diff --git a/python/pylibraft/pylibraft/common/__init__.py b/python/pylibraft/pylibraft/common/__init__.py index 4c6f0d686a..33c2986487 100644 --- a/python/pylibraft/pylibraft/common/__init__.py +++ b/python/pylibraft/pylibraft/common/__init__.py @@ -13,7 +13,7 @@ # limitations under the License. # - +from .cai_wrapper import cai_wrapper from .cuda import Stream from .device_ndarray import device_ndarray from .handle import Handle diff --git a/python/pylibraft/pylibraft/common/cai_wrapper.py b/python/pylibraft/pylibraft/common/cai_wrapper.py new file mode 100644 index 0000000000..fdfc6b0b09 --- /dev/null +++ b/python/pylibraft/pylibraft/common/cai_wrapper.py @@ -0,0 +1,73 @@ +# +# Copyright (c) 2022, NVIDIA CORPORATION. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +import numpy as np + +from pylibraft.common import input_validation + + +class cai_wrapper: + """ + Simple wrapper around a CUDA array interface object to reduce + boilerplate for extracting common information from the underlying + dictionary. + """ + + def __init__(self, cai_arr): + """ + Constructor accepts a CUDA array interface compliant array + + Parameters + ---------- + cai_arr : CUDA array interface array + """ + self.cai_ = cai_arr.__cuda_array_interface__ + + @property + def dtype(self): + """ + Returns the dtype of the underlying CUDA array interface + """ + return np.dtype(self.cai_["typestr"]) + + @property + def shape(self): + """ + Returns the shape of the underlying CUDA array interface + """ + return self.cai_["shape"] + + @property + def c_contiguous(self): + """ + Returns whether the underlying CUDA array interface has + c-ordered (row-major) layout + """ + return input_validation.is_c_contiguous(self.cai_) + + @property + def f_contiguous(self): + """ + Returns whether the underlying CUDA array interface has + f-ordered (column-major) layout + """ + return not input_validation.is_c_contiguous(self.cai_) + + @property + def data(self): + """ + Returns the data pointer of the underlying CUDA array interface + """ + return self.cai_["data"][0] diff --git a/python/pylibraft/pylibraft/distance/fused_l2_nn.pyx b/python/pylibraft/pylibraft/distance/fused_l2_nn.pyx index 9597e3906e..32ee06e534 100644 --- a/python/pylibraft/pylibraft/distance/fused_l2_nn.pyx +++ b/python/pylibraft/pylibraft/distance/fused_l2_nn.pyx @@ -26,15 +26,10 @@ from libcpp cimport bool from .distance_type cimport DistanceType -from pylibraft.common import Handle, device_ndarray +from pylibraft.common import Handle, cai_wrapper, device_ndarray from pylibraft.common.handle import auto_sync_handle -from pylibraft.common.handle cimport handle_t - -def is_c_cont(cai, dt): - return "strides" not in cai or \ - cai["strides"] is None or \ - cai["strides"][1] == dt.itemsize +from pylibraft.common.handle cimport handle_t cdef extern from "raft_distance/fused_l2_min_arg.hpp" \ @@ -135,41 +130,41 @@ def fused_l2_nn_argmin(X, Y, out=None, sqrt=True, handle=None): """ - x_cai = X.__cuda_array_interface__ - y_cai = Y.__cuda_array_interface__ + x_cai = cai_wrapper(X) + y_cai = cai_wrapper(Y) - x_dt = np.dtype(x_cai["typestr"]) - y_dt = np.dtype(y_cai["typestr"]) + x_dt = x_cai.dtype + y_dt = y_cai.dtype - m = x_cai["shape"][0] - n = y_cai["shape"][0] + m = x_cai.shape[0] + n = y_cai.shape[0] if out is None: output = device_ndarray.empty((m,), dtype="int32") else: output = out - output_cai = output.