From 3cc8ba8b0f611687f884aed1578e56cede661404 Mon Sep 17 00:00:00 2001 From: "Corey J. Nolet" Date: Wed, 12 Oct 2022 21:08:31 -0400 Subject: [PATCH] Moving `raft::spatial::knn` -> `raft::neighbors` (#914) Authors: - Corey J. Nolet (https://github.com/cjnolet) Approvers: - Divye Gala (https://github.com/divyegala) URL: https://github.com/rapidsai/raft/pull/914 --- BUILD.md | 6 +- README.md | 38 +- build.sh | 8 +- cpp/bench/CMakeLists.txt | 28 +- .../{spatial => neighbors}/fused_l2_nn.cu | 0 cpp/bench/{spatial => neighbors}/knn.cuh | 24 +- .../knn/brute_force_float_int64_t.cu | 0 .../knn/brute_force_float_uint32_t.cu | 0 .../knn/ivf_flat_float_int64_t.cu | 0 .../knn/ivf_flat_float_uint32_t.cu | 0 .../knn/ivf_flat_int8_t_int64_t.cu | 0 .../knn/ivf_flat_uint8_t_uint32_t.cu | 0 .../knn/ivf_pq_float_int64_t.cu | 0 .../knn/ivf_pq_float_uint32_t.cu | 0 .../knn/ivf_pq_int8_t_int64_t.cu | 0 .../knn/ivf_pq_uint8_t_uint32_t.cu | 0 cpp/bench/{spatial => neighbors}/selection.cu | 0 .../raft/cluster/detail/connectivities.cuh | 4 +- cpp/include/raft/cluster/detail/mst.cuh | 8 +- .../raft/cluster/detail/single_linkage.cuh | 2 +- cpp/include/raft/neighbors/ann_types.hpp | 47 ++ cpp/include/raft/neighbors/ball_cover.cuh | 314 +++++++++++++ .../raft/neighbors/ball_cover_types.hpp | 161 +++++++ .../knn => neighbors}/brute_force.cuh | 75 ++- .../raft/neighbors/epsilon_neighborhood.cuh | 100 ++++ cpp/include/raft/neighbors/ivf_flat.cuh | 387 ++++++++++++++++ cpp/include/raft/neighbors/ivf_flat_types.hpp | 279 +++++++++++ cpp/include/raft/neighbors/ivf_pq.cuh | 194 ++++++++ cpp/include/raft/neighbors/ivf_pq_types.hpp | 434 ++++++++++++++++++ .../raft/neighbors/specializations.cuh | 28 ++ .../specializations/ball_cover.cuh | 20 +- .../detail/ball_cover_lowdim.hpp | 0 .../specializations/detail/ivf_pq_search.cuh | 0 .../specializations/fused_l2_knn.cuh | 0 .../knn => neighbors}/specializations/knn.cuh | 0 .../knn.cuh => neighbors/brute_force.cuh} | 48 +- .../connect_components.cuh | 6 +- .../detail/connect_components.cuh | 4 +- .../{spatial => neighbors}/detail/knn.cuh | 4 +- .../detail/knn_graph.cuh | 4 +- cpp/include/raft/sparse/neighbors/knn.cuh | 103 +++++ .../{spatial => neighbors}/knn_graph.cuh | 6 +- .../raft/sparse/neighbors/specializations.cuh | 20 + .../sparse/selection/connect_components.cuh | 8 +- cpp/include/raft/sparse/selection/knn.cuh | 4 +- .../raft/sparse/selection/knn_graph.cuh | 4 +- cpp/include/raft/spatial/knn/ball_cover.cuh | 286 +----------- .../raft/spatial/knn/ball_cover_types.hpp | 156 +------ .../raft/spatial/knn/epsilon_neighborhood.cuh | 94 +--- cpp/include/raft/spatial/knn/ivf_flat.cuh | 375 +-------------- .../raft/spatial/knn/ivf_flat_types.hpp | 271 +---------- cpp/include/raft/spatial/knn/ivf_pq.cuh | 187 +------- cpp/include/raft/spatial/knn/ivf_pq_types.hpp | 426 +---------------- .../raft/spatial/knn/specializations.cuh | 8 +- cpp/src/nn/specializations/ball_cover.cu | 27 +- .../detail/ball_cover_lowdim_pass_one_2d.cu | 2 +- .../detail/ball_cover_lowdim_pass_one_3d.cu | 2 +- .../detail/ball_cover_lowdim_pass_two_2d.cu | 2 +- .../detail/ball_cover_lowdim_pass_two_3d.cu | 2 +- .../ivfpq_compute_similarity_float_fast.cu | 2 +- ...pq_compute_similarity_float_no_basediff.cu | 2 +- ...pq_compute_similarity_float_no_smem_lut.cu | 2 +- .../ivfpq_compute_similarity_fp8s_fast.cu | 2 +- ...fpq_compute_similarity_fp8s_no_basediff.cu | 2 +- ...fpq_compute_similarity_fp8s_no_smem_lut.cu | 2 +- .../ivfpq_compute_similarity_fp8u_fast.cu | 2 +- ...fpq_compute_similarity_fp8u_no_basediff.cu | 2 +- ...fpq_compute_similarity_fp8u_no_smem_lut.cu | 2 +- .../ivfpq_compute_similarity_half_fast.cu | 2 +- ...fpq_compute_similarity_half_no_basediff.cu | 2 +- ...fpq_compute_similarity_half_no_smem_lut.cu | 2 +- .../detail/ivfpq_search_float_int64_t.cu | 2 +- .../detail/ivfpq_search_float_uint32_t.cu | 2 +- .../detail/ivfpq_search_float_uint64_t.cu | 2 +- cpp/test/CMakeLists.txt | 36 +- .../{spatial => neighbors}/ann_ivf_flat.cu | 0 .../{spatial => neighbors}/ann_ivf_pq.cuh | 0 .../ann_ivf_pq/test_float_int64_t.cu | 0 .../ann_ivf_pq/test_float_uint32_t.cu | 0 .../ann_ivf_pq/test_float_uint64_t.cu | 0 .../ann_ivf_pq/test_int8_t_uint64_t.cu | 0 .../ann_ivf_pq/test_uint8_t_uint64_t.cu | 0 cpp/test/{spatial => neighbors}/ann_utils.cuh | 0 cpp/test/{spatial => neighbors}/ball_cover.cu | 20 +- .../epsilon_neighborhood.cu | 0 cpp/test/{spatial => neighbors}/faiss_mr.cu | 0 .../{spatial => neighbors}/fused_l2_knn.cu | 2 +- cpp/test/{spatial => neighbors}/haversine.cu | 0 cpp/test/{spatial => neighbors}/knn.cu | 14 +- cpp/test/{spatial => neighbors}/selection.cu | 2 +- .../{spatial => neighbors}/spatial_data.h | 0 .../{knn.cu => neighbors/brute_force.cu} | 42 +- .../{ => neighbors}/connect_components.cu | 18 +- cpp/test/sparse/{ => neighbors}/knn_graph.cu | 6 +- 94 files changed, 2436 insertions(+), 1940 deletions(-) rename cpp/bench/{spatial => neighbors}/fused_l2_nn.cu (100%) rename cpp/bench/{spatial => neighbors}/knn.cuh (95%) rename cpp/bench/{spatial => neighbors}/knn/brute_force_float_int64_t.cu (100%) rename cpp/bench/{spatial => neighbors}/knn/brute_force_float_uint32_t.cu (100%) rename cpp/bench/{spatial => neighbors}/knn/ivf_flat_float_int64_t.cu (100%) rename cpp/bench/{spatial => neighbors}/knn/ivf_flat_float_uint32_t.cu (100%) rename cpp/bench/{spatial => neighbors}/knn/ivf_flat_int8_t_int64_t.cu (100%) rename cpp/bench/{spatial => neighbors}/knn/ivf_flat_uint8_t_uint32_t.cu (100%) rename cpp/bench/{spatial => neighbors}/knn/ivf_pq_float_int64_t.cu (100%) rename cpp/bench/{spatial => neighbors}/knn/ivf_pq_float_uint32_t.cu (100%) rename cpp/bench/{spatial => neighbors}/knn/ivf_pq_int8_t_int64_t.cu (100%) rename cpp/bench/{spatial => neighbors}/knn/ivf_pq_uint8_t_uint32_t.cu (100%) rename cpp/bench/{spatial => neighbors}/selection.cu (100%) create mode 100644 cpp/include/raft/neighbors/ann_types.hpp create mode 100644 cpp/include/raft/neighbors/ball_cover.cuh create mode 100644 cpp/include/raft/neighbors/ball_cover_types.hpp rename cpp/include/raft/{spatial/knn => neighbors}/brute_force.cuh (65%) create mode 100644 cpp/include/raft/neighbors/epsilon_neighborhood.cuh create mode 100644 cpp/include/raft/neighbors/ivf_flat.cuh create mode 100644 cpp/include/raft/neighbors/ivf_flat_types.hpp create mode 100644 cpp/include/raft/neighbors/ivf_pq.cuh create mode 100644 cpp/include/raft/neighbors/ivf_pq_types.hpp create mode 100644 cpp/include/raft/neighbors/specializations.cuh rename cpp/include/raft/{spatial/knn => neighbors}/specializations/ball_cover.cuh (72%) rename cpp/include/raft/{spatial/knn => neighbors}/specializations/detail/ball_cover_lowdim.hpp (100%) rename cpp/include/raft/{spatial/knn => neighbors}/specializations/detail/ivf_pq_search.cuh (100%) rename cpp/include/raft/{spatial/knn => neighbors}/specializations/fused_l2_knn.cuh (100%) rename cpp/include/raft/{spatial/knn => neighbors}/specializations/knn.cuh (100%) rename cpp/include/raft/sparse/{spatial/knn.cuh => neighbors/brute_force.cuh} (73%) rename cpp/include/raft/sparse/{spatial => neighbors}/connect_components.cuh (95%) rename cpp/include/raft/sparse/{spatial => neighbors}/detail/connect_components.cuh (99%) rename cpp/include/raft/sparse/{spatial => neighbors}/detail/knn.cuh (99%) rename cpp/include/raft/sparse/{spatial => neighbors}/detail/knn_graph.cuh (98%) create mode 100644 cpp/include/raft/sparse/neighbors/knn.cuh rename cpp/include/raft/sparse/{spatial => neighbors}/knn_graph.cuh (92%) create mode 100644 cpp/include/raft/sparse/neighbors/specializations.cuh rename cpp/test/{spatial => neighbors}/ann_ivf_flat.cu (100%) rename cpp/test/{spatial => neighbors}/ann_ivf_pq.cuh (100%) rename cpp/test/{spatial => neighbors}/ann_ivf_pq/test_float_int64_t.cu (100%) rename cpp/test/{spatial => neighbors}/ann_ivf_pq/test_float_uint32_t.cu (100%) rename cpp/test/{spatial => neighbors}/ann_ivf_pq/test_float_uint64_t.cu (100%) rename cpp/test/{spatial => neighbors}/ann_ivf_pq/test_int8_t_uint64_t.cu (100%) rename cpp/test/{spatial => neighbors}/ann_ivf_pq/test_uint8_t_uint64_t.cu (100%) rename cpp/test/{spatial => neighbors}/ann_utils.cuh (100%) rename cpp/test/{spatial => neighbors}/ball_cover.cu (96%) rename cpp/test/{spatial => neighbors}/epsilon_neighborhood.cu (100%) rename cpp/test/{spatial => neighbors}/faiss_mr.cu (100%) rename cpp/test/{spatial => neighbors}/fused_l2_knn.cu (99%) rename cpp/test/{spatial => neighbors}/haversine.cu (100%) rename cpp/test/{spatial => neighbors}/knn.cu (95%) rename cpp/test/{spatial => neighbors}/selection.cu (99%) rename cpp/test/{spatial => neighbors}/spatial_data.h (100%) rename cpp/test/sparse/{knn.cu => neighbors/brute_force.cu} (75%) rename cpp/test/sparse/{ => neighbors}/connect_components.cu (97%) rename cpp/test/sparse/{ => neighbors}/knn_graph.cu (96%) diff --git a/BUILD.md b/BUILD.md index c94bb24204..d38db90249 100644 --- a/BUILD.md +++ b/BUILD.md @@ -101,7 +101,7 @@ For example, to run the distance tests: It can take sometime to compile all of the tests. You can build individual tests by providing a semicolon-separated list to the `--limit-tests` option in `build.sh`: ```bash -./build.sh libraft tests --limit-tests=SPATIAL_TEST;DISTANCE_TEST;MATRIX_TEST +./build.sh libraft tests --limit-tests=NEIGHBORS_TEST;DISTANCE_TEST;MATRIX_TEST ``` ### Benchmarks @@ -111,10 +111,10 @@ The benchmarks are broken apart by algorithm category, so you will find several ./build.sh libraft bench ``` -It can take sometime to compile all of the tests. You can build individual tests by providing a semicolon-separated list to the `--limit-tests` option in `build.sh`: +It can take sometime to compile all of the benchmarks. You can build individual benchmarks by providing a semicolon-separated list to the `--limit-bench` option in `build.sh`: ```bash -./build.sh libraft bench --limit-bench=SPATIAL_BENCH;DISTANCE_BENCH;LINALG_BENCH +./build.sh libraft bench --limit-bench=NEIGHBORS_BENCH;DISTANCE_BENCH;LINALG_BENCH ``` ### C++ Using Cmake diff --git a/README.md b/README.md index 2c0231f37e..cc32e4d404 100755 --- a/README.md +++ b/README.md @@ -12,19 +12,19 @@ While not exhaustive, the following general categories help summarize the accele | Category | Examples | | --- | --- | | **Data Formats** | sparse & dense, conversions, data generation | -| **Dense Linear Algebra** | matrix arithmetic, norms, factorization, least squares, svd & eigenvalue problems | +| **Dense Operations** | linear algebra, matrix and vector operations, slicing, norms, factorization, least squares, svd & eigenvalue problems | +| **Sparse Operations** | linear algebra, eigenvalue problems, slicing, symmetrization, components & labeling | | **Spatial** | pairwise distances, nearest neighbors, neighborhood graph construction | -| **Sparse Operations** | linear algebra, eigenvalue problems, slicing, symmetrization, labeling | | **Basic Clustering** | spectral clustering, hierarchical clustering, k-means | | **Solvers** | combinatorial optimization, iterative solvers | | **Statistics** | sampling, moments and summary statistics, metrics | -| **Distributed Tools** | multi-node multi-gpu infrastructure | +| **Tools & Utilities** | common utilities for developing CUDA applications, multi-node multi-gpu infrastructure | RAFT provides a header-only C++ library and pre-compiled shared libraries that can 1) speed up compile times and 2) enable the APIs to be used without CUDA-enabled compilers. -RAFT also provides 2 Python libraries: -- `pylibraft` - low-level Python wrappers around RAFT algorithms and primitives. -- `raft-dask` - reusable infrastructure for building analytics, including tools for building both single-GPU and multi-node multi-GPU algorithms. +In addition to the C++ library, RAFT also provides 2 Python libraries: +- `pylibraft` - lightweight low-level Python wrappers around RAFT algorithms and primitives. +- `raft-dask` - multi-node multi-GPU communicator infrastructure for building distributed algorithms on the GPU with Dask. ## Getting started @@ -78,9 +78,9 @@ raft::distance::pairwise_distance(handle, input.view(), input.view(), output.vie ### Python Example -The `pylibraft` package contains a Python API for RAFT algorithms and primitives. The package is currently limited to pairwise distances, and we will continue adding more. +The `pylibraft` package contains a Python API for RAFT algorithms and primitives. `pylibraft` integrates nicely into other libraries by being very lightweight with minimal dependencies and accepting any object that supports the `__cuda_array_interface__`, such as [CuPy's ndarray](https://docs.cupy.dev/en/stable/user_guide/interoperability.html#rmm). The package is currently limited to pairwise distances and RMAT graph generation, but we will continue adding more in future releases. -The example below demonstrates computing the pairwise Euclidean distances between cupy arrays. `pylibraft` is a low-level API that prioritizes efficiency and simplicity over being pythonic, which is shown here by pre-allocating the output memory before invoking the `pairwise_distance` function. +The example below demonstrates computing the pairwise Euclidean distances between CuPy arrays. `pylibraft` is a low-level API that prioritizes efficiency and simplicity over being pythonic, which is shown here by pre-allocating the output memory before invoking the `pairwise_distance` function. Note that CuPy is not a required dependency for `pylibraft`. ```python import cupy as cp @@ -107,7 +107,7 @@ The easiest way to install RAFT is through conda and several packages are provid - `libraft-headers` RAFT headers - `libraft-nn` (optional) contains shared libraries for the nearest neighbors primitives. - `libraft-distance` (optional) contains shared libraries for distance primitives. -- `pylibraft` (optional) Python wrappers around RAFT algorithms and primitives +- `pylibraft` (optional) Python wrappers around RAFT algorithms and primitives. - `raft-dask` (optional) enables deployment of multi-node multi-GPU algorithms that use RAFT `raft::comms` in Dask clusters. Use the following command to install all of the RAFT packages with conda (replace `rapidsai` with `rapidsai-nightly` to install more up-to-date but less stable nightly packages). `mamba` is preferred over the `conda` command. @@ -198,7 +198,25 @@ The folder structure mirrors other RAPIDS repos, with the following folders: - `bench`: Benchmarks source code - `cmake`: Cmake modules and templates - `doxygen`: Doxygen configuration - - `include`: