From 6cdcb983f09aa266f1ea91a87dbaf0f0ef65fbac Mon Sep 17 00:00:00 2001 From: Allard Hendriksen Date: Thu, 22 Sep 2022 14:39:53 +0200 Subject: [PATCH] Add sparseL2NN benchmarks --- cpp/bench/CMakeLists.txt | 1 + cpp/bench/distance/sparse_l2_nn.cu | 194 +++++++++++++++++++++++++++++ 2 files changed, 195 insertions(+) create mode 100644 cpp/bench/distance/sparse_l2_nn.cu diff --git a/cpp/bench/CMakeLists.txt b/cpp/bench/CMakeLists.txt index 99606dd2e9..ccbf7b3ca8 100644 --- a/cpp/bench/CMakeLists.txt +++ b/cpp/bench/CMakeLists.txt @@ -81,6 +81,7 @@ if(BUILD_BENCH) bench/distance/distance_l1.cu bench/distance/distance_unexp_l2.cu bench/distance/fused_l2_nn.cu + bench/spatial/sparse_l2_nn.cu bench/distance/kernels.cu bench/main.cpp OPTIONAL diff --git a/cpp/bench/distance/sparse_l2_nn.cu b/cpp/bench/distance/sparse_l2_nn.cu new file mode 100644 index 0000000000..a505bcc996 --- /dev/null +++ b/cpp/bench/distance/sparse_l2_nn.cu @@ -0,0 +1,194 @@ +/* + * Copyright (c) 2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include + +#if defined RAFT_NN_COMPILED +#include +#endif + +namespace raft::bench::spatial::sparse { + +// Introduce various sparsity patterns +enum SparsityPattern { + checkerboard = 0, + checkerboard_4 = 1, + checkerboard_64 = 2, + all_true = 3, + all_false = 4 +}; + +struct sparse_l2_nn_inputs { + int m, n, k, num_groups; + SparsityPattern pattern; +}; // struct sparse_l2_nn_inputs + +__global__ void init_adj( + int m, int n, int num_groups, SparsityPattern pattern, bool* adj, int* group_idxs) +{ + for (int i = blockIdx.y * blockDim.y + threadIdx.y; i < num_groups; i += blockDim.y * gridDim.y) { + for (int j = blockIdx.x * blockDim.x + threadIdx.x; j < m; j += blockDim.x * gridDim.x) { + switch (pattern) { + case checkerboard: adj[i * m + j] = (i + j) % 2; break; + case checkerboard_4: adj[i * m + j] = (i + (j / 4)) % 2; break; + case checkerboard_64: adj[i * m + j] = (i + (j / 64)) % 2; break; + case all_true: adj[i * m + j] = true; break; + case all_false: adj[i * m + j] = false; break; + default: assert(false && "unknown pattern"); + } + } + } + // Each group is of size n / num_groups. + // + // - group_idxs[j] indicates the start of group j + 1 (i.e. is the inclusive + // scan of the group lengths) + // + // - The first group always starts at index zero, so we do not store it. + // + // - The group_idxs[num_groups - 1] should always equal n. + + if (blockIdx.y == 0 && threadIdx.y == 0) { + for (int j = blockIdx.x * blockDim.x + threadIdx.x; j < num_groups; + j += blockDim.x * gridDim.x) { + group_idxs[j] = (j + 1) * (n / num_groups); + } + group_idxs[num_groups - 1] = n; + } +} + +template +struct sparse_l2_nn : public fixture { + sparse_l2_nn(const sparse_l2_nn_inputs& p) + : params(p), + out(p.m, stream), + x(p.m * p.k, stream), + y(p.n * p.k, stream), + xn(p.m, stream), + yn(p.n, stream), + adj(p.m * p.num_groups, stream), + group_idxs(p.num_groups, stream), + workspace(p.m, stream) + { + raft::handle_t handle{stream}; + raft::random::RngState r(123456ULL); + + uniform(handle, r, x.data(), p.m * p.k, T(-1.0), T(1.0)); + uniform(handle, r, y.data(), p.n * p.k, T(-1.0), T(1.0)); + raft::linalg::rowNorm(xn.data(), x.data(), p.k, p.m, raft::linalg::L2Norm, true, stream); + raft::linalg::rowNorm(yn.data(), y.data(), p.k, p.n, raft::linalg::L2Norm, true, stream); + raft::distance::initialize, int>( + handle, out.data(), p.m, std::numeric_limits::max(), op); + + dim3 