__cuda_array_interface__ + output_cai = cai_wrapper(output) - x_k = x_cai["shape"][1] - y_k = y_cai["shape"][1] + x_k = x_cai.shape[1] + y_k = y_cai.shape[1] if x_k != y_k: raise ValueError("Inputs must have same number of columns. " "a=%s, b=%s" % (x_k, y_k)) - x_ptr = x_cai["data"][0] - y_ptr = y_cai["data"][0] + x_ptr = x_cai.data + y_ptr = y_cai.data - d_ptr = output_cai["data"][0] + d_ptr = output_cai.data handle = handle if handle is not None else Handle() cdef handle_t *h = handle.getHandle() - d_dt = np.dtype(output_cai["typestr"]) + d_dt = output_cai.dtype - x_c_contiguous = is_c_cont(x_cai, x_dt) - y_c_contiguous = is_c_cont(y_cai, y_dt) + x_c_contiguous = x_cai.c_contiguous + y_c_contiguous = y_cai.c_contiguous if x_c_contiguous != y_c_contiguous: raise ValueError("Inputs must have matching strides") diff --git a/python/pylibraft/pylibraft/distance/pairwise_distance.pyx b/python/pylibraft/pylibraft/distance/pairwise_distance.pyx index dc4bd982f9..dde18315ce 100644 --- a/python/pylibraft/pylibraft/distance/pairwise_distance.pyx +++ b/python/pylibraft/pylibraft/distance/pairwise_distance.pyx @@ -31,13 +31,7 @@ from pylibraft.common.handle import auto_sync_handle from pylibraft.common.handle cimport handle_t -from pylibraft.common import device_ndarray - - -def is_c_cont(cai, dt): - return "strides" not in cai or \ - cai["strides"] is None or \ - cai["strides"][1] == dt.itemsize +from pylibraft.common import cai_wrapper, device_ndarray cdef extern from "raft_distance/pairwise_distance.hpp" \ @@ -179,40 +173,40 @@ def distance(X, Y, out=None, metric="euclidean", p=2.0, handle=None): """ - x_cai = X.__cuda_array_interface__ - y_cai = Y.__cuda_array_interface__ + x_cai = cai_wrapper(X) + y_cai = cai_wrapper(Y) - m = x_cai["shape"][0] - n = y_cai["shape"][0] + m = x_cai.shape[0] + n = y_cai.shape[0] - x_dt = np.dtype(x_cai["typestr"]) - y_dt = np.dtype(y_cai["typestr"]) + x_dt = x_cai.dtype + y_dt = y_cai.dtype if out is None: dists = device_ndarray.empty((m, n), dtype=y_dt) else: dists = out - x_k = x_cai["shape"][1] - y_k = y_cai["shape"][1] + x_k = x_cai.shape[1] + y_k = y_cai.shape[1] - dists_cai = dists.__cuda_array_interface__ + dists_cai = cai_wrapper(dists) if x_k != y_k: raise ValueError("Inputs must have same number of columns. " "a=%s, b=%s" % (x_k, y_k)) - x_ptr = x_cai["data"][0] - y_ptr = y_cai["data"][0] - d_ptr = dists_cai["data"][0] + x_ptr = x_cai.data + y_ptr = y_cai.data + d_ptr = dists_cai.data handle = handle if handle is not None else Handle() cdef handle_t *h = handle.getHandle() - d_dt = np.dtype(dists_cai["typestr"]) + d_dt = dists_cai.dtype - x_c_contiguous = is_c_cont(x_cai, x_dt) - y_c_contiguous = is_c_cont(y_cai, y_dt) + x_c_contiguous = x_cai.c_contiguous + y_c_contiguous = y_cai.c_contiguous if x_c_contiguous != y_c_contiguous: raise ValueError("Inputs must have matching strides") diff --git a/python/pylibraft/pylibraft/neighbors/ivf_pq/ivf_pq.pyx b/python/pylibraft/pylibraft/neighbors/ivf_pq/ivf_pq.pyx index f178eecb1f..75b7cd3abb 100644 --- a/python/pylibraft/pylibraft/neighbors/ivf_pq/ivf_pq.pyx +++ b/python/pylibraft/pylibraft/neighbors/ivf_pq/ivf_pq.pyx @@ -33,7 +33,7 @@ from libcpp cimport bool, nullptr from pylibraft.distance.distance_type cimport DistanceType -from pylibraft.common import