forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aotcompile.cpp
927 lines (842 loc) · 35.4 KB
/
aotcompile.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
// This file is a part of Julia. License is MIT: https://julialang.org/license
#include "llvm-version.h"
#include "platform.h"
#include "options.h"
// target support
#include <llvm/ADT/Triple.h>
#include <llvm/Support/TargetRegistry.h>
#include <llvm/Target/TargetMachine.h>
#include <llvm/IR/DataLayout.h>
#include <llvm/Analysis/TargetTransformInfo.h>
#include <llvm/Analysis/TargetLibraryInfo.h>
// analysis passes
#include <llvm/Analysis/Passes.h>
#include <llvm/Analysis/BasicAliasAnalysis.h>
#include <llvm/Analysis/TypeBasedAliasAnalysis.h>
#include <llvm/Analysis/ScopedNoAliasAA.h>
#include <llvm/IR/Verifier.h>
#include <llvm/Transforms/IPO.h>
#include <llvm/Transforms/Scalar.h>
#include <llvm/Transforms/Vectorize.h>
#if defined(JL_ASAN_ENABLED)
#include <llvm/Transforms/Instrumentation/AddressSanitizer.h>
#endif
#include <llvm/Transforms/Scalar/GVN.h>
#include <llvm/Transforms/IPO/AlwaysInliner.h>
#include <llvm/Transforms/InstCombine/InstCombine.h>
#include <llvm/Transforms/Scalar/InstSimplifyPass.h>
#if defined(USE_POLLY)
#include <polly/RegisterPasses.h>
#include <polly/LinkAllPasses.h>
#include <polly/CodeGen/CodegenCleanup.h>
#if defined(USE_POLLY_ACC)
#include <polly/Support/LinkGPURuntime.h>
#endif
#endif
// for outputting assembly
#include <llvm/Bitcode/BitcodeWriter.h>
#include <llvm/Bitcode/BitcodeWriterPass.h>
#include "llvm/Object/ArchiveWriter.h"
#include <llvm/IR/IRPrintingPasses.h>
#include <llvm/CodeGen/AsmPrinter.h>
#include <llvm/CodeGen/MachineModuleInfo.h>
#include <llvm/CodeGen/TargetPassConfig.h>
#include <llvm/MC/MCAsmInfo.h>
#include <llvm/MC/MCStreamer.h>
#include <llvm/MC/MCAsmBackend.h>
#include <llvm/MC/MCCodeEmitter.h>
#if JL_LLVM_VERSION >= 100000
#include <llvm/Support/CodeGen.h>
#endif
#include <llvm/IR/LegacyPassManagers.h>
#include <llvm/Transforms/Utils/Cloning.h>
using namespace llvm;
// our passes
namespace llvm {
extern Pass *createLowerSimdLoopPass();
}
#if JL_LLVM_VERSION < 100000
static const TargetMachine::CodeGenFileType CGFT_ObjectFile = TargetMachine::CGFT_ObjectFile;
#endif
#include "julia.h"
#include "julia_internal.h"
#include "jitlayers.h"
#include "julia_assert.h"
// MSVC's link.exe requires each function declaration to have a Comdat section
// So rather than litter the code with conditionals,
// all global values that get emitted call this function
// and it decides whether the definition needs a Comdat section and adds the appropriate declaration
template<class T> // for GlobalObject's
static T *addComdat(T *G)
{
#if defined(_OS_WINDOWS_)
if (!G->isDeclaration()) {
// Add comdat information to make MSVC link.exe happy
// it's valid to emit this for ld.exe too,
// but makes it very slow to link for no benefit
#if defined(_COMPILER_MICROSOFT_)
Comdat *jl_Comdat = G->getParent()->getOrInsertComdat(G->getName());
// ELF only supports Comdat::Any
jl_Comdat->setSelectionKind(Comdat::NoDuplicates);
G->setComdat(jl_Comdat);
#endif
// add __declspec(dllexport) to everything marked for export
if (G->getLinkage() == GlobalValue::ExternalLinkage)
G->setDLLStorageClass(GlobalValue::DLLExportStorageClass);
else
G->setDLLStorageClass(GlobalValue::DefaultStorageClass);
}
#endif
return G;
}
typedef struct {
std::unique_ptr<Module> M;
std::vector<GlobalValue*> jl_sysimg_fvars;
std::vector<GlobalValue*> jl_sysimg_gvars;
std::map<jl_code_instance_t*, std::tuple<uint32_t, uint32_t>> jl_fvar_map;