block(32, 32); + dim3 grid(10, 10); + init_adj<<>>( + p.m, p.n, p.num_groups, p.pattern, adj.data(), group_idxs.data()); + RAFT_CUDA_TRY(cudaGetLastError()); + } + + void run_benchmark(::benchmark::State& state) override + { + loop_on_state(state, [this]() { + // It is sufficient to only benchmark the L2-squared metric + raft::distance::sparseL2NN, int>(out.data(), + x.data(), + y.data(), + xn.data(), + yn.data(), + adj.data(), + group_idxs.data(), + params.num_groups, + params.m, + params.n, + params.k, + (void*)workspace.data(), + op, + pairRedOp, + false, + false, + stream); + }); + } + + private: + sparse_l2_nn_inputs params; + rmm::device_uvector x, y, xn, yn; + rmm::device_uvector adj; + rmm::device_uvector group_idxs; + rmm::device_uvector> out; + rmm::device_uvector workspace; + raft::distance::KVPMinReduce pairRedOp; + raft::distance::MinAndDistanceReduceOp op; +}; // struct SparseL2NN + +// TODO: Consider thinning the list of benchmark cases.. +const std::vector sparse_l2_nn_input_vecs = { + // Very fat matrices... + {32, 16384, 16384, 32, SparsityPattern::checkerboard}, + {64, 16384, 16384, 32, SparsityPattern::checkerboard}, + {128, 16384, 16384, 32, SparsityPattern::checkerboard}, + {256, 16384, 16384, 32, SparsityPattern::checkerboard}, + {512, 16384, 16384, 32, SparsityPattern::checkerboard}, + {1024, 16384, 16384, 32, SparsityPattern::checkerboard}, + {16384, 32, 16384, 32, SparsityPattern::checkerboard}, + {16384, 64, 16384, 32, SparsityPattern::checkerboard}, + {16384, 128, 16384, 32, SparsityPattern::checkerboard}, + {16384, 256, 16384, 32, SparsityPattern::checkerboard}, + {16384, 512, 16384, 32, SparsityPattern::checkerboard}, + {16384, 1024, 16384, 32, SparsityPattern::checkerboard}, + + // Representative matrices... + {16384, 16384, 32, 32, SparsityPattern::checkerboard}, + {16384, 16384, 64, 32, SparsityPattern::checkerboard}, + {16384, 16384, 128, 32, SparsityPattern::checkerboard}, + {16384, 16384, 256, 32, SparsityPattern::checkerboard}, + {16384, 16384, 512, 32, SparsityPattern::checkerboard}, + {16384, 16384, 1024, 32, SparsityPattern::checkerboard}, + {16384, 16384, 16384, 32, SparsityPattern::checkerboard}, + + {16384, 16384, 32, 32, SparsityPattern::checkerboard_4}, + {16384, 16384, 64, 32, SparsityPattern::checkerboard_4}, + {16384, 16384, 128, 32, SparsityPattern::checkerboard_4}, + {16384, 16384, 256, 32, SparsityPattern::checkerboard_4}, + {16384, 16384, 512, 32, SparsityPattern::checkerboard_4}, + {16384, 16384, 1024, 32, SparsityPattern::checkerboard_4}, + {16384, 16384, 16384, 32, SparsityPattern::checkerboard_4}, + + {16384, 16384, 32, 32, SparsityPattern::checkerboard_64}, + {16384, 16384, 64, 32, SparsityPattern::checkerboard_64}, + {16384, 16384, 128, 32, SparsityPattern::checkerboard_64}, + {16384, 16384, 256, 32, SparsityPattern::checkerboard_64}, + {16384, 16384, 512, 32, SparsityPattern::checkerboard_64}, + {16384, 16384, 1024, 32, SparsityPattern::checkerboard_64}, + {16384, 16384, 16384, 32, SparsityPattern::checkerboard_64}, +}; + +RAFT_BENCH_REGISTER(sparse_l2_nn, "", sparse_l2_nn_input_vecs); +// Do not benchmark double. + +} // namespace raft::bench::spatial::sparse