The C++ API headers are fully-contained here + - `include`: The C++ API headers are fully-contained here (deprecated directories are excluded from the listing below) + - `cluster`: Basic clustering primitives and algorithms. + - `comms`: A multi-node multi-GPU communications abstraction layer for NCCL+UCX and MPI+NCCL, which can be deployed in Dask clusters using the `raft-dask` Python package. + - `core`: Core API headers which require minimal dependencies aside from RMM and Cudatoolkit. These are safe to expose on public APIs and do not require `nvcc` to build. This is the same for any headers in RAFT which have the suffix `*_types.hpp`. + - `distance`: Distance primitives + - `linalg`: Dense linear algebra + - `matrix`: Dense matrix operations + - `neighbors`: Nearest neighbors and knn graph construction + - `random`: Random number generation, sampling, and data generation primitives + - `solver`: Iterative and combinatorial solvers for optimization and approximation + - `sparse`: Sparse matrix operations + - `convert`: Sparse conversion functions + - `distance`: Sparse distance computations + - `linalg`: Sparse linear algebra + - `neighbors`: Sparse nearest neighbors and knn graph construction + - `op`: Various sparse operations such as slicing and filtering (Note: this will soon be renamed to `sparse/matrix`) + - `solver`: Sparse solvers for optimization and approximation + - `stats`: Moments, summary statistics, model performance measures + - `util`: Various reusable tools and utilities for accelerated algorithm development - `scripts`: Helpful scripts for development - `src`: Compiled APIs and template specializations for the shared libraries - `test`: Googletests source code diff --git a/build.sh b/build.sh index d1dd8bdde1..9548fbec44 100755 --- a/build.sh +++ b/build.sh @@ -40,8 +40,8 @@ HELP="$0 [ ...] [ ...] [--cmake-args=\"\"] [--cache-tool= -#include -#include +#include +#include #include #if defined RAFT_DISTANCE_COMPILED @@ -143,16 +143,16 @@ template struct ivf_flat_knn { using dist_t = float; - std::optional> index; - raft::spatial::knn::ivf_flat::index_params index_params; - raft::spatial::knn::ivf_flat::search_params search_params; + std::optional> index; + raft::neighbors::ivf_flat::index_params index_params; + raft::neighbors::ivf_flat::search_params search_params; params ps; ivf_flat_knn(const raft::handle_t& handle, const params& ps, const ValT* data) : ps(ps) { index_params.n_lists = 4096; index_params.metric = raft::distance::DistanceType::L2Expanded; - index.emplace(raft::spatial::knn::ivf_flat::build( + index.emplace(raft::neighbors::ivf_flat::build( handle, index_params, data, IdxT(ps.n_samples), uint32_t(ps.n_dims))); } @@ -162,7 +162,7 @@ struct ivf_flat_knn { IdxT* out_idxs) { search_params.n_probes = 20; - raft::spatial::knn::ivf_flat::search( + raft::neighbors::ivf_flat::search( handle, search_params, *index, search_items, ps.n_queries, ps.k, out_idxs, out_dists); } }; @@ -171,16 +171,16 @@ template struct ivf_pq_knn { using dist_t = float; - std::optional> index; - raft::spatial::knn::ivf_pq::index_params index_params; - raft::spatial::knn::ivf_pq::search_params search_params; + std::optional> index; + raft::neighbors::ivf_pq::index_params index_params; + raft::neighbors::ivf_pq::search_params search_params; params ps; ivf_pq_knn(const raft::handle_t& handle, const params& ps, const ValT* data) : ps(ps) { index_params.n_lists = 4096; index_params.metric = raft::distance::DistanceType::L2Expanded; - index.emplace(raft::spatial::knn::ivf_pq::build( + index.emplace(raft::neighbors::ivf_pq::build( handle, index_params, data, IdxT(ps.n_samples), uint32_t(ps.n_dims))); } @@ -190,7 +190,7 @@ struct ivf_pq_knn { IdxT* out_idxs) { search_params.n_probes = 20; - raft::spatial::knn::ivf_pq::search( + raft::neighbors::ivf_pq::search( handle, search_params, *index, search_items, ps.n_queries, ps.k, out_idxs, out_dists); } }; diff --git a/cpp/bench/spatial/knn/brute_force_float_int64_t.cu b/cpp/bench/neighbors/knn/brute_force_float_int64_t.cu similarity index 100% rename from cpp/bench/spatial/knn/brute_force_float_int64_t.cu rename to cpp/bench/neighbors/knn/brute_force_float_int64_t.cu diff --git a/cpp/bench/spatial/knn/brute_force_float_uint32_t.cu b/cpp/bench/neighbors/knn/brute_force_float_uint32_t.cu similarity index 100% rename from cpp/bench/spatial/knn/brute_force_float_uint32_t.cu rename to cpp/bench/neighbors/knn/brute_force_float_uint32_t.cu diff --git a/cpp/bench/spatial/knn/ivf_flat_float_int64_t.cu b/cpp/bench/neighbors/knn/ivf_flat_float_int64_t.cu similarity index 100% rename from cpp/bench/spatial/knn/ivf_flat_float_int64_t.cu rename to cpp/bench/neighbors/knn/ivf_flat_float_int64_t.cu diff --git a/cpp/bench/spatial/knn/ivf_flat_float_uint32_t.cu b/cpp/bench/neighbors/knn/ivf_flat_float_uint32_t.cu similarity index 100% rename from cpp/bench/spatial/knn/ivf_flat_float_uint32_t.cu rename to cpp/bench/neighbors/knn/ivf_flat_float_uint32_t.cu diff --git a/cpp/bench/spatial/knn/ivf_flat_int8_t_int64_t.cu b/cpp/bench/neighbors/knn/ivf_flat_int8_t_int64_t.cu similarity index 100% rename from cpp/bench/spatial/knn/ivf_flat_int8_t_int64_t.cu rename to cpp/bench/neighbors/knn/ivf_flat_int8_t_int64_t.cu diff --git a/cpp/bench/spatial/knn/ivf_flat_uint8_t_uint32_t.cu b/cpp/bench/neighbors/knn/ivf_flat_uint8_t_uint32_t.cu similarity index 100% rename from cpp/bench/spatial/knn/ivf_flat_uint8_t_uint32_t.cu rename to cpp/bench/neighbors/knn/ivf_flat_uint8_t_uint32_t.cu diff --git a/cpp/bench/spatial/knn/ivf_pq_float_int64_t.cu b/cpp/bench/neighbors/knn/ivf_pq_float_int64_t.cu similarity index 100% rename from cpp/bench/spatial/knn/ivf_pq_float_int64_t.cu rename to cpp/bench/neighbors/knn/ivf_pq_float_int64_t.cu diff --git a/cpp/bench/spatial/knn/ivf_pq_float_uint32_t.cu b/cpp/bench/neighbors/knn/ivf_pq_float_uint32_t.cu similarity index 100% rename from cpp/bench/spatial/knn/ivf_pq_float_uint32_t.cu rename to cpp/bench/neighbors/knn/ivf_pq_float_uint32_t.cu diff --git a/cpp/bench/spatial/knn/ivf_pq_int8_t_int64_t.cu b/cpp/bench/neighbors/knn/ivf_pq_int8_t_int64_t.cu similarity index 100% rename from cpp/bench/spatial/knn/ivf_pq_int8_t_int64_t.cu rename to cpp/bench/neighbors/knn/ivf_pq_int8_t_int64_t.cu diff --git a/cpp/bench/spatial/knn/ivf_pq_uint8_t_uint32_t.cu b/cpp/bench/neighbors/knn/ivf_pq_uint8_t_uint32_t.cu similarity index 100% rename from cpp/bench/spatial/knn/ivf_pq_uint8_t_uint32_t.cu rename to cpp/bench/neighbors/knn/ivf_pq_uint8_t_uint32_t.cu diff --git a/cpp/bench/spatial/selection.cu b/cpp/bench/neighbors/selection.cu similarity index 100% rename from cpp/bench/spatial/selection.cu rename to cpp/bench/neighbors/selection.cu diff --git a/cpp/include/raft/cluster/detail/connectivities.cuh b/cpp/include/raft/cluster/detail/connectivities.cuh index da8adf783d..a07045f0d2 100644 --- a/cpp/include/raft/cluster/detail/connectivities.cuh +++ b/cpp/include/raft/cluster/detail/connectivities.cuh @@ -27,7 +27,7 @@ #include #include #include -#include +#include #include #include @@ -73,7 +73,7 @@ struct distance_graph_impl knn_graph_coo(stream); - raft::sparse::spatial::knn_graph(handle, X, m, n, metric, knn_graph_coo, c); + raft::sparse::neighbors::knn_graph(handle, X, m, n, metric, knn_graph_coo, c); indices.resize(knn_graph_coo.nnz, stream); data.resize(knn_graph_coo.nnz, stream); diff --git a/cpp/include/raft/cluster/detail/mst.cuh b/cpp/include/raft/cluster/detail/mst.cuh index 67935d4623..8143d21641 100644 --- a/cpp/include/raft/cluster/detail/mst.cuh +++ b/cpp/include/raft/cluster/detail/mst.cuh @@ -19,9 +19,9 @@ #include #include +#include #include #include -#include #include #include @@ -80,7 +80,7 @@ void connect_knn_graph( raft::sparse::COO connected_edges(stream); - raft::sparse::spatial::connect_components( + raft::sparse::neighbors::connect_components( handle, connected_edges, X, color, m, n, reduction_op); rmm::device_uvector indptr2(m + 1, stream); @@ -153,14 +153,14 @@ void build_sorted_mst( handle, indptr, indices, pw_dists, (value_idx)m, nnz, color, stream, false, true); int iters = 1; - int n_components = raft::sparse::spatial::get_n_components(color, m, stream); + int n_components = raft::sparse::neighbors::get_n_components(color, m, stream); while (n_components > 1 && iters < max_iter) { connect_knn_graph(handle, X, mst_coo, m, n, color, reduction_op); iters++; - n_components = raft::sparse::spatial::get_n_components(color, m, stream); + n_components = raft::sparse::neighbors::get_n_components(color, m, stream); } /** diff --git a/cpp/include/raft/cluster/detail/single_linkage.cuh b/cpp/include/raft/cluster/detail/single_linkage.cuh index 9eee21b09c..d12db85e1b 100644 --- a/cpp/include/raft/cluster/detail/single_linkage.cuh +++ b/cpp/include/raft/cluster/detail/single_linkage.cuh @@ -80,7 +80,7 @@ void single_linkage(const raft::handle_t& handle, * 2. Construct MST, sorted by weights */ rmm::device_uvector color(m, stream); - raft::sparse::spatial::FixConnectivitiesRedOp op(color.data(), m); + raft::sparse::neighbors::FixConnectivitiesRedOp op(color.data(), m); detail::build_sorted_mst(handle, X, indptr.data(), diff --git a/cpp/include/raft/neighbors/ann_types.hpp b/cpp/include/raft/neighbors/ann_types.hpp new file mode 100644 index 0000000000..5c6fd52be9 --- /dev/null +++ b/cpp/include/raft/neighbors/ann_types.hpp @@ -0,0 +1,47 @@ +/* + * Copyright (c) 2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#pragma once + +#include + +namespace raft::neighbors::ann { + +/** The base for approximate KNN index structures. */ +struct index { +}; + +/** The base for KNN index parameters. */ +struct index_params { + /** Distance type. */ + raft::distance::DistanceType metric = distance::DistanceType::L2Expanded; + /** The argument used by some distance metrics. */ + float metric_arg = 2.0f; + /** + * Whether to add the dataset content to the index, i.e.: + * + * - `true` means the index is filled with the dataset vectors and ready to search after calling + * `build`. + * - `false` means `build` only trains the underlying model (e.g. quantizer or clustering), but + * the index is left empty; you'd need to call `extend` on the index afterwards to populate it. + */ + bool add_data_on_build = true; +}; + +struct search_params { +}; + +}; // namespace raft::neighbors::ann diff --git a/cpp/include/raft/neighbors/ball_cover.cuh b/cpp/include/raft/neighbors/ball_cover.cuh new file mode 100644 index 0000000000..780a9cfce2 --- /dev/null +++ b/cpp/include/raft/neighbors/ball_cover.cuh @@ -0,0 +1,314 @@ +/* + * Copyright (c) 2021-2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#ifndef __BALL_COVER_H +#define __BALL_COVER_H + +#pragma once + +#include + +#include "ball_cover_types.hpp" +#include +#include +#include +#include + +namespace raft::neighbors::ball_cover { + +/** + * Builds and populates a previously unbuilt BallCoverIndex + * @tparam idx_t knn index type + * @tparam value_t knn value type + * @tparam int_t integral type for knn params + * @tparam matrix_idx_t matrix indexing type + * @param[in] handle library resource management handle + * @param[inout] index an empty (and not previous built) instance of BallCoverIndex + */ +template +void build_index(const raft::handle_t& handle, + BallCoverIndex& index) +{ + ASSERT(index.n <= 3, "only 2d and 3d vectors are supported in current implementation"); + if (index.metric == raft::distance::DistanceType::Haversine) { + raft::spatial::knn::detail::rbc_build_index( + handle, index, spatial::knn::detail::HaversineFunc()); + } else if (index.metric == raft::distance::DistanceType::L2SqrtExpanded || + index.metric == raft::distance::DistanceType::L2SqrtUnexpanded) { + raft::spatial::knn::detail::rbc_build_index( + handle, index, spatial::knn::detail::EuclideanFunc()); + } else { + RAFT_FAIL("Metric not support"); + } + + index.set_index_trained(); +} + +/** + * Performs a faster exact knn in metric spaces using the triangle + * inequality with a number of landmark points to reduce the + * number of distance computations from O(n^2) to O(sqrt(n)). This + * performs an all neighbors knn, which can reuse memory when + * the index and query are the same array. This function will + * build the index and assumes rbc_build_index() has not already + * been called. + * @tparam idx_t knn index type + * @tparam value_t knn distance type + * @tparam int_t type for integers, such as number of rows/cols + * @param[in] handle raft handle for resource management + * @param[inout] index ball cover index which has not yet been built + * @param[in] k number of nearest neighbors to find + * @param[in] perform_post_filtering if this is false, only the closest k landmarks + * are considered (which will return approximate + * results). + * @param[out] inds output knn indices + * @param[out] dists output knn distances + * @param[in] weight a weight for overlap between the closest landmark and + * the radius of other landmarks when pruning distances. + * Setting this value below 1 can effectively turn off + * computing distances against many other balls, enabling + * approximate nearest neighbors. Recall can be adjusted + * based on how many relevant balls are ignored. Note that + * many datasets can still have great recall even by only + * looking in the closest landmark. + */ +template +void all_knn_query(const raft::handle_t& handle, + BallCoverIndex& index, + int_t k, + idx_t* inds, + value_t* dists, + bool perform_post_filtering = true, + float weight = 1.0) +{ + ASSERT(index.n <= 3, "only 2d and 3d vectors are supported in current implementation"); + if (index.metric == raft::distance::DistanceType::Haversine) { + raft::spatial::knn::detail::rbc_all_knn_query( + handle, + index, + k, + inds, + dists, + spatial::knn::detail::HaversineFunc(), + perform_post_filtering, + weight); + } else if (index.metric == raft::distance::DistanceType::L2SqrtExpanded || + index.metric == raft::distance::DistanceType::L2SqrtUnexpanded) { + raft::spatial::knn::detail::rbc_all_knn_query( + handle, + index, + k, + inds, + dists, + spatial::knn::detail::EuclideanFunc(), + perform_post_filtering, + weight); + } else { + RAFT_FAIL("Metric not supported"); + } + + index.set_index_trained(); +} + +/** + * Performs a faster exact knn in metric spaces using the triangle + * inequality with a number of landmark points to reduce the + * number of distance computations from O(n^2) to O(sqrt(n)). This + * performs an all neighbors knn, which can reuse memory when + * the index and query are the same array. This