std::map<void*, int32_t> jl_value_to_llvm; // uses 1-based indexing
} jl_native_code_desc_t;
extern "C" JL_DLLEXPORT
void jl_get_function_id(void *native_code, jl_code_instance_t *codeinst,
int32_t *func_idx, int32_t *specfunc_idx)
{
jl_native_code_desc_t *data = (jl_native_code_desc_t*)native_code;
if (data) {
// get the function index in the fvar lookup table
auto it = data->jl_fvar_map.find(codeinst);
if (it != data->jl_fvar_map.end()) {
std::tie(*func_idx, *specfunc_idx) = it->second;
}
}
}
extern "C"
int32_t jl_get_llvm_gv(void *native_code, jl_value_t *p)
{
// map a jl_value_t memory location to a GlobalVariable
jl_native_code_desc_t *data = (jl_native_code_desc_t*)native_code;
if (data) {
auto it = data->jl_value_to_llvm.find(p);
if (it != data->jl_value_to_llvm.end()) {
return it->second;
}
}
return 0;
}
extern "C" JL_DLLEXPORT
Module* jl_get_llvm_module(void *native_code)
{
jl_native_code_desc_t *data = (jl_native_code_desc_t*)native_code;
if (data)
return data->M.get();
else
return NULL;
}
extern "C" JL_DLLEXPORT
GlobalValue* jl_get_llvm_function(void *native_code, uint32_t idx)
{
jl_native_code_desc_t *data = (jl_native_code_desc_t*)native_code;
if (data)
return data->jl_sysimg_fvars[idx];
else
return NULL;
}
extern "C" JL_DLLEXPORT
LLVMContext* jl_get_llvm_context(void *native_code)
{
jl_native_code_desc_t *data = (jl_native_code_desc_t*)native_code;
if (data)
return &data->M->getContext();
else
return NULL;
}
static void emit_offset_table(Module &mod, const std::vector<GlobalValue*> &vars, StringRef name, Type *T_psize)
{
// Emit a global variable with all the variable addresses.
// The cloning pass will convert them into offsets.
assert(!vars.empty());
size_t nvars = vars.size();
std::vector<Constant*> addrs(nvars);
for (size_t i = 0; i < nvars; i++) {
Constant *var = vars[i];
addrs[i] = ConstantExpr::getBitCast(var, T_psize);
}
ArrayType *vars_type = ArrayType::get(T_psize, nvars);
new GlobalVariable(mod, vars_type, true,
GlobalVariable::ExternalLinkage,
ConstantArray::get(vars_type, addrs),
name);
}
static bool is_safe_char(unsigned char c)
{
return ('0' <= c && c <= '9') ||
('A' <= c && c <= 'Z') ||
('a' <= c && c <= 'z') ||
(c == '_' || c == '$') ||
(c >= 128 && c < 255);
}
static const char hexchars[16] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
static const char *const common_names[256] = {
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x00
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x10
"SP", "NOT", "DQT", "YY", 0, "REM", "AND", "SQT", // 0x20
"LPR", "RPR", "MUL", "SUM", 0, "SUB", "DOT", "DIV", // 0x28
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "COL", 0, "LT", "EQ", "GT", "QQ", // 0x30
"AT", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x40
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "LBR", "RDV", "RBR", "POW", 0, // 0x50
"TIC", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x60
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "LCR", "OR", "RCR", "TLD", "DEL", // 0x70
0 }; // remainder is filled with zeros, though are also all safe characters
// reversibly removes special characters from the name of GlobalObjects,
// which might cause them to be treated special by LLVM or the system linker
// the only non-identifier characters we allow to appear are '.' and '$',
// and all of UTF-8 above code-point 128 (except 255)
// most are given "friendly" abbreviations
// the remaining few will print as hex
// e.g. mangles "llvm.a≠a$a!a##" as "llvmDOT.a≠a$aNOT.aYY.YY."
