From 3b877963dae7b4dce27a60f2b4be6c75c3668b02 Mon Sep 17 00:00:00 2001 From: Vibhu Jawa Date: Tue, 24 Oct 2023 18:51:45 -0700 Subject: [PATCH 1/3] Try using contiguous rank to fix cuda_visible_devices (#1926) This PR attempts to solve https://github.com/rapidsai/cugraph/issues/3889 Authors: - Vibhu Jawa (https://github.com/VibhuJawa) Approvers: - Corey J. Nolet (https://github.com/cjnolet) URL: https://github.com/rapidsai/raft/pull/1926 --- python/raft-dask/raft_dask/common/comms.py | 52 +++++++++++++++++++--- 1 file changed, 46 insertions(+), 6 deletions(-) diff --git a/python/raft-dask/raft_dask/common/comms.py b/python/raft-dask/raft_dask/common/comms.py index 7a0b786ec4..118293c093 100644 --- a/python/raft-dask/raft_dask/common/comms.py +++ b/python/raft-dask/raft_dask/common/comms.py @@ -18,7 +18,8 @@ import time import uuid import warnings -from collections import Counter, OrderedDict +from collections import Counter, OrderedDict, defaultdict +from typing import Dict from dask.distributed import default_client from dask_cuda.utils import nvml_device_index @@ -157,7 +158,7 @@ def worker_info(self, workers): Builds a dictionary of { (worker_address, worker_port) : (worker_rank, worker_port ) } """ - ranks = _func_worker_ranks(self.client) + ranks = _func_worker_ranks(self.client, workers) ports = ( _func_ucp_ports(self.client, workers) if self.comms_p2p else None ) @@ -688,7 +689,7 @@ def _func_ucp_ports(client, workers): return client.run(_func_ucp_listener_port, workers=workers) -def _func_worker_ranks(client): +def _func_worker_ranks(client, workers): """ For each worker connected to the client, compute a global rank which is the sum @@ -697,9 +698,16 @@ def _func_worker_ranks(client): Parameters ---------- client (object): Dask client object. - """ - ranks = client.run(_get_nvml_device_index) - worker_ips = [_get_worker_ip(worker_address) for worker_address in ranks] + workers (list): List of worker addresses. + """ + # TODO: Add Test this function + # Running into build issues preventing testing + nvml_device_index_d = client.run(_get_nvml_device_index, workers=workers) + worker_ips = [ + _get_worker_ip(worker_address) + for worker_address in nvml_device_index_d + ] + ranks = _map_nvml_device_id_to_contiguous_range(nvml_device_index_d) worker_ip_offset_dict = _get_rank_offset_across_nodes(worker_ips) return _append_rank_offset(ranks, worker_ip_offset_dict) @@ -724,6 +732,38 @@ def _get_worker_ip(worker_address): return ":".join(worker_address.split(":")[0:2]) +def _map_nvml_device_id_to_contiguous_range(nvml_device_index_d: dict) -> dict: + """ + For each worker address in nvml_device_index_d, map the corresponding + worker rank in the range(0, num_workers_per_node) where rank is decided + by the NVML device index. Worker with the lowest NVML device index gets + rank 0, and worker with the highest NVML device index gets rank + num_workers_per_node-1. + + Parameters + ---------- + nvml_device_index_d : dict + Dictionary of worker addresses mapped to their nvml device index. + + Returns + ------- + dict + Updated dictionary with worker addresses mapped to their rank. + """ + + rank_per_ip: Dict[str, int] = defaultdict(int) + + # Sort by NVML index to ensure that the worker + # with the lowest NVML index gets rank 0. + for worker, _ in sorted(nvml_device_index_d.items(), key=lambda x: x[1]): + ip = _get_worker_ip(worker) + + nvml_device_index_d[worker] = rank_per_ip[ip] + rank_per_ip[ip] += 1 + + return nvml_device_index_d + + def _get_rank_offset_across_nodes(worker_ips): """ Get a dictionary of worker IP addresses mapped to the cumulative count of From c95d821ea0b814e9a35f53244594326262c3cdaf Mon Sep 17 00:00:00 2001 From: Vyas Ramasubramani Date: Wed, 25 Oct 2023 07:53:59 -0700 Subject: [PATCH 2/3] Relax ucx pinning (#1927) The latest builds of libarrow are built against ucx 1.15, so the upper bound constraint in raft is causing failures downstream when conda tries to solve environments containing both raft-dask and other packages that transitively bring in ucx via libarrow (namely cudf). This PR also bumps the minimum requirement to 1.14.1 to match ucx-py. Authors: - Vyas Ramasubramani (https://github.com/vyasr) Approvers: - Peter Andreas Entschev (https://github.com/pentschev) - Ray Douglass (https://github.com/raydouglass) URL: https://github.com/rapidsai/raft/pull/1927 --- conda/recipes/raft-dask/conda_build_config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/conda/recipes/raft-dask/conda_build_config.yaml b/conda/recipes/raft-dask/conda_build_config.yaml index e36adf2551..d89dbae4df 100644 --- a/conda/recipes/raft-dask/conda_build_config.yaml +++ b/conda/recipes/raft-dask/conda_build_config.yaml @@ -14,7 +14,7 @@ sysroot_version: - "2.17" ucx_version: - - ">=1.13.0,<1.15.0" + - ">=1.14.1,<1.16.0" ucx_py_version: - "0.35.*" From adb18b1110a2c32d41242e699176e0709fef1b9f Mon Sep 17 00:00:00 2001 From: "Corey J. Nolet" Date: Thu, 26 Oct 2023 00:04:44 +0200 Subject: [PATCH 3/3] Add `wiki_all` dataset config and documentation. (#1918) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit …et more clarify on how the dataset was generated. Authors: - Corey J. Nolet (https://github.com/cjnolet) Approvers: - Dante Gama Dessavre (https://github.com/dantegd) URL: https://github.com/rapidsai/raft/pull/1918 --- docs/source/raft_ann_benchmarks.md | 7 +- docs/source/wiki_all_dataset.md | 46 ++++ .../raft-ann-bench/run/conf/wiki_all_10M.json | 200 ++++++++++++++++++ .../raft-ann-bench/run/conf/wiki_all_1M.json | 200 ++++++++++++++++++ .../raft-ann-bench/run/conf/wiki_all_88M.json | 200 ++++++++++++++++++ 5 files changed, 652 insertions(+), 1 deletion(-) create mode 100644 docs/source/wiki_all_dataset.md create mode 100644 python/raft-ann-bench/src/raft-ann-bench/run/conf/wiki_all_10M.json create mode 100644 python/raft-ann-bench/src/raft-ann-bench/run/conf/wiki_all_1M.json create mode 100644 python/raft-ann-bench/src/raft-ann-bench/run/conf/wiki_all_88M.json diff --git a/docs/source/raft_ann_benchmarks.md b/docs/source/raft_ann_benchmarks.md index 25fdf3f0f6..fadca595fb 100644 --- a/docs/source/raft_ann_benchmarks.md +++ b/docs/source/raft_ann_benchmarks.md @@ -18,6 +18,8 @@ This project provides a benchmark program for various ANN search implementations - [Running with Docker containers](#running-with-docker-containers) - [Creating and customizing dataset configurations](#creating-and-customizing-dataset-configurations) - [Adding a new ANN algorithm](#adding-a-new-ann-algorithm) +- [Parameter tuning guide](https://docs.rapids.ai/api/raft/nightly/ann_benchmarks_param_tuning/) +- [Wiki-all RAG/LLM Dataset](https://docs.rapids.ai/api/raft/nightly/wiki_all_dataset/) ## Installing the benchmarks @@ -242,15 +244,18 @@ Configuration files already exist for the following list of the million-scale da | `nytimes-256-angular` | 290K | 256 | 10K | Angular | | `sift-128-euclidean` | 1M | 128 | 10K | Euclidean| -All of the datasets above contain ground test datasets with 100 neighbors. Thus `k` for these datasets must be less than or equal to 100. +All of the datasets above contain ground test datasets with 100 neighbors. Thus `k` for these datasets must be less than or equal to 100. ### End to end: large-scale benchmarks (>10M vectors) + `raft-ann-bench.get_dataset` cannot be used to download the [billion-scale datasets](ann_benchmarks_dataset.md#billion-scale) due to their size. You should instead use our billion-scale datasets guide to download and prepare them. All other python commands mentioned below work as intended once the billion-scale dataset has been downloaded. To download billion-scale datasets, visit [big-ann-benchmarks](http://big-ann-benchmarks.com/neurips21.html) +We also provide a new dataset called `wiki-all` containing 88 million 768-dimensional vectors. This dataset is meant for benchmarking a realistic retrieval-augmented generation (RAG)/LLM embedding size at scale. It also contains 1M and 10M vector subsets for smaller-scale experiments. See our [Wiki-all Dataset Guide](https://docs.rapids.ai/api/raft/nightly/wiki_all_dataset/) for more information and to download the dataset. + The steps below demonstrate how to download, install, and run benchmarks on a subset of 100M vectors from the Yandex Deep-1B dataset. Please note that datasets of this scale are recommended for GPUs with larger amounts of memory, such as the A100 or H100. ```bash diff --git a/docs/source/wiki_all_dataset.md b/docs/source/wiki_all_dataset.md new file mode 100644 index 0000000000..5c7f972b3d --- /dev/null +++ b/docs/source/wiki_all_dataset.md @@ -0,0 +1,46 @@ +# Wiki-all Dataset + +The `wiki-all` dataset was created to stress vector search algorithms at scale with both a large number of vectors and dimensions. The entire dataset contains 88M vectors with 768 dimensions and is meant for testing the types of vectors one would typically encounter in retrieval augmented generation (RAG) workloads. The full dataset is ~251GB in size, which is intentionally larger than the typical memory of GPUs. The massive scale is intended to promote the use of compression and efficient out-of-core methods for both indexing and search. + +## Getting the dataset + +The dataset is composed of all the available languages of in the [Cohere Wikipedia dataset](https://huggingface.co/datasets/Cohere/wikipedia-22-12). An [English version]( https://www.kaggle.com/datasets/jjinho/wikipedia-20230701) is also available. + + +The dataset is composed of English wiki texts from [Kaggle](https://www.kaggle.com/datasets/jjinho/wikipedia-20230701) and multi-lingual wiki texts from [Cohere Wikipedia](https://huggingface.co/datasets/Cohere/wikipedia-22-12). + +Cohere's English Texts are older (2022) and smaller than the Kaggle English Wiki texts (2023) so the English texts have been removed from Cohere completely. The final Wiki texts include English Wiki from Kaggle and the other languages from Cohere. The English texts constitute 50% of the total text size. + +To form the final dataset, the Wiki texts were chunked into 85 million 128-token pieces. For reference, Cohere chunks Wiki texts into 104-token pieces. Finally, the embeddings of each chunk were computed using the [paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) embedding model. The resulting dataset is an embedding matrix of size 88 million by 768. Also included with the dataset