Handle, device_ndarray +from pylibraft.common import Handle, cai_wrapper, device_ndarray from pylibraft.common.interruptible import cuda_interruptible from pylibraft.common.handle cimport handle_t @@ -88,19 +88,19 @@ cdef _get_dtype_string(dtype): def _check_input_array(cai, exp_dt, exp_rows=None, exp_cols=None): - if cai["typestr"] not in exp_dt: + if cai.dtype not in exp_dt: raise TypeError("dtype %s not supported" % cai["typestr"]) - if not is_c_contiguous(cai): + if not cai.c_contiguous: raise ValueError("Row major input is expected") - if exp_cols is not None and cai["shape"][1] != exp_cols: + if exp_cols is not None and cai.shape[1] != exp_cols: raise ValueError("Incorrect number of columns, expected {} got {}" - .format(exp_cols, cai["shape"][1])) + .format(exp_cols, cai.shape[1])) - if exp_rows is not None and cai["shape"][0] != exp_rows: + if exp_rows is not None and cai.shape[0] != exp_rows: raise ValueError("Incorrect number of rows, expected {} , got {}" - .format(exp_rows, cai["shape"][0])) + .format(exp_rows, cai.shape[0])) cdef class IndexParams: @@ -352,14 +352,14 @@ def build(IndexParams index_params, dataset, handle=None): handle.sync() """ - dataset_cai = dataset.__cuda_array_interface__ - dataset_dt = np.dtype(dataset_cai["typestr"]) + dataset_cai = cai_wrapper(dataset) + dataset_dt = dataset_cai.dtype _check_input_array(dataset_cai, [np.dtype('float32'), np.dtype('byte'), np.dtype('ubyte')]) - cdef uintptr_t dataset_ptr = dataset_cai["data"][0] + cdef uintptr_t dataset_ptr = dataset_cai.data - cdef uint64_t n_rows = dataset_cai["shape"][0] - cdef uint32_t dim = dataset_cai["shape"][1] + cdef uint64_t n_rows = dataset_cai.shape[0] + cdef uint32_t dim = dataset_cai.shape[1] if handle is None: handle = Handle() @@ -467,22 +467,22 @@ def extend(Index index, new_vectors, new_indices, handle=None): handle = Handle() cdef handle_t* handle_ = handle.getHandle() - vecs_cai = new_vectors.__cuda_array_interface__ - vecs_dt = np.dtype(vecs_cai["typestr"]) - cdef uint64_t n_rows = vecs_cai["shape"][0] - cdef uint32_t dim = vecs_cai["shape"][1] + vecs_cai = cai_wrapper(new_vectors) + vecs_dt = vecs_cai.dtype + cdef uint64_t n_rows = vecs_cai.shape[0] + cdef uint32_t dim = vecs_cai.shape[1] _check_input_array(vecs_cai, [np.dtype('float32'), np.dtype('byte'), np.dtype('ubyte')], exp_cols=index.dim) - idx_cai = new_indices.__cuda_array_interface__ + idx_cai = cai_wrapper(new_indices) _check_input_array(idx_cai, [np.dtype('uint64')], exp_rows=n_rows) - if len(idx_cai["shape"])!=1: + if len(idx_cai.shape)!=1: raise ValueError("Indices array is expected to be 1D") - cdef uintptr_t vecs_ptr = vecs_cai["data"][0] - cdef uintptr_t idx_ptr = idx_cai["data"][0] + cdef uintptr_t vecs_ptr = vecs_cai.data + cdef uintptr_t idx_ptr = idx_cai.data if vecs_dt == np.float32: with cuda_interruptible(): @@ -656,9 +656,9 @@ def search(SearchParams search_params, handle = Handle() cdef handle_t* handle_ = handle.getHandle() - queries_cai = queries.__cuda_array_interface__ - queries_dt = np.dtype(queries_cai["typestr"]) - cdef uint32_t n_queries = queries_cai["shape"][0] + queries_cai = cai_wrapper(queries) + queries_dt = queries_cai.dtype + cdef uint32_t n_queries = queries_cai.shape[0] _check_input_array(queries_cai, [np.dtype('float32'), np.dtype('byte'), np.dtype('ubyte')], @@ -667,22 +667,22 @@ def search(SearchParams search_params, if neighbors is None: neighbors = device_ndarray.empty((n_queries, k), dtype='uint64') - neighbors_cai = neighbors.