static void makeSafeName(GlobalObject &G)
{
StringRef Name = G.getName();
SmallVector<char, 32> SafeName;
for (unsigned char c : Name.bytes()) {
if (is_safe_char(c)) {
SafeName.push_back(c);
}
else {
if (common_names[c]) {
SafeName.push_back(common_names[c][0]);
SafeName.push_back(common_names[c][1]);
if (common_names[c][2])
SafeName.push_back(common_names[c][2]);
}
else {
SafeName.push_back(hexchars[(c >> 4) & 0xF]);
SafeName.push_back(hexchars[c & 0xF]);
}
SafeName.push_back('.');
}
}
if (SafeName.size() != Name.size())
G.setName(StringRef(SafeName.data(), SafeName.size()));
}
// takes the running content that has collected in the shadow module and dump it to disk
// this builds the object file portion of the sysimage files for fast startup
extern "C" JL_DLLEXPORT
void *jl_create_native(jl_array_t *methods, const jl_cgparams_t cgparams)
{
jl_native_code_desc_t *data = new jl_native_code_desc_t;
jl_codegen_params_t params;
params.params = &cgparams;
std::map<jl_code_instance_t*, jl_compile_result_t> emitted;
jl_method_instance_t *mi = NULL;
jl_code_info_t *src = NULL;
JL_GC_PUSH1(&src);
JL_LOCK(&codegen_lock);
// compile all methods for the current world and type-inference world
size_t compile_for[] = { jl_typeinf_world, jl_world_counter };
for (int worlds = 0; worlds < 2; worlds++) {
params.world = compile_for[worlds];
if (!params.world)
continue;
size_t i, l;
for (i = 0, l = jl_array_len(methods); i < l; i++) {
mi = (jl_method_instance_t*)jl_array_ptr_ref(methods, i);
src = NULL;
// if this method is generally visible to the current compilation world,
// and this is either the primary world, or not applicable in the primary world
// then we want to compile and emit this
if (mi->def.method->primary_world <= params.world && params.world <= mi->def.method->deleted_world) {
// find and prepare the source code to compile
jl_value_t *ci = jl_rettype_inferred(mi, params.world, params.world);
jl_code_instance_t *codeinst = NULL;
if (ci != jl_nothing) {
codeinst = (jl_code_instance_t*)ci;
src = (jl_code_info_t*)codeinst->inferred;
jl_method_t *def = codeinst->def->def.method;
if ((jl_value_t*)src == jl_nothing)
src = NULL;
if (src && jl_is_method(def))
src = jl_uncompress_ir(def, codeinst, (jl_array_t*)src);
}
if (src == NULL || !jl_is_code_info(src)) {
src = jl_type_infer(mi, params.world, 0);
codeinst = jl_get_method_inferred(mi, src->rettype, src->min_world, src->max_world);
if (src->inferred && !codeinst->inferred)
codeinst->inferred = jl_nothing;
}
if (src && !emitted.count(codeinst)) {
// now add it to our compilation results
JL_GC_PROMISE_ROOTED(codeinst->rettype);
jl_compile_result_t result = jl_emit_code(mi, src, codeinst->rettype, params);
if (std::get<0>(result))
emitted[codeinst] = std::move(result);
}
}
}
// finally, make sure all referenced methods also get compiled or fixed up
jl_compile_workqueue(emitted, params);
}
JL_GC_POP();
// process the globals array, before jl_merge_module destroys them
std::vector<std::string> gvars;
for (auto &global : params.globals) {
gvars.push_back(std::string(global.second->getName()));
data->jl_value_to_llvm[global.first] = gvars.size();
}
// clones the contents of the module `m` to the shadow_output collector
// while examining and recording what kind of function pointer we have
ValueToValueMapTy VMap;
std::unique_ptr<Module> clone(CloneModule(*shadow_output, VMap));
for (auto &def : emitted) {
jl_merge_module(clone.get(), std::move(std::get<0>(def.second)));
jl_code_instance_t *this_code = def.first;
jl_llvm_functions_t decls = std::get<1>(def.second);
StringRef func = decls.functionObject;
StringRef cfunc = decls.specFunctionObject;
uint32_t func_id = 0;
uint32_t cfunc_id = 0;
if (func == "jl_fptr_args") {
func_id = -1;
}
else if (func == "jl_fptr_sparam") {
func_id = -2;
}
else {
data->jl_sysimg_fvars.push_back(cast<Function>(clone->getNamedValue(func)));