function will + * build the index and assumes rbc_build_index() has not already + * been called. + * @tparam idx_t knn index type + * @tparam value_t knn distance type + * @tparam int_t type for integers, such as number of rows/cols + * @tparam matrix_idx_t matrix indexing type + * @param[in] handle raft handle for resource management + * @param[in] index ball cover index which has not yet been built + * @param[out] inds output knn indices + * @param[out] dists output knn distances + * @param[in] k number of nearest neighbors to find + * @param[in] perform_post_filtering if this is false, only the closest k landmarks + * are considered (which will return approximate + * results). + * @param[in] weight a weight for overlap between the closest landmark and + * the radius of other landmarks when pruning distances. + * Setting this value below 1 can effectively turn off + * computing distances against many other balls, enabling + * approximate nearest neighbors. Recall can be adjusted + * based on how many relevant balls are ignored. Note that + * many datasets can still have great recall even by only + * looking in the closest landmark. + */ +template +void all_knn_query(const raft::handle_t& handle, + BallCoverIndex& index, + raft::device_matrix_view inds, + raft::device_matrix_view dists, + int_t k, + bool perform_post_filtering = true, + float weight = 1.0) +{ + RAFT_EXPECTS(index.n <= 3, "only 2d and 3d vectors are supported in current implementation"); + RAFT_EXPECTS(k <= index.m, + "k must be less than or equal to the number of data points in the index"); + RAFT_EXPECTS(inds.extent(1) == dists.extent(1) && dists.extent(1) == static_cast(k), + "Number of columns in output indices and distances matrices must be equal to k"); + + RAFT_EXPECTS(inds.extent(0) == dists.extent(0) && dists.extent(0) == index.get_X().extent(0), + "Number of rows in output indices and distances matrices must equal number of rows " + "in index matrix."); + + all_knn_query( + handle, index, k, inds.data_handle(), dists.data_handle(), perform_post_filtering, weight); +} + +/** + * Performs a faster exact knn in metric spaces using the triangle + * inequality with a number of landmark points to reduce the + * number of distance computations from O(n^2) to O(sqrt(n)). This + * function does not build the index and assumes rbc_build_index() has + * already been called. Use this function when the index and + * query arrays are different, otherwise use rbc_all_knn_query(). + * @tparam idx_t index type + * @tparam value_t distances type + * @tparam int_t integer type for size info + * @param[in] handle raft handle for resource management + * @param[inout] index ball cover index which has not yet been built + * @param[in] k number of nearest neighbors to find + * @param[in] query the + * @param[in] perform_post_filtering if this is false, only the closest k landmarks + * are considered (which will return approximate + * results). + * @param[out] inds output knn indices + * @param[out] dists output knn distances + * @param[in] weight a weight for overlap between the closest landmark and + * the radius of other landmarks when pruning distances. + * Setting this value below 1 can effectively turn off + * computing distances against many other balls, enabling + * approximate nearest neighbors. Recall can be adjusted + * based on how many relevant balls are ignored. Note that + * many datasets can still have great recall even by only + * looking in the closest landmark. + * @param[in] n_query_pts number of query points + */ +template +void knn_query(const raft::handle_t& handle, + const BallCoverIndex& index, + int_t k, + const value_t* query, + int_t n_query_pts, + idx_t* inds, + value_t* dists, + bool perform_post_filtering = true, + float weight = 1.0) +{ + ASSERT(index.n <= 3, "only 2d and 3d vectors are supported in current implementation"); + if (index.metric == raft::distance::DistanceType::Haversine) { + raft::spatial::knn::detail::rbc_knn_query(handle, + index, + k, + query, + n_query_pts, + inds, + dists, + spatial::knn::detail::HaversineFunc(), + perform_post_filtering, + weight); + } else if (index.metric == raft::distance::DistanceType::L2SqrtExpanded || + index.metric == raft::distance::DistanceType::L2SqrtUnexpanded) { + raft::spatial::knn::detail::rbc_knn_query(handle, + index, + k, + query, + n_query_pts, + inds, + dists, + spatial::knn::detail::EuclideanFunc(), + perform_post_filtering, + weight); + } else { + RAFT_FAIL("Metric not supported"); + } +} + +/** + * Performs a faster exact knn in metric spaces using the triangle + * inequality with a number of landmark points to reduce the + * number of distance computations from O(n^2) to O(sqrt(n)). This + * function does not build the index and assumes rbc_build_index() has + * already been called. Use this function when the index and + * query arrays are different, otherwise use rbc_all_knn_query(). + * @tparam idx_t index type + * @tparam value_t distances type + * @tparam int_t integer type for size info + * @tparam matrix_idx_t + * @param[in] handle raft handle for resource management + * @param[in] index ball cover index which has not yet been built + * @param[in] query device matrix containing query data points + * @param[out] inds output knn indices + * @param[out] dists output knn distances + * @param[in] k number of nearest neighbors to find + * @param[in] perform_post_filtering if this is false, only the closest k landmarks + * are considered (which will return approximate + * results). + * @param[in] weight a weight for overlap between the closest landmark and + * the radius of other landmarks when pruning distances. + * Setting this value below 1 can effectively turn off + * computing distances against many other balls, enabling + * approximate nearest neighbors. Recall can be adjusted + * based on how many relevant balls are ignored. Note that + * many datasets can still have great recall even by only + * looking in the closest landmark. + */ +template +void knn_query(const raft::handle_t& handle, + const BallCoverIndex& index, + raft::device_matrix_view query, + raft::device_matrix_view inds, + raft::device_matrix_view dists, + int_t k, + bool perform_post_filtering = true, + float weight = 1.0) +{ + RAFT_EXPECTS(k <= index.m, + "k must be less than or equal to the number of data points in the index"); + RAFT_EXPECTS(inds.extent(1) == dists.extent(1) && dists.extent(1) == static_cast(k), + "Number of columns in output indices and distances matrices must be equal to k"); + + RAFT_EXPECTS(inds.extent(0) == dists.extent(0) && dists.extent(0) == query.extent(0), + "Number of rows in output indices and distances matrices must equal number of rows " + "in search matrix."); + + RAFT_EXPECTS(query.extent(1) == index.get_X().extent(1), + "Number of columns in query and index matrices must match."); + + knn_query(handle, + index, + k, + query.data_handle(), + query.extent(0), + inds.data_handle(), + dists.data_handle(), + perform_post_filtering, + weight); +} + +// TODO: implement functions for: +// 4. rbc_eps_neigh() - given a populated index, perform query against different query array +// 5. rbc_all_eps_neigh() - populate a BallCoverIndex and query against training data + +} // namespace