is a query file containing 10k query vectors and a groundtruth file to evaluate nearest neighbors algorithms. + +### Full dataset + +A version of the dataset is made available in the binary format that can be used directly by the [raft-ann-bench](https://docs.rapids.ai/api/raft/nightly/raft_ann_benchmarks/) tool. The full 88M dataset is ~251GB and the download link below contains tarballs that have been split into multiple parts. + +The following will download all 10 the parts and untar them to a `wiki_all_88M` directory: +```bash +curl -s https://data.rapids.ai/raft/datasets/wiki_all/wiki_all.tar.{00..9} | tar -xf - -C /datasets/wiki_all_88M/ +``` + +The above has the unfortunate drawback that if the command should fail for any reason, all the parts need to be re-downloaded. The files can also be downloaded individually and then untarred to the directory. Each file is ~27GB and there are 10 of them. + +```bash +curl -s https://data.rapids.ai/raft/datasets/wiki_all/wiki_all.tar.00 +... +curl -s https://data.rapids.ai/raft/datasets/wiki_all/wiki_all.tar.09 + +cat wiki_all.tar.* | tar -xf - -C /datasets/wiki_all_88M/ +``` + +### 1M and 10M subsets + +Also available are 1M and 10M subsets of the full dataset which are 2.9GB and 29GB, respectively. These subsets also include query sets of 10k vectors and corresponding groundtruth files. + +```bash +curl -s https://data.rapids.ai/raft/datasets/wiki_all_1M/wiki_all_1M.tar +curl -s https://data.rapids.ai/raft/datasets/wiki_all_10M/wiki_all_10M.tar +``` + +## Using the dataset + +After the dataset is downloaded and extracted to the `wiki_all_88M` directory (or `wiki_all_1M`/`wiki_all_10M` depending on whether the subsets are used), the files can be used in the benchmarking tool. The dataset name is `wiki_all` (or `wiki_all_1M`/`wiki_all_10M`), and the benchmarking tool can be used by specifying the appropriate name `--dataset wiki_all_88M` in the scripts. diff --git a/python/raft-ann-bench/src/raft-ann-bench/run/conf/wiki_all_10M.json b/python/raft-ann-bench/src/raft-ann-bench/run/conf/wiki_all_10M.json new file mode 100644 index 0000000000..e5f77e7858 --- /dev/null +++ b/python/raft-ann-bench/src/raft-ann-bench/run/conf/wiki_all_10M.json @@ -0,0 +1,200 @@ +{ + "dataset": { + "name": "wiki_all_10M", + "base_file": "wiki_all_10M/base.88M.fbin", + "query_file": "wiki_all_10M/queries.fbin", + "groundtruth_neighbors_file": "wiki_all_10M/groundtruth.88M.neighbors.ibin", + "distance": "euclidean" + }, + "search_basic_param": { + "batch_size": 10000, + "k": 10 + }, + "index": [ + { + "name": "hnswlib.M16.ef50", + "algo": "hnswlib", + "build_param": { "M": 16, "efConstruction": 50, "numThreads": 56 }, + "file": "wiki_all_10M/hnswlib/M16.ef50", + "search_params": [ + { "ef": 10, "numThreads": 56 }, + { "ef": 20, "numThreads": 56 }, + { "ef": 40, "numThreads": 56 }, + { "ef": 60, "numThreads": 56 }, + { "ef": 80, "numThreads": 56 }, + { "ef": 120, "numThreads": 56 }, + { "ef": 200, "numThreads": 56 }, + { "ef": 400, "numThreads": 56 }, + { "ef": 600, "numThreads": 56 }, + { "ef": 800, "numThreads": 56 } + ] + }, + { + "name": "faiss_ivf_pq.M32-nlist16K", + "algo": "faiss_gpu_ivf_pq", + "build_param": { + "M": 32, + "nlist": 16384, + "ratio": 2 + }, + "file": "wiki_all_10M/faiss_ivf_pq/M32-nlist16K_ratio2", + "search_params": [ + { "nprobe": 10 }, + { "nprobe": 20 }, + { "nprobe": 30 }, + { "nprobe": 40 }, + { "nprobe": 50 }, + { "nprobe": 100 }, + { "nprobe": 200 }, + { "nprobe": 500 } + ] + }, + { + "name": "faiss_ivf_pq.M64-nlist16K", + "algo": "faiss_gpu_ivf_pq", + "build_param": { + "M": 64, + "nlist": 16384, + "ratio": 2 + }, + "file": "wiki_all_10M/faiss_ivf_pq/M64-nlist16K_ratio2", + "search_params": [ + { "nprobe": 10 }, + { "nprobe": 20 }, + { "nprobe": 30 }, + { "nprobe": 40 }, + { "nprobe": 50 }, + { "nprobe": 100 }, + { "nprobe": 200 }, + { "nprobe": 500 } + ] + }, + { + "name": "raft_ivf_pq.d128-nlist16K", + "algo": "raft_ivf_pq", + "build_param": { + "pq_dim": 128, + "pq_bits": 8, + "nlist": 16384, + "niter": 10, + "ratio": 10 + }, + "file": "wiki_all_10M/raft_ivf_pq/d128-nlist16K", + "search_params": [ + { "nprobe": 20, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 } + ] + }, + { + "name": "raft_ivf_pq.d64-nlist16K", + "algo": "raft_ivf_pq", + "build_param": { + "pq_dim": 64, + "pq_bits": 8, + "nlist": 16384, + "niter": 10, + "ratio": 10 + }, + "file": "wiki_all_10M/raft_ivf_pq/d64-nlist16K", + "search_params": [ + { "nprobe": 20, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 } + ] + }, + { + "name": "raft_ivf_pq.d32-nlist16K", + "algo": "raft_ivf_pq", + "build_param": { + "pq_dim": 32, + "pq_bits": 8, + "nlist": 16384, + "niter": 10, + "ratio": 10 + }, + "file": "wiki_all_10M/raft_ivf_pq/d32-nlist16K", + "search_params": [ + { "nprobe": 20, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 } + ] + }, + { + "name": "raft_ivf_pq.d32X-nlist16K", + "algo": "raft_ivf_pq", + "build_param": { + "pq_dim": 32, + "pq_bits": 8, + "nlist": 16384, + "niter": 10, + "ratio": 10 + }, + "file": "wiki_all_10M/raft_ivf_pq/d32-nlist16K", + "search_params": [ + { "nprobe": 20, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 } + + ] + }, + { + "name": "raft_cagra.dim32.multi_cta", + "algo": "raft_cagra", + "build_param": { "graph_degree": 32, "intermediate_graph_degree": 48 }, + "file": "wiki_all_10M/raft_cagra/dim32.ibin", + "search_params": [ + { "itopk": 32, "search_width": 1, "max_iterations": 0, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 32, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 36, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 40, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 44, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 48, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 2, "max_iterations": 16, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 2, "max_iterations": 24, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 2, "max_iterations": 26, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 2, "max_iterations": 32, "algo": "multi_cta" }, + { "itopk": 64, "search_width": 4, "max_iterations": 16, "algo": "multi_cta" }, + { "itopk": 64, "search_width": 1, "max_iterations": 64, "algo": "multi_cta" }, + { "itopk": 96, "search_width": 2, "max_iterations": 48, "algo": "multi_cta" }, + { "itopk": 128, "search_width": 8, "max_iterations": 16, "algo": "multi_cta" }, + { "itopk": 128, "search_width": 2, "max_iterations": 64, "algo": "multi_cta" }, + { "itopk": 192, "search_width": 8, "max_iterations": 24, "algo": "multi_cta" }, + { "itopk": 192, "search_width": 2, "max_iterations": 96, "algo": "multi_cta" }, + { "itopk": 256, "search_width": 8, "max_iterations": 32, "algo": "multi_cta" }, + { "itopk": 384, "search_width": 8, "max_iterations": 48, "algo": "multi_cta" }, + { "itopk": 512, "search_width": 8, "max_iterations": 64, "algo": "multi_cta" } + ] + } + + ] +} + diff --git