func_id = data->jl_sysimg_fvars.size();
}
if (!cfunc.empty()) {
data->jl_sysimg_fvars.push_back(cast<Function>(clone->getNamedValue(cfunc)));
cfunc_id = data->jl_sysimg_fvars.size();
}
data->jl_fvar_map[this_code] = std::make_tuple(func_id, cfunc_id);
}
// now get references to the globals in the merged module
// and set them to be internalized and initialized at startup
for (auto &global : gvars) {
GlobalVariable *G = cast<GlobalVariable>(clone->getNamedValue(global));
G->setInitializer(ConstantPointerNull::get(cast<PointerType>(G->getValueType())));
G->setLinkage(GlobalVariable::InternalLinkage);
data->jl_sysimg_gvars.push_back(G);
}
#if defined(_OS_WINDOWS_) && defined(_CPU_X86_64_)
// setting the function personality enables stack unwinding and catching exceptions
// so make sure everything has something set
Type *T_int32 = Type::getInt32Ty(clone->getContext());
Function *juliapersonality_func =
Function::Create(FunctionType::get(T_int32, true),
Function::ExternalLinkage, "__julia_personality", clone.get());
juliapersonality_func->setDLLStorageClass(GlobalValue::DLLImportStorageClass);
#endif
// move everything inside, now that we've merged everything
// (before adding the exported headers)
for (GlobalObject &G : clone->global_objects()) {
if (!G.isDeclaration()) {
G.setLinkage(Function::InternalLinkage);
makeSafeName(G);
addComdat(&G);
#if defined(_OS_WINDOWS_) && defined(_CPU_X86_64_)
// Add unwind exception personalities to functions to handle async exceptions
if (Function *F = dyn_cast<Function>(&G))
F->setPersonalityFn(juliapersonality_func);
#endif
}
}
data->M = std::move(clone);
JL_UNLOCK(&codegen_lock); // Might GC
return (void*)data;
}
static void emit_result(std::vector<NewArchiveMember> &Archive, SmallVectorImpl<char> &OS,
StringRef Name, std::vector<std::string> &outputs)
{
outputs.push_back({ OS.data(), OS.size() });
Archive.push_back(NewArchiveMember(MemoryBufferRef(outputs.back(), Name)));
OS.clear();
}
static object::Archive::Kind getDefaultForHost(Triple &triple)
{
if (triple.isOSDarwin())
return object::Archive::K_DARWIN;
return object::Archive::K_GNU;
}
typedef Error ArchiveWriterError;
static void reportWriterError(const ErrorInfoBase &E)
{
std::string err = E.message();
jl_safe_printf("ERROR: failed to emit output file %s\n", err.c_str());
}
// takes the running content that has collected in the shadow module and dump it to disk
// this builds the object file portion of the sysimage files for fast startup
extern "C"
void jl_dump_native(void *native_code,
const char *bc_fname, const char *unopt_bc_fname, const char *obj_fname,
const char *sysimg_data, size_t sysimg_len)
{
JL_TIMING(NATIVE_DUMP);
jl_native_code_desc_t *data = (jl_native_code_desc_t*)native_code;
LLVMContext &Context = data->M->getContext();
// We don't want to use MCJIT's target machine because
// it uses the large code model and we may potentially
// want less optimizations there.
Triple TheTriple = Triple(jl_TargetMachine->getTargetTriple());
// make sure to emit the native object format, even if FORCE_ELF was set in codegen
#if defined(_OS_WINDOWS_)
TheTriple.setObjectFormat(Triple::COFF);
#elif defined(_OS_DARWIN_)
TheTriple.setObjectFormat(Triple::MachO);
TheTriple.setOS(llvm::Triple::MacOSX);
#endif
std::unique_ptr<TargetMachine> TM(
jl_TargetMachine->getTarget().createTargetMachine(
TheTriple.getTriple(),
jl_TargetMachine->getTargetCPU(),
jl_TargetMachine->getTargetFeatureString(),
jl_TargetMachine->Options,
#if defined(_OS_LINUX_) || defined(_OS_FREEBSD_)
Reloc::PIC_,
#else
Optional<Reloc::Model>(),
#endif
#if defined(_CPU_PPC_) || defined(_CPU_PPC64_)
// On PPC the small model is limited to 16bit offsets
CodeModel::Medium,
#else
// Use small model so that we can use signed 32bits offset in the function and GV tables
CodeModel::Small,
#endif
CodeGenOpt::Aggressive // -O3 TODO: respect command -O0 flag?