raft::neighbors::ball_cover + +#endif diff --git a/cpp/include/raft/neighbors/ball_cover_types.hpp b/cpp/include/raft/neighbors/ball_cover_types.hpp new file mode 100644 index 0000000000..f6e49ab5c4 --- /dev/null +++ b/cpp/include/raft/neighbors/ball_cover_types.hpp @@ -0,0 +1,161 @@ +/* + * Copyright (c) 2021-2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#pragma once + +#include +#include +#include +#include +#include +#include + +namespace raft::neighbors::ball_cover { + +/** + * Stores raw index data points, sampled landmarks, the 1-nns of index points + * to their closest landmarks, and the ball radii of each landmark. This + * class is intended to be constructed once and reused across subsequent + * queries. + * @tparam value_idx + * @tparam value_t + * @tparam value_int + */ +template +class BallCoverIndex { + public: + explicit BallCoverIndex(const raft::handle_t& handle_, + const value_t* X_, + value_int m_, + value_int n_, + raft::distance::DistanceType metric_) + : handle(handle_), + X(raft::make_device_matrix_view(X_, m_, n_)), + m(m_), + n(n_), + metric(metric_), + /** + * the sqrt() here makes the sqrt(m)^2 a linear-time lower bound + * + * Total memory footprint of index: (2 * sqrt(m)) + (n * sqrt(m)) + (2 * m) + */ + n_landmarks(sqrt(m_)), + R_indptr(raft::make_device_vector(handle, sqrt(m_) + 1)), + R_1nn_cols(raft::make_device_vector(handle, m_)), + R_1nn_dists(raft::make_device_vector(handle, m_)), + R_closest_landmark_dists(raft::make_device_vector(handle, m_)), + R(raft::make_device_matrix(handle, sqrt(m_), n_)), + R_radius(raft::make_device_vector(handle, sqrt(m_))), + index_trained(false) + { + } + + explicit BallCoverIndex(const raft::handle_t& handle_, + raft::device_matrix_view X_, + raft::distance::DistanceType metric_) + : handle(handle_), + X(X_), + m(X_.extent(0)), + n(X_.extent(1)), + metric(metric_), + /** + * the sqrt() here makes the sqrt(m)^2 a linear-time lower bound + * + * Total memory footprint of index: (2 * sqrt(m)) + (n * sqrt(m)) + (2 * m) + */ + n_landmarks(sqrt(X_.extent(0))), + R_indptr(raft::make_device_vector(handle, sqrt(X_.extent(0)) + 1)), + R_1nn_cols(raft::make_device_vector(handle, X_.extent(0))), + R_1nn_dists(raft::make_device_vector(handle, X_.extent(0))), + R_closest_landmark_dists(raft::make_device_vector(handle, X_.extent(0))), + R(raft::make_device_matrix(handle, sqrt(X_.extent(0)), X_.extent(1))), + R_radius(raft::make_device_vector(handle, sqrt(X_.extent(0)))), + index_trained(false) + { + } + + auto get_R_indptr() const -> raft::device_vector_view + { + return R_indptr.view(); + } + auto get_R_1nn_cols() const -> raft::device_vector_view + { + return R_1nn_cols.view(); + } + auto get_R_1nn_dists() const -> raft::device_vector_view + { + return R_1nn_dists.view(); + } + auto get_R_radius() const -> raft::device_vector_view + { + return R_radius.view(); + } + auto get_R() const -> raft::device_matrix_view + { + return R.view(); + } + auto get_R_closest_landmark_dists() const -> raft::device_vector_view + { + return R_closest_landmark_dists.view(); + } + + raft::device_vector_view get_R_indptr() { return R_indptr.view(); } + raft::device_vector_view get_R_1nn_cols() { return R_1nn_cols.view(); } + raft::device_vector_view get_R_1nn_dists() { return R_1nn_dists.view(); } + raft::device_vector_view get_R_radius() { return R_radius.view(); } + raft::device_matrix_view get_R() { return R.view(); } + raft::device_vector_view get_R_closest_landmark_dists() + { + return R_closest_landmark_dists.view(); + } + raft::device_matrix_view get_X() const { return X; } + + raft::distance::DistanceType get_metric() const { return metric; } + + value_int get_n_landmarks() const { return n_landmarks; } + bool is_index_trained() const { return index_trained; }; + + // This should only be set by internal functions + void set_index_trained() { index_trained = true; } + + const raft::handle_t& handle; + + value_int m; + value_int n; + value_int n_landmarks; + + raft::device_matrix_view X; + + raft::distance::DistanceType metric; + + private: + // CSR storing the neighborhoods for each data point + raft::device_vector R_indptr; + raft::device_vector R_1nn_cols; + raft::device_vector R_1nn_dists; + raft::device_vector R_closest_landmark_dists; + + raft::device_vector R_radius; + + raft::device_matrix R; + + protected: + bool index_trained; +}; +} // namespace raft::neighbors::ball_cover diff --git a/cpp/include/raft/spatial/knn/brute_force.cuh b/cpp/include/raft/neighbors/brute_force.cuh similarity index 65% rename from cpp/include/raft/spatial/knn/brute_force.cuh rename to cpp/include/raft/neighbors/brute_force.cuh index dda1e02eed..3641a38991 100644 --- a/cpp/include/raft/spatial/knn/brute_force.cuh +++ b/cpp/include/raft/neighbors/brute_force.cuh @@ -16,11 +16,11 @@ #pragma once -#include "detail/knn_brute_force_faiss.cuh" -#include "detail/selection_faiss.cuh" #include +#include +#include -namespace raft::spatial::knn { +namespace raft::neighbors::brute_force { /** * @brief Performs a k-select across row partitioned index/distance @@ -63,15 +63,15 @@ inline void knn_merge_parts( "Number of columns in output indices and distances matrices must be equal to k"); auto n_parts = in_keys.extent(0) / n_samples; - detail::knn_merge_parts(in_keys.data_handle(), - in_values.data_handle(), - out_keys.data_handle(), - out_values.data_handle(), - n_samples, - n_parts, - in_keys.extent(1), - handle.get_stream(), - translations.value_or(nullptr)); + spatial::knn::detail::knn_merge_parts(in_keys.data_handle(), + in_values.data_handle(), + out_keys.data_handle(), + out_values.data_handle(), + n_samples, + n_parts, + in_keys.extent(1), + handle.get_stream(), + translations.value_or(nullptr)); } /** @@ -99,16 +99,15 @@ template -void brute_force_knn( - raft::handle_t const& handle, - std::vector> index, - raft::device_matrix_view search, - raft::device_matrix_view indices, - raft::device_matrix_view distances, - value_int k, - distance::DistanceType metric = distance::DistanceType::L2Unexpanded, - std::optional metric_arg = std::make_optional(2.0f), - std::optional> translations = std::nullopt) +void knn(raft::handle_t const& handle, + std::vector> index, + raft::device_matrix_view search, + raft::device_matrix_view indices, + raft::device_matrix_view distances, + value_int k, + distance::DistanceType metric = distance::DistanceType::L2Unexpanded, + std::optional metric_arg = std::make_optional(2.0f), + std::optional> translations = std::nullopt) { RAFT_EXPECTS(index[0].extent(1) == search.extent(1), "Number of dimensions for both index and search matrices must be equal"); @@ -132,21 +131,21 @@ void brute_force_knn( std::vector* trans = translations.has_value() ? &(*translations) : nullptr; - detail::brute_force_knn_impl(handle, - inputs, - sizes, - static_cast(index[0].extent(1)), - // TODO: This is unfortunate. Need to fix. - const_cast(search.data_handle()), - static_cast(search.extent(0)), - indices.data_handle(), - distances.data_handle(), - k, - rowMajorIndex, - rowMajorQuery, - trans, - metric, - metric_arg.value_or(2.0f)); + raft::spatial::knn::detail::brute_force_knn_impl(handle, + inputs, + sizes, + static_cast(index[0].extent(1)), + // TODO: This is unfortunate. Need to