl_crc32c(crc, buf, len);
}
#define jl_crc32c_sw jl_crc32c
#endif
#ifdef crc32c_dispatch
# ifdef JL_CRC32C_USE_IFUNC
// ifunc dispatch
JL_DLLEXPORT uint32_t jl_crc32c(uint32_t crc, const char *buf, size_t len)
__attribute__((ifunc (crc32c_dispatch_ifunc)));
# else
// lazy wrapper dispatch
static uint32_t crc32c_lazy(uint32_t crc, const char *buf, size_t len);
static crc32c_func_t crc32c_func = crc32c_lazy;
static uint32_t crc32c_lazy(uint32_t crc, const char *buf, size_t len)
{
crc32c_func = crc32c_dispatch();
return crc32c_func(crc, buf, len);
}
/* Compute a CRC-32C. Do a lazy dispatch based on hardware features */
JL_DLLEXPORT uint32_t jl_crc32c(uint32_t crc, const char *buf, size_t len)
{
return crc32c_func(crc, buf, len);
}
# endif
#endif
/* Table-driven software version as a fall-back. This is about 15 times slower
than using the hardware instructions. This computes a little-endian
CRC32c, equivalent to the little-endian CRC of the SSE4.2 or ARMv8 instructions,
regardless of the endianness of the machine this is running on. */
JL_DLLEXPORT uint32_t jl_crc32c_sw(uint32_t crci, const char *buf, size_t len)
{
uintptr_t crc = crci ^ 0xffffffff;
while (len && ((uintptr_t)buf & 7) != 0) {
crc = crc32c_table[0][(crc ^ *buf++) & 0xff] ^ (crc >> 8);
len--;
}
while (len >= 8) {
#ifdef _P64
crc ^= *(uint64_t*)buf;
crc = crc32c_table[7][crc & 0xff] ^
crc32c_table[6][(crc >> 8) & 0xff] ^
crc32c_table[5][(crc >> 16) & 0xff] ^
crc32c_table[4][(crc >> 24) & 0xff] ^
crc32c_table[3][(crc >> 32) & 0xff] ^
crc32c_table[2][(crc >> 40) & 0xff] ^
crc32c_table[1][(crc >> 48) & 0xff] ^
crc32c_table[0][crc >> 56];
#else
uint32_t *p = (uint32_t*)buf;
crc ^= p[0];
uint32_t hi = p[1];
crc = crc32c_table[7][crc & 0xff] ^
crc32c_table[6][(crc >> 8) & 0xff] ^
crc32c_table[5][(crc >> 16) & 0xff] ^
crc32c_table[4][(crc >> 24) & 0xff] ^
crc32c_table[3][hi & 0xff] ^
crc32c_table[2][(hi >> 8) & 0xff] ^
crc32c_table[1][(hi >> 16) & 0xff] ^
crc32c_table[0][hi >> 24];
#endif
buf += 8;
len -= 8;
}
while (len) {
crc = crc32c_table[0][(crc ^ *buf++) & 0xff] ^ (crc >> 8);
len--;
}
return (uint32_t)crc ^ 0xffffffff;
}
/*****************************************************************************/
/*****************************************************************************/
/*****************************************************************************/
/* Compile with -DGEN_CRC32C_TABLES to generate header file containing
precomputed hardware and software tables */
// Example command line, run from top level directory:
// $ gcc src/crc32c.c -o main -DGEN_CRC32C_TABLES -I src -I src/support
// $ ./main > src/crc32c-tables.c
#else /* ifdef GEN_CRC32C_TABLES */
/* Table for a quadword-at-a-time software crc. */
static uint32_t crc32c_table[8][256];
/* Construct table for software CRC-32C calculation. */
static void crc32c_init_sw(void)
{
uint32_t n, crc, k;
for (n = 0; n < 256; n++) {
crc = n;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc32c_table[0][n] = crc;
}
for (n = 0; n < 256; n++) {
crc = crc32c_table[0][n];
for (k = 1; k < 8; k++) {
crc = crc32c_table[0][crc & 0xff] ^ (crc >> 8);
crc32c_table[k][n] = crc;
}
}
}
/* Tables for hardware crc that shift a crc by LONG and SHORT zeros. */
static uint32_t crc32c_long[4][256];
static uint32_t crc32c_short[4][256];
/* Multiply a matrix times a vector over the Galois field of two elements,
GF(2). Each element is a bit in an unsigned integer. mat must have at