));
legacy::PassManager PM;
addTargetPasses(&PM, TM.get());
// set up optimization passes
SmallVector<char, 128> bc_Buffer;
SmallVector<char, 128> obj_Buffer;
SmallVector<char, 128> unopt_bc_Buffer;
raw_svector_ostream bc_OS(bc_Buffer);
raw_svector_ostream obj_OS(obj_Buffer);
raw_svector_ostream unopt_bc_OS(unopt_bc_Buffer);
std::vector<NewArchiveMember> bc_Archive;
std::vector<NewArchiveMember> obj_Archive;
std::vector<NewArchiveMember> unopt_bc_Archive;
std::vector<std::string> outputs;
if (unopt_bc_fname)
PM.add(createBitcodeWriterPass(unopt_bc_OS));
if (bc_fname || obj_fname)
addOptimizationPasses(&PM, jl_options.opt_level, true, true);
if (bc_fname)
PM.add(createBitcodeWriterPass(bc_OS));
if (obj_fname)
if (TM->addPassesToEmitFile(PM, obj_OS, nullptr, CGFT_ObjectFile, false))
jl_safe_printf("ERROR: target does not support generation of object files\n");
// Reset the target triple to make sure it matches the new target machine
data->M->setTargetTriple(TM->getTargetTriple().str());
DataLayout DL = TM->createDataLayout();
DL.reset(DL.getStringRepresentation() + "-ni:10:11:12:13");
data->M->setDataLayout(DL);
Type *T_size;
if (sizeof(size_t) == 8)
T_size = Type::getInt64Ty(Context);
else
T_size = Type::getInt32Ty(Context);
Type *T_psize = T_size->getPointerTo();
// add metadata information
if (imaging_mode) {
emit_offset_table(*data->M, data->jl_sysimg_gvars, "jl_sysimg_gvars", T_psize);
emit_offset_table(*data->M, data->jl_sysimg_fvars, "jl_sysimg_fvars", T_psize);
// reflect the address of the jl_RTLD_DEFAULT_handle variable
// back to the caller, so that we can check for consistency issues
GlobalValue *jlRTLD_DEFAULT_var = data->M->getNamedValue("jl_RTLD_DEFAULT_handle");
addComdat(new GlobalVariable(*data->M,
jlRTLD_DEFAULT_var->getType(),
true,
GlobalVariable::ExternalLinkage,
jlRTLD_DEFAULT_var,
"jl_RTLD_DEFAULT_handle_pointer"));
}
// do the actual work
auto add_output = [&] (Module &M, StringRef unopt_bc_Name, StringRef bc_Name, StringRef obj_Name) {
PM.run(M);
if (unopt_bc_fname)
emit_result(unopt_bc_Archive, unopt_bc_Buffer, unopt_bc_Name, outputs);
if (bc_fname)
emit_result(bc_Archive, bc_Buffer, bc_Name, outputs);
if (obj_fname)
emit_result(obj_Archive, obj_Buffer, obj_Name, outputs);
};
add_output(*data->M, "unopt.bc", "text.bc", "text.o");
std::unique_ptr<Module> sysimage(new Module("sysimage", Context));
sysimage->setTargetTriple(data->M->getTargetTriple());
sysimage->setDataLayout(data->M->getDataLayout());
data->M.reset(); // free memory for data->M
addComdat(new GlobalVariable(*sysimage,
T_size,
true,
GlobalVariable::ExternalLinkage,
ConstantInt::get(T_size, globalUnique + 1),
"jl_globalUnique"));
if (sysimg_data) {
Constant *data = ConstantDataArray::get(Context,
ArrayRef<uint8_t>((const unsigned char*)sysimg_data, sysimg_len));
addComdat(new GlobalVariable(*sysimage, data->getType(), false,
GlobalVariable::ExternalLinkage,
data, "jl_system_image_data"))->setAlignment(Align(64));
Constant *len = ConstantInt::get(T_size, sysimg_len);
addComdat(new GlobalVariable(*sysimage, len->getType(), true,
GlobalVariable::ExternalLinkage,
len, "jl_system_image_size"));
}
add_output(*sysimage, "data.bc", "data.bc", "data.o");
object::Archive::Kind Kind = getDefaultForHost(TheTriple);
if (unopt_bc_fname)
handleAllErrors(writeArchive(unopt_bc_fname, unopt_bc_Archive, true,
Kind, true, false), reportWriterError);
if (bc_fname)
handleAllErrors(writeArchive(bc_fname, bc_Archive, true,
Kind, true, false), reportWriterError);
if (obj_fname)
handleAllErrors(writeArchive(obj_fname, obj_Archive, true,
Kind, true, false), reportWriterError);
delete data;
}
// clones the contents of the module `m` to the shadow_output collector
// TODO: this should be deprecated
void jl_add_to_shadow(Module *m)
{
ValueToValueMapTy VMap;
std::unique_ptr<Module> clone(CloneModule(*m, VMap));
jl_merge_module(shadow_output, std::move(clone));
}
void addTargetPasses(legacy::PassManagerBase *PM, TargetMachine *TM)
{
PM->add(new TargetLibraryInfoWrapperPass(Triple(TM->getTargetTriple())));
PM->add(createTargetTransformInfoWrapperPass(TM->getTargetIRAnalysis()));
}
// this defines the set of optimization passes defined for Julia at various optimization levels.
// it assumes that the TLI and TTI wrapper passes have already been added.
void addOptimizationPasses(legacy::PassManagerBase *PM, int opt_level,
bool lower_intrinsics, bool dump_native)
{
#ifdef JL_DEBUG_BUILD
PM->add(createGCInvariantVerifierPass(true));
PM->add(createVerifierPass());
#endif
#if defined(JL_ASAN_ENABLED)
PM->add(createAddressSanitizerFunctionPass());
#endif
#if defined(JL_MSAN_ENABLED)
PM->add(llvm::createMemorySanitizerPass(true));
#endif
if (opt_level < 2) {
PM->add(createCFGSimplificationPass());
if (opt_level == 1) {
PM->add(createSROAPass());
PM->add(createInstructionCombiningPass());
PM->add(createEarlyCSEPass());
// maybe add GVN?