a/python/raft-ann-bench/src/raft-ann-bench/run/conf/wiki_all_1M.json b/python/raft-ann-bench/src/raft-ann-bench/run/conf/wiki_all_1M.json new file mode 100644 index 0000000000..6eb72a65a1 --- /dev/null +++ b/python/raft-ann-bench/src/raft-ann-bench/run/conf/wiki_all_1M.json @@ -0,0 +1,200 @@ +{ + "dataset": { + "name": "wiki_all_1M", + "base_file": "wiki_all_1M/base.88M.fbin", + "query_file": "wiki_all_1M/queries.fbin", + "groundtruth_neighbors_file": "wiki_all_1M/groundtruth.88M.neighbors.ibin", + "distance": "euclidean" + }, + "search_basic_param": { + "batch_size": 10000, + "k": 10 + }, + "index": [ + { + "name": "hnswlib.M16.ef50", + "algo": "hnswlib", + "build_param": { "M": 16, "efConstruction": 50, "numThreads": 56 }, + "file": "wiki_all_1M/hnswlib/M16.ef50", + "search_params": [ + { "ef": 10, "numThreads": 56 }, + { "ef": 20, "numThreads": 56 }, + { "ef": 40, "numThreads": 56 }, + { "ef": 60, "numThreads": 56 }, + { "ef": 80, "numThreads": 56 }, + { "ef": 120, "numThreads": 56 }, + { "ef": 200, "numThreads": 56 }, + { "ef": 400, "numThreads": 56 }, + { "ef": 600, "numThreads": 56 }, + { "ef": 800, "numThreads": 56 } + ] + }, + { + "name": "faiss_ivf_pq.M32-nlist16K", + "algo": "faiss_gpu_ivf_pq", + "build_param": { + "M": 32, + "nlist": 16384, + "ratio": 2 + }, + "file": "wiki_all_1M/faiss_ivf_pq/M32-nlist16K_ratio2", + "search_params": [ + { "nprobe": 10 }, + { "nprobe": 20 }, + { "nprobe": 30 }, + { "nprobe": 40 }, + { "nprobe": 50 }, + { "nprobe": 100 }, + { "nprobe": 200 }, + { "nprobe": 500 } + ] + }, + { + "name": "faiss_ivf_pq.M64-nlist16K", + "algo": "faiss_gpu_ivf_pq", + "build_param": { + "M": 64, + "nlist": 16384, + "ratio": 2 + }, + "file": "wiki_all_1M/faiss_ivf_pq/M64-nlist16K_ratio2", + "search_params": [ + { "nprobe": 10 }, + { "nprobe": 20 }, + { "nprobe": 30 }, + { "nprobe": 40 }, + { "nprobe": 50 }, + { "nprobe": 100 }, + { "nprobe": 200 }, + { "nprobe": 500 } + ] + }, + { + "name": "raft_ivf_pq.d128-nlist16K", + "algo": "raft_ivf_pq", + "build_param": { + "pq_dim": 128, + "pq_bits": 8, + "nlist": 16384, + "niter": 10, + "ratio": 10 + }, + "file": "wiki_all_1M/raft_ivf_pq/d128-nlist16K", + "search_params": [ + { "nprobe": 20, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 } + ] + }, + { + "name": "raft_ivf_pq.d64-nlist16K", + "algo": "raft_ivf_pq", + "build_param": { + "pq_dim": 64, + "pq_bits": 8, + "nlist": 16384, + "niter": 10, + "ratio": 10 + }, + "file": "wiki_all_1M/raft_ivf_pq/d64-nlist16K", + "search_params": [ + { "nprobe": 20, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 } + ] + }, + { + "name": "raft_ivf_pq.d32-nlist16K", + "algo": "raft_ivf_pq", + "build_param": { + "pq_dim": 32, + "pq_bits": 8, + "nlist": 16384, + "niter": 10, + "ratio": 10 + }, + "file": "wiki_all_1M/raft_ivf_pq/d32-nlist16K", + "search_params": [ + { "nprobe": 20, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 } + ] + }, + { + "name": "raft_ivf_pq.d32X-nlist16K", + "algo": "raft_ivf_pq", + "build_param": { + "pq_dim": 32, + "pq_bits": 8, + "nlist": 16384, + "niter": 10, + "ratio": 10 + }, + "file": "wiki_all_1M/raft_ivf_pq/d32-nlist16K", + "search_params": [ + { "nprobe": 20, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 } + + ] + }, + { + "name": "raft_cagra.dim32.multi_cta", + "algo": "raft_cagra", + "build_param": { "graph_degree": 32, "intermediate_graph_degree": 48 }, + "file": "wiki_all_1M/raft_cagra/dim32.ibin", + "search_params": [ + { "itopk": 32, "search_width": 