From bcb74049ca03b35eddbfb638ebe098620872cee5 Mon Sep 17 00:00:00 2001 From: Tamas Bela Feher Date: Fri, 28 Jul 2023 00:41:37 +0200 Subject: [PATCH] Add algo parameter for CAGRA ANN bench (#1687) To achieve high QPS with small batch size, it is recommended to use the `multi_cta` algorithm variant. CAGRA has an input parameter to specify which algorithm to use, but until now the benchmarks only used the default algorithm. This PR adds configuration option for changing the algorithm parameter for the CAGRA ANN benchmark wrappers. This will be useful while benchmarking various configurations with CAGRA. Authors: - Tamas Bela Feher (https://github.com/tfeher) Approvers: - Corey J. Nolet (https://github.com/cjnolet) URL: https://github.com/rapidsai/raft/pull/1687 --- cpp/bench/ann/conf/deep-100M.json | 335 +++++++++++++++++++++-- cpp/bench/ann/src/raft/raft_benchmark.cu | 14 + 2 files changed, 328 insertions(+), 21 deletions(-) diff --git a/cpp/bench/ann/conf/deep-100M.json b/cpp/bench/ann/conf/deep-100M.json index fb29556ead..97d670b614 100644 --- a/cpp/bench/ann/conf/deep-100M.json +++ b/cpp/bench/ann/conf/deep-100M.json @@ -222,31 +222,324 @@ "name" : "cagra.dim32", "algo" : "raft_cagra", "build_param": { - "index_dim" : 32 + "index_dim": 32, + "intermediate_graph_degree": 48 }, - "file" : "index/deep-100M/cagra/dim32", + "file": "index/deep-100M/cagra/dim32", + "search_params": [ + { + "itopk": 32, + "search_width": 1, + "max_iterations": 0, + "algo": "single_cta" + }, + { + "itopk": 32, + "search_width": 1, + "max_iterations": 32, + "algo": "single_cta" + }, + { + "itopk": 64, + "search_width": 4, + "max_iterations": 16, + "algo": "single_cta" + }, + { + "itopk": 64, + "search_width": 1, + "max_iterations": 64, + "algo": "single_cta" + }, + { + "itopk": 96, + "search_width": 2, + "max_iterations": 48, + "algo": "single_cta" + }, + { + "itopk": 128, + "search_width": 8, + "max_iterations": 16, + "algo": "single_cta" + }, + { + "itopk": 128, + "search_width": 2, + "max_iterations": 64, + "algo": "single_cta" + }, + { + "itopk": 192, + "search_width": 8, + "max_iterations": 24, + "algo": "single_cta" + }, + { + "itopk": 192, + "search_width": 2, + "max_iterations": 96, + "algo": "single_cta" + }, + { + "itopk": 256, + "search_width": 8, + "max_iterations": 32, + "algo": "single_cta" + }, + { + "itopk": 384, + "search_width": 8, + "max_iterations": 48, + "algo": "single_cta" + }, + { + "itopk": 512, + "search_width": 8, + "max_iterations": 64, + "algo": "single_cta" + } + ], + "search_result_file": "result/deep-100M/cagra/dim32" + }, + { + "name": "cagra.dim32.multi_cta", + "algo": "raft_cagra", + "build_param": { + "index_dim": 32, + "intermediate_graph_degree": 48 + }, + "file": "index/deep-100M/cagra/dim32", + "search_params": [ + { + "itopk": 32, + "search_width": 1, + "max_iterations": 0, + "algo": "multi_cta" + }, + { + "itopk": 32, + "search_width": 1, + "max_iterations": 32, + "algo": "multi_cta" + }, + { + "itopk": 64, + "search_width": 4, + "max_iterations": 16, + "algo": "multi_cta" + }, + { + "itopk": 64, + "search_width": 1, + "max_iterations": 64, + "algo": "multi_cta" + }, + { + "itopk": 96, + "search_width": 2, + "max_iterations": 48, + "algo": "multi_cta" + }, + { + "itopk": 128, + "search_width": 8, + "max_iterations": 16, + "algo": "multi_cta" + }, + { + "itopk": 128, + "search_width": 2, + "max_iterations": 64, + "algo": "multi_cta" + }, + { + "itopk": 192, + "search_width": 8, + "max_iterations": 24, + "algo": "multi_cta" + }, + { + "itopk": 192, + "search_width": 2, + "max_iterations": 96, + "algo": "multi_cta" + }, + { + "itopk": 256, + "search_width": 8, + "max_iterations": 32, + "algo": "multi_cta" + }, + { + "itopk": 384, + "search_width": 8, + "max_iterations": 48, + "algo": "multi_cta" + }, + { + "itopk": 512, + "search_width": 8, + "max_iterations": 64, + "algo": "multi_cta" + } + ], + "search_result_file": "result/deep-100M/cagra/dim32_multi_cta" + }, + { + "name": "cagra.dim32.multi_kernel", + "algo": "raft_cagra", + "build_param": { + "index_dim": 