// also try GVNHoist and GVNSink
}
PM->add(createMemCpyOptPass());
PM->add(createAlwaysInlinerLegacyPass()); // Respect always_inline
if (lower_intrinsics) {
PM->add(createBarrierNoopPass());
PM->add(createLowerExcHandlersPass());
PM->add(createGCInvariantVerifierPass(false));
PM->add(createLateLowerGCFramePass());
PM->add(createFinalLowerGCPass());
PM->add(createLowerPTLSPass(dump_native));
}
PM->add(createLowerSimdLoopPass()); // Annotate loop marked with "loopinfo" as LLVM parallel loop
if (dump_native)
PM->add(createMultiVersioningPass());
return;
}
PM->add(createPropagateJuliaAddrspaces());
PM->add(createScopedNoAliasAAWrapperPass());
PM->add(createTypeBasedAAWrapperPass());
if (opt_level >= 3) {
PM->add(createBasicAAWrapperPass());
}
PM->add(createCFGSimplificationPass());
PM->add(createDeadCodeEliminationPass());
PM->add(createSROAPass());
//PM->add(createMemCpyOptPass());
PM->add(createAlwaysInlinerLegacyPass()); // Respect always_inline
// Running `memcpyopt` between this and `sroa` seems to give `sroa` a hard time
// merging the `alloca` for the unboxed data and the `alloca` created by the `alloc_opt`
// pass.
PM->add(createAllocOptPass());
// consider AggressiveInstCombinePass at optlevel > 2
PM->add(createInstructionCombiningPass());
PM->add(createCFGSimplificationPass());
if (dump_native)
PM->add(createMultiVersioningPass());
PM->add(createSROAPass());
PM->add(createInstSimplifyLegacyPass());
PM->add(createJumpThreadingPass());
PM->add(createReassociatePass());
PM->add(createEarlyCSEPass());
// Load forwarding above can expose allocations that aren't actually used
// remove those before optimizing loops.
PM->add(createAllocOptPass());
PM->add(createLoopRotatePass());
// moving IndVarSimplify here prevented removing the loop in perf_sumcartesian(10:-1:1)
PM->add(createLoopIdiomPass());
#ifdef USE_POLLY
// LCSSA (which has already run at this point due to the dependencies of the
// above passes) introduces redundant phis that hinder Polly. Therefore we
// run InstCombine here to remove them.
PM->add(createInstructionCombiningPass());
PM->add(polly::createCodePreparationPass());
polly::registerPollyPasses(*PM);
PM->add(polly::createCodegenCleanupPass());
#endif
// LoopRotate strips metadata from terminator, so run LowerSIMD afterwards
PM->add(createLowerSimdLoopPass()); // Annotate loop marked with "loopinfo" as LLVM parallel loop
PM->add(createLICMPass());
PM->add(createLoopUnswitchPass());
// Subsequent passes not stripping metadata from terminator
PM->add(createInstSimplifyLegacyPass());
PM->add(createIndVarSimplifyPass());
PM->add(createLoopDeletionPass());
PM->add(createSimpleLoopUnrollPass());
// Run our own SROA on heap objects before LLVM's
PM->add(createAllocOptPass());
// Re-run SROA after loop-unrolling (useful for small loops that operate,
// over the structure of an aggregate)
PM->add(createSROAPass());
// might not be necessary:
PM->add(createInstSimplifyLegacyPass());
PM->add(createGVNPass());
PM->add(createMemCpyOptPass());
PM->add(createSCCPPass());
// Run instcombine after redundancy elimination to exploit opportunities
// opened up by them.
// This needs to be InstCombine instead of InstSimplify to allow
// loops over Union-typed arrays to vectorize.
PM->add(createInstructionCombiningPass());
PM->add(createJumpThreadingPass());
PM->add(createDeadStoreEliminationPass());
// More dead allocation (store) deletion before loop optimization
// consider removing this:
PM->add(createAllocOptPass());
// see if all of the constant folding has exposed more loops
// to simplification and deletion
// this helps significantly with cleaning up iteration
PM->add(createCFGSimplificationPass());
PM->add(createLoopDeletionPass());
PM->add(createInstructionCombiningPass());
PM->add(createLoopVectorizePass());
PM->add(createLoopLoadEliminationPass());
PM->add(createCFGSimplificationPass());
PM->add(createSLPVectorizerPass());
// might need this after LLVM 11:
//PM->add(createVectorCombinePass());
PM->add(createAggressiveDCEPass());
if (lower_intrinsics) {
// LowerPTLS removes an indirect call. As a result, it is likely to trigger
// LLVM's devirtualization heuristics, which would result in the entire
// pass pipeline being re-exectuted. Prevent this by inserting a barrier.
