-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathannotation_engine.py
411 lines (369 loc) · 14.4 KB
/
annotation_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#!/usr/bin/python
'''general approach:
construct a high-dimension space of meaning for the various attributes under consideration
develop algorithms to map an input string to a point in this space
Approaches may include:
Naive text analysis, adding a vector corresponding to each word + nearest neighbor
Neural network, possibly recurrent, though I will need training data
transform into a more compact feature space + nearest neighbor
encoder-decoder method borrowed from modern machine translation'''
# import and network attributes from labkey
# requires pip install labkey, poolmanager, pydictionary
# This script targets the client api version 0.4.0 and later
#be sure to create a .netrc file (_netrc on windows) in your "home" directory
#the contents of ~/.netrc should look like this:
#machine chear.tw.rpi.edu
#login <your email address>
#password <your password>
#also you should modify the access to .netrc to read/write exclusively for you (for security)
import labkey
from PyDictionary import PyDictionary
import utils
from sklearn.neighbors import LSHForest
from Tkinter import *
#from atk import Window
import os
import time
from tkFileDialog import askopenfilename
import tkFileDialog
#get the target file
rt = Tk()
rt.withdraw()
filepath = tkFileDialog.askopenfilename()
rt.destroy()
dict = PyDictionary()
stemAll = utils.stemAll
server_context = labkey.utils.create_server_context('chear.tw.rpi.edu', 'CHEAR Development', 'labkey')
class config:
def __init__(self):
self.columns = ['Attribute','attributeOf', 'Unit', 'Time', 'Entity', 'Role', 'Relation', 'inRelationTo', 'wasDerivedFrom', 'wasGeneratedBy', 'hasPosition']
self.all_sources = {'Attribute' : ['Attribute', 'DASchemaAttribute'],
'attributeOf' : ['AgentType'],
'Unit' : ['Unit'],
'Time' : [],
'Entity' : [],
'Role' : ['LocalRoleType'],
'Relation' : [],
'inRelationTo' : [],
'wasDerivedFrom' : [],
'wasGeneratedBy' : [],
'hasPosition' : []
}
self.all_fields = {'Attribute' : ['hasURI', 'rdfs:label'],
'attributeOf' : ['hasURI', 'rdfs:label'],
'Unit' : ['hasURI', 'rdfs:label'],
'Time' : ['hasURI', 'rdfs:label'],
'Entity' : ['hasURI', 'rdfs:label'],
'Role' : ['hasURI','rdfs:label','skos:definition'],
'Relation' : ['hasURI', 'rdfs:label'],
'inRelationTo' : ['hasURI', 'rdfs:label'],
'wasDerivedFrom' : ['hasURI', 'rdfs:label'],
'wasGeneratedBy' : ['hasURI', 'foaf:name'],
'hasPosition' : ['hasURI', 'rdfs:label']
}
self.schema = 'lists'
def getColumns(self):
return self.columns
def getSources(self, column):
return self.all_sources[column]
def getFields(self, column):
return self.all_fields[column]
def getSchema(self):
return self.schema
#construct and extract
cf = config()
#maps the set of strings from a row to a point in a high dimensional space
def rowToPoint(row, rowToPointDict):
if(rowToPointDict.has_key(row)):
return rowToPointDict[row]
point = {}
row_strs = stemAll(row)
for word in row_strs:
if point.has_key(word):
point[word] += 1
else:
point[word] = 3
#perhaps add a clause for part of speech as well as for words' synonyms
rowToPointDict[row] = point
return point
#defines the dimensions and returns number of dimensions
def getDimensions(point_dict, DimensionDict):
index = 0
for key in point_dict.keys():
words = stemAll(key)
for word in words:
if not DimensionDict.has_key(word):
DimensionDict[word] = index
index += 1
return index
def pointToArray(point, dimension, DimensionDict, rowToPointDict):
arr = [0] * dimension
keys = stemAll(point)
for key in keys:
if DimensionDict.has_key(key):
arr[DimensionDict[key]] = rowToPointDict[point][key]
return arr
def stringToCoordinates(str, dimension, DimensionDict):
arr = [0] * dimension
keys = stemAll(str)
for key in keys:
if DimensionDict.has_key(key):
arr[DimensionDict[key]] = 3
return arr