__cuda_array_interface__ + neighbors_cai = cai_wrapper(neighbors) _check_input_array(neighbors_cai, [np.dtype('uint64')], exp_rows=n_queries, exp_cols=k) if distances is None: distances = device_ndarray.empty((n_queries, k), dtype='float32') - distances_cai = distances.__cuda_array_interface__ + distances_cai = cai_wrapper(distances) _check_input_array(distances_cai, [np.dtype('float32')], exp_rows=n_queries, exp_cols=k) cdef c_ivf_pq.search_params params = search_params.params - cdef uintptr_t queries_ptr = queries_cai["data"][0] - cdef uintptr_t neighbors_ptr = neighbors_cai["data"][0] - cdef uintptr_t distances_ptr = distances_cai["data"][0] + cdef uintptr_t queries_ptr = queries_cai.data + cdef uintptr_t neighbors_ptr = neighbors_cai.data + cdef uintptr_t distances_ptr = distances_cai.data # TODO(tfeher) pass mr_ptr arg cdef device_memory_resource* mr_ptr = nullptr if memory_resource is not None: diff --git a/python/pylibraft/pylibraft/random/rmat_rectangular_generator.pyx b/python/pylibraft/pylibraft/random/rmat_rectangular_generator.pyx index 8698ab6539..ef785a900b 100644 --- a/python/pylibraft/pylibraft/random/rmat_rectangular_generator.pyx +++ b/python/pylibraft/pylibraft/random/rmat_rectangular_generator.pyx @@ -23,7 +23,7 @@ import numpy as np from cython.operator cimport dereference as deref from libc.stdint cimport int64_t, uintptr_t -from pylibraft.common import Handle +from pylibraft.common import Handle, cai_wrapper from pylibraft.common.handle import auto_sync_handle from libcpp cimport bool @@ -129,14 +129,14 @@ def rmat(out, theta, r_scale, c_scale, seed=12345, handle=None): if out is None: raise Exception("'out' cannot be None!") - out_cai = out.__cuda_array_interface__ - theta_cai = theta.__cuda_array_interface__ + out_cai = cai_wrapper(out) + theta_cai = cai_wrapper(theta) - n_edges = out_cai["shape"][0] - out_ptr = out_cai["data"][0] - theta_ptr = theta_cai["data"][0] - out_dt = np.dtype(out_cai["typestr"]) - theta_dt = np.dtype(theta_cai["typestr"]) + n_edges = out_cai.shape[0] + out_ptr = out_cai.data + theta_ptr = theta_cai.data + out_dt = out_cai.dtype + theta_dt = theta_cai.dtype cdef RngState *rng = new RngState(seed) diff --git a/python/pylibraft/pylibraft/test/test_cai_wrapper.py b/python/pylibraft/pylibraft/test/test_cai_wrapper.py new file mode 100644 index 0000000000..e0c89b0291 --- /dev/null +++ b/python/pylibraft/pylibraft/test/test_cai_wrapper.py @@ -0,0 +1,40 @@ +# Copyright (c) 2022, NVIDIA CORPORATION. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import numpy as np +import pytest + +from pylibraft.common import cai_wrapper, device_ndarray + + +@pytest.mark.parametrize("order", ["F", "C"]) +@pytest.mark.parametrize("dtype", [np.float32, np.float64]) +@pytest.mark.parametrize("shape", [(10, 5)]) +def test_basic_accessors(order, dtype, shape): + + a = np.random.random(shape).astype(dtype) + + if order == "C": + a = np.ascontiguousarray(a) + else: + a = np.asfortranarray(a) + + db = device_ndarray(a) + cai_wrap = cai_wrapper(db) + + assert cai_wrap.dtype == dtype + assert cai_wrap.shape == shape + assert cai_wrap.c_contiguous == (order == "C") + assert cai_wrap.f_contiguous == (order == "F")