PM->add(createBarrierNoopPass());
PM->add(createLowerExcHandlersPass());
PM->add(createGCInvariantVerifierPass(false));
PM->add(createLateLowerGCFramePass());
PM->add(createFinalLowerGCPass());
// Remove dead use of ptls
PM->add(createDeadCodeEliminationPass());
PM->add(createLowerPTLSPass(dump_native));
// Clean up write barrier and ptls lowering
PM->add(createCFGSimplificationPass());
}
PM->add(createCombineMulAddPass());
PM->add(createDivRemPairsPass());
}
// An LLVM module pass that just runs all julia passes in order. Useful for
// debugging
template <int OptLevel>
class JuliaPipeline : public Pass {
public:
static char ID;
// A bit of a hack, but works
struct TPMAdapter : public PassManagerBase {
PMTopLevelManager *TPM;
TPMAdapter(PMTopLevelManager *TPM) : TPM(TPM) {}
void add(Pass *P) { TPM->schedulePass(P); }
};
void preparePassManager(PMStack &Stack) override {
(void)jl_init_llvm();
PMTopLevelManager *TPM = Stack.top()->getTopLevelManager();
TPMAdapter Adapter(TPM);
addTargetPasses(&Adapter, jl_TargetMachine);
addOptimizationPasses(&Adapter, OptLevel);
}
JuliaPipeline() : Pass(PT_PassManager, ID) {}
Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const override {
return createPrintModulePass(O, Banner);
}
};
template<> char JuliaPipeline<0>::ID = 0;
template<> char JuliaPipeline<2>::ID = 0;
template<> char JuliaPipeline<3>::ID = 0;
static RegisterPass<JuliaPipeline<0>> X("juliaO0", "Runs the entire julia pipeline (at -O0)", false, false);
static RegisterPass<JuliaPipeline<2>> Y("julia", "Runs the entire julia pipeline (at -O2)", false, false);
static RegisterPass<JuliaPipeline<3>> Z("juliaO3", "Runs the entire julia pipeline (at -O3)", false, false);
extern "C" JL_DLLEXPORT
void jl_add_optimization_passes(LLVMPassManagerRef PM, int opt_level, int lower_intrinsics) {
addOptimizationPasses(unwrap(PM), opt_level, lower_intrinsics);
}
// --- native code info, and dump function to IR and ASM ---
// Get pointer to llvm::Function instance, compiling if necessary
// for use in reflection from Julia.
// this is paired with jl_dump_function_ir, jl_dump_method_asm, jl_dump_llvm_asm in particular ways:
// misuse will leak memory or cause read-after-free
extern "C" JL_DLLEXPORT
void *jl_get_llvmf_defn(jl_method_instance_t *mi, size_t world, char getwrapper, char optimize, const jl_cgparams_t params)
{
if (jl_is_method(mi->def.method) && mi->def.method->source == NULL &&
mi->def.method->generator == NULL) {
// not a generic function
return NULL;
}
static legacy::PassManager *PM;
if (!PM) {
PM = new legacy::PassManager();
addTargetPasses(PM, jl_TargetMachine);
addOptimizationPasses(PM, jl_options.opt_level);
}
// get the source code for this function
jl_value_t *jlrettype = (jl_value_t*)jl_any_type;
jl_code_info_t *src = NULL;
JL_GC_PUSH2(&src, &jlrettype);
jl_value_t *ci = jl_rettype_inferred(mi, world, world);
if (ci != jl_nothing) {
jl_code_instance_t *codeinst = (jl_code_instance_t*)ci;
src = (jl_code_info_t*)codeinst->inferred;
if ((jl_value_t*)src != jl_nothing && !jl_is_code_info(src) && jl_is_method(mi->def.method))
src = jl_uncompress_ir(mi->def.method, codeinst, (jl_array_t*)src);
jlrettype = codeinst->rettype;
}
if (!src || (jl_value_t*)src == jl_nothing) {
src = jl_type_infer(mi, world, 0);
if (src)
jlrettype = src->rettype;
else if (jl_is_method(mi->def.method)) {
src = mi->def.method->generator ? jl_code_for_staged(mi) : (jl_code_info_t*)mi->def.method->source;
if (src && !jl_is_code_info(src) && jl_is_method(mi->def.method))
src = jl_uncompress_ir(mi->def.method, NULL, (jl_array_t*)src);
}
// TODO: use mi->uninferred
}
// emit this function into a new llvm module
if (src && jl_is_code_info(src)) {
jl_codegen_params_t output;
output.world = world;
output.params = ¶ms;
std::unique_ptr<Module> m;
jl_llvm_functions_t decls;
JL_LOCK(&codegen_lock);
std::tie(m, decls) = jl_emit_code(mi, src, jlrettype, output);
Function *F = NULL;
if (m) {
// if compilation succeeded, prepare to return the result
if (optimize)
PM->run(*m.get());
const std::string *fname;
if (decls.functionObject == "jl_fptr_args" || decls.functionObject == "jl_fptr_sparam")
getwrapper = false;
if (!getwrapper)
fname = &decls.specFunctionObject;
else
fname = &decls.functionObject;
F = cast<Function>(m->getNamedValue(*fname));
m.release(); // the return object `llvmf` will be the owning pointer
}
JL_GC_POP();
JL_UNLOCK(&codegen_lock); // Might GC
if (F)
return F;
}
const char *mname = name_from_method_instance(mi);
jl_errorf("unable to compile source for function %s", mname);
}
/// addPassesToX helper drives creation and initialization of TargetPassConfig.