1, "max_iterations": 0, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 32, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 36, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 40, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 44, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 48, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 2, "max_iterations": 16, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 2, "max_iterations": 24, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 2, "max_iterations": 26, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 2, "max_iterations": 32, "algo": "multi_cta" }, + { "itopk": 64, "search_width": 4, "max_iterations": 16, "algo": "multi_cta" }, + { "itopk": 64, "search_width": 1, "max_iterations": 64, "algo": "multi_cta" }, + { "itopk": 96, "search_width": 2, "max_iterations": 48, "algo": "multi_cta" }, + { "itopk": 128, "search_width": 8, "max_iterations": 16, "algo": "multi_cta" }, + { "itopk": 128, "search_width": 2, "max_iterations": 64, "algo": "multi_cta" }, + { "itopk": 192, "search_width": 8, "max_iterations": 24, "algo": "multi_cta" }, + { "itopk": 192, "search_width": 2, "max_iterations": 96, "algo": "multi_cta" }, + { "itopk": 256, "search_width": 8, "max_iterations": 32, "algo": "multi_cta" }, + { "itopk": 384, "search_width": 8, "max_iterations": 48, "algo": "multi_cta" }, + { "itopk": 512, "search_width": 8, "max_iterations": 64, "algo": "multi_cta" } + ] + } + + ] +} + diff --git a/python/raft-ann-bench/src/raft-ann-bench/run/conf/wiki_all_88M.json b/python/raft-ann-bench/src/raft-ann-bench/run/conf/wiki_all_88M.json new file mode 100644 index 0000000000..e50b40f554 --- /dev/null +++ b/python/raft-ann-bench/src/raft-ann-bench/run/conf/wiki_all_88M.json @@ -0,0 +1,200 @@ +{ + "dataset": { + "name": "wiki_all_88M", + "base_file": "wiki_all_88M/base.88M.fbin", + "query_file": "wiki_all_88M/queries.fbin", + "groundtruth_neighbors_file": "wiki_all_88M/groundtruth.88M.neighbors.ibin", + "distance": "euclidean" + }, + "search_basic_param": { + "batch_size": 10000, + "k": 10 + }, + "index": [ + { + "name": "hnswlib.M16.ef50", + "algo": "hnswlib", + "build_param": { "M": 16, "efConstruction": 50, "numThreads": 56 }, + "file": "wiki_all_88M/hnswlib/M16.ef50", + "search_params": [ + { "ef": 10, "numThreads": 56 }, + { "ef": 20, "numThreads": 56 }, + { "ef": 40, "numThreads": 56 }, + { "ef": 60, "numThreads": 56 }, + { "ef": 80, "numThreads": 56 }, + { "ef": 120, "numThreads": 56 }, + { "ef": 200, "numThreads": 56 }, + { "ef": 400, "numThreads": 56 }, + { "ef": 600, "numThreads": 56 }, + { "ef": 800, "numThreads": 56 } + ] + }, + { + "name": "faiss_ivf_pq.M32-nlist16K", + "algo": "faiss_gpu_ivf_pq", + "build_param": { + "M": 32, + "nlist": 16384, + "ratio": 2 + }, + "file": "wiki_all_88M/faiss_ivf_pq/M32-nlist16K_ratio2", + "search_params": [ + { "nprobe": 10 }, + { "nprobe": 20 }, + { "nprobe": 30 }, + { "nprobe": 40 }, + { "nprobe": 50 }, + { "nprobe": 100 }, + { "nprobe": 200 }, + { "nprobe": 500 } + ] + }, + { + "name": "faiss_ivf_pq.M64-nlist16K", + "algo": "faiss_gpu_ivf_pq", + "build_param": { + "M": 64, + "nlist": 16384, + "ratio": 2 + }, + "file": "wiki_all_88M/faiss_ivf_pq/M64-nlist16K_ratio2", + "search_params": [ + { "nprobe": 10 }, + { "nprobe": 20 }, + { "nprobe": 30 }, + { "nprobe": 40 }, + { "nprobe": 50 }, + { "nprobe": 100 }, + { "nprobe": 200 }, + { "nprobe": 500 } + ] + }, + { + "name": "raft_ivf_pq.d128-nlist16K", + "algo": "raft_ivf_pq", + "build_param": { + "pq_dim": 