class modelRep:
def __init__(self, sources, fields):
self.sources = sources
self.row_strings = []
self.labels = {}
self.points = {}
self.rowToPointDict = {}
self.DimensionDict = {}
self.trainX = []
self.trainY = []
self.dimension = 1
self.lshf = LSHForest()
if(sources == []):
self.sources = []
return
self.buildRep(sources, fields)
def buildRep(self, sources, fields):
for source in sources:
my_results = labkey.query.select_rows(
server_context=server_context,
schema_name=cf.getSchema(),
query_name=source)
rows = my_results['rows']
for row in rows:
row_str = ""
for field in fields:
if row[field]: row_str = row_str + row[field].encode('utf8') + ","
row_str = row_str[:-1]
#print row_str
self.row_strings.append(row_str)
str_parts = row_str.split(',')
if(len(str_parts) > 1):
label = row_str.split(',')[0] + "," + row_str.split(',')[1]
else:
label = row_str.split(',')[0] #str(row['hasURI']) #+ "," + str(row['rdfs:label'])
self.labels[row_str] = label
rowToPoint(row_str, self.rowToPointDict)
self.dimension = getDimensions(self.rowToPointDict, self.DimensionDict)
for row_str in self.row_strings:
self.points[row_str] = pointToArray(row_str, self.dimension, self.DimensionDict, self.rowToPointDict)
self.trainX.append(self.points[row_str])
#trainY.append(point)
self.trainY.append(self.labels[row_str])
self.lshf.random_state = 123
self.lshf.fit(self.trainX)
def getNeighbors(self, tests, n_neighbors):
if self.sources == []:
return [0] * n_neighbors, [1] * n_neighbors
testX = []
for str in tests:
testX.append(stringToCoordinates(str, self.dimension, self.DimensionDict))
distances, indices = self.lshf.kneighbors(testX, n_neighbors=n_neighbors)
return distances, indices
#path = 'sdd_t2/Examination/BMX_H_Doc-SDD.csv'
path = filepath
dirs = path.split('/')
def enterName():
rt.destroy()
# get the user's destination directory
rt = Tk()
userV = StringVar()
userV.set('default')
Label(rt, wraplength=600,
text='Enter the name of your session, e.g. your name',
justify = LEFT).pack()
userE = Entry(rt, text = 'default', textvariable = userV)
userE.pack()
Button(rt, text="Enter", command = enterName).pack()
mainloop()
user_dn = userV.get()
print user_dn
# direct session data to files, a session is specific to an input file, and uses the same dirctory structure
top_dn = "sessions"
session_fn = path
n_neighbors = 10
if not os.path.exists(top_dn):
os.makedirs(top_dn)
if not os.path.exists(top_dn + "/" + user_dn):
os.makedirs(top_dn + "/" + user_dn)
pathVar = top_dn + "/" + user_dn
for i in range(0, len(dirs) - 1):
pathVar = pathVar + "/" + dirs[i]
if not os.path.exists(pathVar):
os.makedirs(pathVar)
session = open(top_dn + "/" + user_dn + "/" + session_fn,"w")
with open(path, 'r') as myfile:
tests = myfile.read().split("\n")
myfile.close()
head = tests.pop(0) #remove the header line
session.write(head + "\n")
#get all the guess data for each column
models = {}
all_dists = {}
all_indices = {}
for column in cf.getColumns():
model = modelRep(cf.getSources(column), cf.getFields(column))
models[column] = model
distances, indices = model.getNeighbors(tests, n_neighbors)
all_dists[column] = distances
all_indices[column] = indices
base = Tk()
root = Frame(base)
root.pack()
row_index = IntVar()
col_index = IntVar()
v = IntVar()
uri = StringVar()
lab = StringVar()
label_contents = StringVar()
radio_contents = [StringVar() for i in range(n_neighbors + 3)]
row_index.set(0)
col_index.set(0)
columns = cf.getColumns()
column = ""
class SelectionWindow(object):
def __init__(self, **kwargs):
self.windowPosition()
self.refreshWindow()
def printChoice(self):
print v.get()
def enterChoice(self):
column = columns[col_index.get()]
model = models[column]
indices = all_indices[column]
distances = all_dists[column]
if col_index.get() == 0:
st = "%s,%s,%s,%s,%s" % tuple(tests[row_index.get()].split(',')[0:5])
print st
session.write(st)
if v.get() < n_neighbors and v.get() >= 0:
sel = model.trainY[indices[row_index.get()][v.get()]]
sel = sel.split(',')[0]
print "selected: " + sel
session.write("," + sel)
if v.get() == n_neighbors:
sel = tests[row_index.get()].split(",")[col_index.get() + 5]
print "selected: " + sel
session.write("," + sel)
if v.get() == n_neighbors + 1:
sel = "none,N/A or Unknown"
print "selected: " + sel
sel = sel.split(',')[0]
session.write("," + sel)
if v.get() == n_neighbors + 2:
sel = uri.get() + "," + lab.get()
print "selected: " + sel
sel = sel.split(',')[0]
session.write("," + sel)
col_index.set(col_index.get()+1)
if col_index.get() >= len(columns):
col_index.set(0)
row_index.set(row_index.get()+1)
session.write("\n")
#add selection to session data file
#session.write(tests[row_index.get()] + "," + uri.get() + "," + lab.get() + "\n")
for child in root.winfo_children():
child.destroy()
self.refreshWindow()
#places window at bottom right corner
def windowPosition(self):
screenw = base.winfo_screenheight()
screenh = base.winfo_screenwidth()
winw = 600
winh = 500
x = screenw-winw
y = screenh-winh
base.geometry(('%dx%d+%d+%d' % (winw, winh, x, y)))
def refreshWindow(self):
if(row_index.get() >= len(tests)):
base.destroy()
return
column = columns[col_index.get()]
model = models[column]
indices = all_indices[column]
distances = all_dists[column]
v.set(n_neighbors+1)
uri.set("uri")
lab.set("label")
label_contents.set("row #"+str(row_index.get() + 1)+" of " + str(len(tests)) + ", "+ column + "\n" +
tests[row_index.get()])
Label(root, wraplength=600,
textvariable=label_contents,
justify = LEFT,
padx = 20).pack()
Radiobutton(root, text="N/A or Unknown", variable=v, command = self.printChoice, value = n_neighbors+1).pack(anchor=W)
for i in range(0, min(n_neighbors, len(model.trainY))):
#ul = str(my_results['rows']['hasURI'][indices[row_index.get()][i]]) + "," + str(my_results['rows']['rdfs:label'][indices[row_index.get()][i]])
radio_contents[i].set(model.trainY[indices[row_index.get()][i]] + " " + str(1-distances[row_index.get()][i]))
Radiobutton(root,
textvariable=radio_contents[i],
padx = 20,
variable=v,
command = self.printChoice,
value=i).pack(anchor=W)
#uri = StringVar()
#lab = StringVar()
#give the current entry as an option
if tests[row_index.get()].split(",")[col_index.get() + 5] != "":
current = tests[row_index.get()].split(",")[col_index.get() + 5]
radio_contents[n_neighbors].set(current)
Radiobutton(root,
textvariable=radio_contents[n_neighbors],
padx = 20,
variable=v,
command = self.printChoice,
value=n_neighbors).pack(anchor=W)
Radiobutton(root, text="Other", variable=v, value = n_neighbors + 2).pack(anchor=W)
uriE = Entry(root, text = "URI", textvariable = uri)
labE = Entry(root, text = "Label", textvariable = lab)
uriE.pack(anchor=W)
labE.pack(anchor=W)
Button(root, text="Enter", command = self.enterChoice).pack(anchor=W)
print "path: " + path
win = SelectionWindow()
base.mainloop()
session.close()
'''
for row_index in range(len(testX)):
v = IntVar()
Label(root,
text="selection #"+str(row_index + 1)+" of " + str(len(testX)) + "\n" +
tests[row_index],
justify = LEFT,
padx = 20).pack()
for i in range(0, n_neighbors):
Radiobutton(root,
text=trainY[indices[row_index][i]],
padx = 20,
variable=v,
command = printChoice,
value=i).pack(anchor=W)
uri = StringVar()
lab = StringVar()
Radiobutton(root, text="Other", variable=v, value = n_neighbors).pack(anchor=W)
uriE = Entry(root, text = "URI", textvariable = uri)
labE = Entry(root, text = "Label", textvariable = lab)
uriE.pack(anchor=W)
labE.pack(anchor=W)
Button(root, text="Enter", command = enterChoice).pack(anchor=W)
mainloop()'''
'''
print indices
print "text = " + tests[0]
print "attribute guesses:"
for i in indices[0]:
print trainY[i]
row_strs = stemAll(str(row['rdfs:label']))
print str(row['hasURI']) + ", " + str(row['rdfs:label'])
#print row
for word in row_strs:
print word
print dict.synonym(word)
rowToPoint(row_strs)
print "SCHEMA:"
for i in my_results:
print i
'''