static MCContext *
addPassesToGenerateCode(LLVMTargetMachine *TM, PassManagerBase &PM) {
TargetPassConfig *PassConfig = TM->createPassConfig(PM);
PassConfig->setDisableVerify(false);
PM.add(PassConfig);
#if JL_LLVM_VERSION >= 100000
MachineModuleInfoWrapperPass *MMIWP =
new MachineModuleInfoWrapperPass(TM);
PM.add(MMIWP);
#else
MachineModuleInfo *MMI = new MachineModuleInfo(TM);
PM.add(MMI);
#endif
if (PassConfig->addISelPasses())
return NULL;
PassConfig->addMachinePasses();
PassConfig->setInitialized();
#if JL_LLVM_VERSION >= 100000
return &MMIWP->getMMI().getContext();
#else
return &MMI->getContext();
#endif
}
void jl_strip_llvm_debug(Module *m);
// get a native assembly for llvm::Function
// TODO: implement debuginfo handling
extern "C" JL_DLLEXPORT
jl_value_t *jl_dump_llvm_asm(void *F, const char* asm_variant, const char *debuginfo)
{
// precise printing via IR assembler
SmallVector<char, 4096> ObjBufferSV;
{ // scope block
Function *f = (Function*)F;
llvm::raw_svector_ostream asmfile(ObjBufferSV);
assert(!f->isDeclaration());
std::unique_ptr<Module> m(f->getParent());
for (auto &f2 : m->functions()) {
if (f != &f2 && !f->isDeclaration())
f2.deleteBody();
}
jl_strip_llvm_debug(m.get());
legacy::PassManager PM;
LLVMTargetMachine *TM = static_cast<LLVMTargetMachine*>(jl_TargetMachine);
MCContext *Context = addPassesToGenerateCode(TM, PM);
if (Context) {
const MCSubtargetInfo &STI = *TM->getMCSubtargetInfo();
const MCAsmInfo &MAI = *TM->getMCAsmInfo();
const MCRegisterInfo &MRI = *TM->getMCRegisterInfo();
const MCInstrInfo &MII = *TM->getMCInstrInfo();
unsigned OutputAsmDialect = MAI.getAssemblerDialect();
if (!strcmp(asm_variant, "att"))
OutputAsmDialect = 0;
if (!strcmp(asm_variant, "intel"))
OutputAsmDialect = 1;
MCInstPrinter *InstPrinter = TM->getTarget().createMCInstPrinter(
TM->getTargetTriple(), OutputAsmDialect, MAI, MII, MRI);
std::unique_ptr<MCAsmBackend> MAB(TM->getTarget().createMCAsmBackend(
STI, MRI, TM->Options.MCOptions));
std::unique_ptr<MCCodeEmitter> MCE;
#if JL_LLVM_VERSION >= 100000
auto FOut = std::make_unique<formatted_raw_ostream>(asmfile);
#else
auto FOut = llvm::make_unique<formatted_raw_ostream>(asmfile);
#endif
std::unique_ptr<MCStreamer> S(TM->getTarget().createAsmStreamer(
*Context, std::move(FOut), true,
true, InstPrinter,
std::move(MCE), std::move(MAB),
false));
std::unique_ptr<AsmPrinter> Printer(
TM->getTarget().createAsmPrinter(*TM, std::move(S)));
if (Printer) {
PM.add(Printer.release());
PM.run(*m);
}
}
}
return jl_pchar_to_string(ObjBufferSV.data(), ObjBufferSV.size());
}