fix. + const_cast(search.data_handle()), + static_cast(search.extent(0)), + indices.data_handle(), + distances.data_handle(), + k, + rowMajorIndex, + rowMajorQuery, + trans, + metric, + metric_arg.value_or(2.0f)); } -} // namespace raft::spatial::knn +} // namespace raft::neighbors::brute_force diff --git a/cpp/include/raft/neighbors/epsilon_neighborhood.cuh b/cpp/include/raft/neighbors/epsilon_neighborhood.cuh new file mode 100644 index 0000000000..b0e9b842ec --- /dev/null +++ b/cpp/include/raft/neighbors/epsilon_neighborhood.cuh @@ -0,0 +1,100 @@ +/* + * Copyright (c) 2020-2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef __EPSILON_NEIGH_H +#define __EPSILON_NEIGH_H + +#pragma once + +#include +#include +#include + +namespace raft::neighbors::epsilon_neighborhood { + +/** + * @brief Computes epsilon neighborhood for the L2-Squared distance metric + * + * @tparam value_t IO and math type + * @tparam idx_t Index type + * + * @param[out] adj adjacency matrix [row-major] [on device] [dim = m x n] + * @param[out] vd vertex degree array [on device] [len = m + 1] + * `vd + m` stores the total number of edges in the adjacency + * matrix. Pass a nullptr if you don't need this info. + * @param[in] x first matrix [row-major] [on device] [dim = m x k] + * @param[in] y second matrix [row-major] [on device] [dim = n x k] + * @param[in] m number of rows in x + * @param[in] n number of rows in y + * @param[in] k number of columns in x and k + * @param[in] eps defines epsilon neighborhood radius (should be passed as + * squared as we compute L2-squared distance in this method) + * @param[in] stream cuda stream + */ +template +void epsUnexpL2SqNeighborhood(bool* adj, + idx_t* vd, + const value_t* x, + const value_t* y, + idx_t m, + idx_t n, + idx_t k, + value_t eps, + cudaStream_t stream) +{ + spatial::knn::detail::epsUnexpL2SqNeighborhood( + adj, vd, x, y, m, n, k, eps, stream); +} + +/** + * @brief Computes epsilon neighborhood for the L2-Squared distance metric + * + * @tparam value_t IO and math type + * @tparam idx_t Index type + * @tparam matrix_idx_t matrix indexing type + * + * @param[in] handle raft handle to manage library resources + * @param[in] x first matrix [row-major] [on device] [dim = m x k] + * @param[in] y second matrix [row-major] [on device] [dim = n x k] + * @param[out] adj adjacency matrix [row-major] [on device] [dim = m x n] + * @param[out] vd vertex degree array [on device] [len = m + 1] + * `vd + m` stores the total number of edges in the adjacency + * matrix. Pass a nullptr if you don't need this info. + * @param[in] eps defines epsilon neighborhood radius (should be passed as + * squared as we compute L2-squared distance in this method) + */ +template +void eps_neighbors_l2sq(const raft::handle_t& handle, + raft::device_matrix_view x, + raft::device_matrix_view y, + raft::device_matrix_view adj, + raft::device_vector_view vd, + value_t eps) +{ + epsUnexpL2SqNeighborhood(adj.data_handle(), + vd.data_handle(), + x.data_handle(), + y.data_handle(), + x.extent(0), + y.extent(0), + x.extent(1), + eps, + handle.get_stream()); +} + +} // namespace raft::neighbors::epsilon_neighborhood + +#endif \ No newline at end of file diff --git a/cpp/include/raft/neighbors/ivf_flat.cuh b/cpp/include/raft/neighbors/ivf_flat.cuh new file mode 100644 index 0000000000..23ae6c42bf --- /dev/null +++ b/cpp/include/raft/neighbors/ivf_flat.cuh @@ -0,0 +1,387 @@ +/* + * Copyright (c) 2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#pragma once + +#include "ivf_flat_types.hpp" +#include +#include + +#include + +#include +#include +#include + +namespace raft::neighbors::ivf_flat { + +/** + * @brief Build the index from the dataset for efficient search. + * + * NB: Currently, the following distance metrics are supported: + * - L2Expanded + * - L2Unexpanded + * - InnerProduct + * + * Usage example: + * @code{.cpp} + * using namespace raft::spatial::knn; + * // use default index parameters + * ivf_flat::index_params index_params; + * // create and fill the index from a [N, D] dataset + * auto index = ivf_flat::build(handle, index_params, dataset, N, D); + * // use default search parameters + * ivf_flat::search_params search_params; + * // search K nearest neighbours for each of the N queries + * ivf_flat::search(handle, search_params, index, queries, N, K, out_inds, out_dists); + * @endcode + * + * @tparam T data element type + * @tparam IdxT type of the indices in the source dataset + * + * @param[in] handle + * @param[in] params configure the index building + * @param[in] dataset a device pointer to a row-major matrix [n_rows, dim] + * @param[in] n_rows the number of samples + * @param[in] dim the dimensionality of the data + * + * @return the constructed ivf-flat index + */ +template +inline auto build( + const handle_t& handle, const index_params& params, const T* dataset, IdxT n_rows, uint32_t dim) + -> index +{ + return raft::spatial::knn::ivf_flat::detail::build(handle, params, dataset, n_rows, dim); +} + +/** + * @brief Build the index from the dataset for efficient search. + * + * NB: Currently, the following distance metrics are supported: + * - L2Expanded + * - L2Unexpanded + * - InnerProduct + * + * Usage example: + * @code{.cpp} + * using namespace raft::spatial::knn; + * // use default index parameters + * ivf_flat::index_params index_params; + * // create and fill the index from a [N, D] dataset + * auto index = ivf_flat::build(handle, index_params, dataset, N, D); + * // use default search parameters + * ivf_flat::search_params search_params; + * // search K nearest neighbours for each of the N queries + * ivf_flat::search(handle, search_params, index, queries, N, K, out_inds, out_dists); + * @endcode + * + * @tparam value_t data element type + * @tparam idx_t type of the indices in the source dataset + * @tparam int_t precision / type of integral arguments + * @tparam matrix_idx_t matrix indexing type + * + * @param[in] handle + * @param[in] params configure the index building + * @param[in] dataset a device pointer to a row-major matrix [n_rows, dim] + * + * @return the constructed ivf-flat index + */ +template +auto build_index(const handle_t& handle, + raft::device_matrix_view dataset, + const index_params& params) -> index +{ + return raft::spatial::knn::ivf_flat::detail::build(handle, + params, + dataset.data_handle(), + static_cast(dataset.extent(0)), + static_cast(dataset.extent(1))); +} + +/** + * @brief Build a new index containing the data of the original plus new extra vectors. + * + * Implementation note: + * The new data is clustered according to existing kmeans clusters, then the cluster + * centers are adjusted to match the newly labeled data. + * + * Usage example: + * @code{.cpp} + * using namespace raft::spatial::knn; + * ivf_flat::index_params index_params; + * index_params.add_data_on_build = false; // don't populate index on build + * index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training + * // train the index from a [N, D] dataset + * auto index_empty = ivf_flat::build(handle, index_params, dataset, N, D); + * // fill the index with the data + * auto index = ivf_flat::extend(handle, index_empty, dataset, nullptr, N); + * @endcode + * + * @tparam T data element type + * @tparam IdxT type of the indices