128, + "pq_bits": 8, + "nlist": 16384, + "niter": 10, + "ratio": 10 + }, + "file": "wiki_all_88M/raft_ivf_pq/d128-nlist16K", + "search_params": [ + { "nprobe": 20, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 1 } + ] + }, + { + "name": "raft_ivf_pq.d64-nlist16K", + "algo": "raft_ivf_pq", + "build_param": { + "pq_dim": 64, + "pq_bits": 8, + "nlist": 16384, + "niter": 10, + "ratio": 10 + }, + "file": "wiki_all_88M/raft_ivf_pq/d64-nlist16K", + "search_params": [ + { "nprobe": 20, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 } + ] + }, + { + "name": "raft_ivf_pq.d32-nlist16K", + "algo": "raft_ivf_pq", + "build_param": { + "pq_dim": 32, + "pq_bits": 8, + "nlist": 16384, + "niter": 10, + "ratio": 10 + }, + "file": "wiki_all_88M/raft_ivf_pq/d32-nlist16K", + "search_params": [ + { "nprobe": 20, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 32 } + ] + }, + { + "name": "raft_ivf_pq.d32X-nlist16K", + "algo": "raft_ivf_pq", + "build_param": { + "pq_dim": 32, + "pq_bits": 8, + "nlist": 16384, + "niter": 10, + "ratio": 10 + }, + "file": "wiki_all_88M/raft_ivf_pq/d32-nlist16K", + "search_params": [ + { "nprobe": 20, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 16 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 8 }, + { "nprobe": 30, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 40, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 50, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 100, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 200, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 }, + { "nprobe": 500, "internalDistanceDtype": "half", "smemLutDtype": "half", "refine_ratio": 4 } + + ] + }, + { + "name": "raft_cagra.dim32.multi_cta", + "algo": "raft_cagra", + "build_param": { "graph_degree": 32, "intermediate_graph_degree": 48 }, + "file": "wiki_all_88M/raft_cagra/dim32.ibin", + "search_params": [ + { "itopk": 32, "search_width": 1, "max_iterations": 0, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 32, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 36, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 40, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 44, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 1, "max_iterations": 48, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 2, "max_iterations": 16, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 2, "max_iterations": 24, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 2, "max_iterations": 26, "algo": "multi_cta" }, + { "itopk": 32, "search_width": 2, "max_iterations": 32, "algo": "multi_cta" }, + { "itopk": 64, "search_width": 4, "max_iterations": 16, "algo": "multi_cta" }, + { "itopk": 64, "search_width": 1, "max_iterations": 64, "algo": "multi_cta" }, + { "itopk": 96, "search_width": 2, "max_iterations": 48, "algo": "multi_cta" }, + { "itopk": 128, "search_width": 8, "max_iterations": 16, "algo": "multi_cta" }, + { "itopk": 128, "search_width": 2, "max_iterations": 64, "algo": "multi_cta" }, + { "itopk": 192, "search_width": 8, "max_iterations": 24, "algo": "multi_cta" }, + { "itopk": 192, "search_width": 2, "max_iterations": 96, "algo": "multi_cta" }, + { "itopk": 256, "search_width": 8, "max_iterations": 32, "algo": "multi_cta" }, + { "itopk": 384, "search_width": 8, "max_iterations": 48, "algo": "multi_cta" }, + { "itopk": 512, "search_width": 8, "max_iterations": 64, "algo": "multi_cta" } + ] + } + + ] +} +