32, + "intermediate_graph_degree": 48 + }, + "file": "index/deep-100M/cagra/dim32", + "search_params": [ + { + "itopk": 32, + "search_width": 1, + "max_iterations": 0, + "algo": "multi_kernel" + }, + { + "itopk": 32, + "search_width": 1, + "max_iterations": 32, + "algo": "multi_kernel" + }, + { + "itopk": 64, + "search_width": 4, + "max_iterations": 16, + "algo": "multi_kernel" + }, + { + "itopk": 64, + "search_width": 1, + "max_iterations": 64, + "algo": "multi_kernel" + }, + { + "itopk": 96, + "search_width": 2, + "max_iterations": 48, + "algo": "multi_kernel" + }, + { + "itopk": 128, + "search_width": 8, + "max_iterations": 16, + "algo": "multi_kernel" + }, + { + "itopk": 128, + "search_width": 2, + "max_iterations": 64, + "algo": "multi_kernel" + }, + { + "itopk": 192, + "search_width": 8, + "max_iterations": 24, + "algo": "multi_kernel" + }, + { + "itopk": 192, + "search_width": 2, + "max_iterations": 96, + "algo": "multi_kernel" + }, + { + "itopk": 256, + "search_width": 8, + "max_iterations": 32, + "algo": "multi_kernel" + }, + { + "itopk": 384, + "search_width": 8, + "max_iterations": 48, + "algo": "multi_kernel" + }, + { + "itopk": 512, + "search_width": 8, + "max_iterations": 64, + "algo": "multi_kernel" + } + ], + "search_result_file": "result/deep-100M/cagra/dim32_multi_kernel" + }, + { + "name": "cagra.dim64", + "algo": "raft_cagra", + "build_param": { + "index_dim": 64 + }, + "file": "index/deep-100M/cagra/dim64", "search_params" : [ - {"itopk": 32}, - {"itopk": 64}, - {"itopk": 128} + { + "itopk": 32, + "search_width": 1, + "max_iterations": 0 + }, + { + "itopk": 32, + "search_width": 1, + "max_iterations": 32 + }, + { + "itopk": 64, + "search_width": 4, + "max_iterations": 16 + }, + { + "itopk": 64, + "search_width": 1, + "max_iterations": 64 + }, + { + "itopk": 96, + "search_width": 2, + "max_iterations": 48 + }, + { + "itopk": 128, + "search_width": 8, + "max_iterations": 16 + }, + { + "itopk": 128, + "search_width": 2, + "max_iterations": 64 + }, + { + "itopk": 192, + "search_width": 8, + "max_iterations": 24 + }, + { + "itopk": 192, + "search_width": 2, + "max_iterations": 96 + }, + { + "itopk": 256, + "search_width": 8, + "max_iterations": 32 + }, + { + "itopk": 384, + "search_width": 8, + "max_iterations": 48 + }, + { + "itopk": 512, + "search_width": 8, + "max_iterations": 64 + } ], "search_result_file" : "result/deep-100M/cagra/dim32" - }, - - - { - "name" : "cagra.dim64", - "algo" : "raft_cagra", - "build_param": { - "index_dim" : 64 - }, - "file" : "index/deep-100M/cagra/dim64", - "search_params" : [ - {"itopk": 32}, - {"itopk": 64}, - {"itopk": 128} - ], - "search_result_file" : "result/deep-100M/cagra/dim64" } ] } diff --git a/cpp/bench/ann/src/raft/raft_benchmark.cu b/cpp/bench/ann/src/raft/raft_benchmark.cu index 4d8fdc9358..dcc4ae18be 100644 --- a/cpp/bench/ann/src/raft/raft_benchmark.cu +++ b/cpp/bench/ann/src/raft/raft_benchmark.cu @@ -144,6 +144,20 @@ void parse_search_param(const nlohmann::json& conf, if (conf.contains("itopk")) { param.p.itopk_size = conf.at("itopk"); } if (conf.contains("search_width")) { param.p.search_width = conf.at("search_width"); } if (conf.contains("max_iterations")) { param.p.max_iterations = conf.at("max_iterations"); } + if (conf.contains("algo")) { + if (conf.at("algo") == "single_cta") { + param.p.algo = raft::neighbors::experimental::cagra::search_algo::SINGLE_CTA; + } else if (conf.at("algo") == "multi_cta") { + param.p.algo = raft::neighbors::experimental::cagra::search_algo::MULTI_CTA; + } else if (conf.at("algo") == "multi_kernel") { + param.p.algo = raft::neighbors::experimental::cagra::search_algo::MULTI_KERNEL; + } else if (conf.at("algo") == "auto") { + param.p.algo = raft::neighbors::experimental::cagra::search_algo::AUTO; + } else { + std::string tmp = conf.at("algo"); + THROW("Invalid value for algo: %s", tmp.c_str()); + } + } } #endif