least as many entries as the power of two for most significant one bit in
vec. */
static inline uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec)
{
uint32_t sum;
sum = 0;
while (vec) {
if (vec & 1)
sum ^= *mat;
vec >>= 1;
mat++;
}
return sum;
}
/* Multiply a matrix by itself over GF(2). Both mat and square must have 32
rows. */
static inline void gf2_matrix_square(uint32_t *square, uint32_t *mat)
{
int n;
for (n = 0; n < 32; n++)
square[n] = gf2_matrix_times(mat, mat[n]);
}
/* Construct an operator to apply len zeros to a crc. len must be a power of
two. If len is not a power of two, then the result is the same as for the
largest power of two less than len. The result for len == 0 is the same as
for len == 1. A version of this routine could be easily written for any
len, but that is not needed for this application. */
static void crc32c_zeros_op(uint32_t *even, size_t len)
{
int n;
uint32_t row;
uint32_t odd[32]; /* odd-power-of-two zeros operator */
/* put operator for one zero bit in odd */
odd[0] = POLY; /* CRC-32C polynomial */
row = 1;
for (n = 1; n < 32; n++) {
odd[n] = row;
row <<= 1;
}
/* put operator for two zero bits in even */
gf2_matrix_square(even, odd);
/* put operator for four zero bits in odd */
gf2_matrix_square(odd, even);
/* first square will put the operator for one zero byte (eight zero bits),
in even -- next square puts operator for two zero bytes in odd, and so
on, until len has been rotated down to zero */
do {
gf2_matrix_square(even, odd);
len >>= 1;
if (len == 0)
return;
gf2_matrix_square(odd, even);
len >>= 1;
} while (len);
/* answer ended up in odd -- copy to even */
for (n = 0; n < 32; n++)
even[n] = odd[n];
}
/* Take a length and build four lookup tables for applying the zeros operator
for that length, byte-by-byte on the operand. */
static void crc32c_zeros(uint32_t zeros[][256], size_t len)
{
uint32_t n;
uint32_t op[32];
crc32c_zeros_op(op, len);
for (n = 0; n < 256; n++) {
zeros[0][n] = gf2_matrix_times(op, n);
zeros[1][n] = gf2_matrix_times(op, n << 8);
zeros[2][n] = gf2_matrix_times(op, n << 16);
zeros[3][n] = gf2_matrix_times(op, n << 24);
}
}
/* Initialize tables for shifting crcs. */
static void crc32c_init_hw(void)
{
crc32c_zeros(crc32c_long, LONG);
crc32c_zeros(crc32c_short, SHORT);
}
#include <stdio.h>
static void print_array(const char *name, int m, int n, const uint32_t *a)
{
int i, j;
printf("JL_UNUSED static const uint32_t %s[%d][%d] = {\n", name, m, n);
for (i = 0; i < m; ++i) {
printf(" { %u", a[i*n+0]);
for (j = 1; j < n; ++j) printf(",%u", a[i*n+j]);
printf(" }%s", i == m-1 ? "\n" : ",\n");
}
printf("};\n");
}
int main(void)
{
printf("// This file is a part of Julia. License is MIT: https://julialang.org/license\n\n");
printf("/* Pregenerated tables for crc32c.c, produced by compiling with -DGEN_CRC32C_TABLES. */\n"
"#if POLY != 0x%x\n# error \"tables generated for different polynomial\"\n#endif\n\n", POLY);
crc32c_init_sw();
print_array("crc32c_table", 8, 256, &crc32c_table[0][0]);
crc32c_init_hw();
printf("\n");
print_array("crc32c_long", 4, 256, &crc32c_long[0][0]);
print_array("crc32c_short", 4, 256, &crc32c_short[0][0]);
return 0;
}
#endif /* GEN_CRC32C_TABLES */
/*****************************************************************************/
/*****************************************************************************/
/*****************************************************************************/