in the source dataset + * + * @param[in] handle + * @param[in] orig_index original index + * @param[in] new_vectors a device pointer to a row-major matrix [n_rows, index.dim()] + * @param[in] new_indices a device pointer to a vector of indices [n_rows]. + * If the original index is empty (`orig_index.size() == 0`), you can pass `nullptr` + * here to imply a continuous range `[0...n_rows)`. + * @param[in] n_rows number of rows in `new_vectors` + * + * @return the constructed extended ivf-flat index + */ +template +inline auto extend(const handle_t& handle, + const index& orig_index, + const T* new_vectors, + const IdxT* new_indices, + IdxT n_rows) -> index +{ + return raft::spatial::knn::ivf_flat::detail::extend( + handle, orig_index, new_vectors, new_indices, n_rows); +} + +/** + * @brief Build a new index containing the data of the original plus new extra vectors. + * + * Implementation note: + * The new data is clustered according to existing kmeans clusters, then the cluster + * centers are adjusted to match the newly labeled data. + * + * Usage example: + * @code{.cpp} + * using namespace raft::spatial::knn; + * ivf_flat::index_params index_params; + * index_params.add_data_on_build = false; // don't populate index on build + * index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training + * // train the index from a [N, D] dataset + * auto index_empty = ivf_flat::build(handle, index_params, dataset, N, D); + * // fill the index with the data + * auto index = ivf_flat::extend(handle, index_empty, dataset, nullptr, N); + * @endcode + * + * @tparam value_t data element type + * @tparam idx_t type of the indices in the source dataset + * @tparam int_t precision / type of integral arguments + * @tparam matrix_idx_t matrix indexing type + * + * @param[in] handle + * @param[in] orig_index original index + * @param[in] new_vectors a device pointer to a row-major matrix [n_rows, index.dim()] + * @param[in] new_indices a device pointer to a vector of indices [n_rows]. + * If the original index is empty (`orig_index.size() == 0`), you can pass `nullptr` + * here to imply a continuous range `[0...n_rows)`. + * + * @return the constructed extended ivf-flat index + */ +template +auto extend(const handle_t& handle, + const index& orig_index, + raft::device_matrix_view new_vectors, + std::optional> new_indices = std::nullopt) + -> index +{ + return raft::spatial::knn::ivf_flat::detail::extend( + handle, + orig_index, + new_vectors.data_handle(), + new_indices.has_value() ? new_indices.value().data_handle() : nullptr, + new_vectors.extent(0)); +} + +/** + * @brief Extend the index with the new data. + * * + * @tparam T data element type + * @tparam IdxT type of the indices in the source dataset + * + * @param handle + * @param[inout] index + * @param[in] new_vectors a device pointer to a row-major matrix [n_rows, index.dim()] + * @param[in] new_indices a device pointer to a vector of indices [n_rows]. + * If the original index is empty (`orig_index.size() == 0`), you can pass `nullptr` + * here to imply a continuous range `[0...n_rows)`. + * @param[in] n_rows the number of samples + */ +template +inline void extend(const handle_t& handle, + index* index, + const T* new_vectors, + const IdxT* new_indices, + IdxT n_rows) +{ + *index = extend(handle, *index, new_vectors, new_indices, n_rows); +} + +/** + * @brief Extend the index with the new data. + * * + * @tparam value_t data element type + * @tparam idx_t type of the indices in the source dataset + * @tparam int_t precision / type of integral arguments + * @tparam matrix_idx_t matrix indexing type + * + * @param[in] handle + * @param[inout] index + * @param[in] new_vectors a device pointer to a row-major matrix [n_rows, index.dim()] + * @param[in] new_indices a device pointer to a vector of indices [n_rows]. + * If the original index is empty (`orig_index.size() == 0`), you can pass `std::nullopt` + * here to imply a continuous range `[0...n_rows)`. + */ +template +void extend(const handle_t& handle, + index* index, + raft::device_matrix_view new_vectors, + std::optional> new_indices = std::nullopt) +{ + *index = extend(handle, + *index, + new_vectors.data_handle(), + new_indices.has_value() ? new_indices.value().data_handle() : nullptr, + static_cast(new_vectors.extent(0))); +} + +/** + * @brief Search ANN using the constructed index. + * + * See the [ivf_flat::build](#ivf_flat::build) documentation for a usage example. + * + * Note, this function requires a temporary buffer to store intermediate results between cuda kernel + * calls, which may lead to undesirable allocations and slowdown. To alleviate the problem, you can + * pass a pool memory resource or a large enough pre-allocated memory resource to reduce or + * eliminate entirely allocations happening within `search`: + * @code{.cpp} + * ... + * // Create a pooling memory resource with a pre-defined initial size. + * rmm::mr::pool_memory_resource mr( + * rmm::mr::get_current_device_resource(), 1024 * 1024); + * // use default search parameters + * ivf_flat::search_params search_params; + * // Use the same allocator across multiple searches to reduce the number of + * // cuda memory allocations + * ivf_flat::search(handle, search_params, index, queries1, N1, K, out_inds1, out_dists1, &mr); + * ivf_flat::search(handle, search_params, index, queries2, N2, K, out_inds2, out_dists2, &mr); + * ivf_flat::search(handle, search_params, index, queries3, N3, K, out_inds3, out_dists3, &mr); + * ... + * @endcode + * The exact size of the temporary buffer depends on multiple factors and is an implementation + * detail. However, you can safely specify a small initial size for the memory pool, so that only a + * few allocations happen to grow it during the first invocations of the `search`. + * + * @tparam T data element type + * @tparam IdxT type of the indices + * + * @param[in] handle + * @param[in] params configure the search + * @param[in] index ivf-flat constructed index + * @param[in] queries a device pointer to a row-major matrix [n_queries, index->dim()] + * @param[in] n_queries the batch size + * @param[in] k the number of neighbors to find for each query. + * @param[out] neighbors a device pointer to the indices of the neighbors in the source dataset + * [n_queries, k] + * @param[out] distances a device pointer to the distances to the selected neighbors [n_queries, k] + * @param[in] mr an optional memory resource to use across the searches (you can provide a large + * enough memory pool here to avoid memory allocations within search). + */ +template +inline void search(const handle_t& handle, + const search_params& params, + const index& index, + const T* queries, + uint32_t n_queries, + uint32_t k, + IdxT* neighbors, + float* distances, + rmm::mr::device_memory_resource* mr = nullptr) +{ + return raft::spatial::knn::ivf_flat::detail::search( + handle, params, index, queries, n_queries, k, neighbors, distances, mr); +} + +/** + * @brief Search ANN using the constructed index. + * + * See the [ivf_flat::build](#ivf_flat::build) documentation for a usage example. + * + * Note, this function requires a temporary buffer to store intermediate results between cuda kernel + * calls, which may lead to undesirable allocations and slowdown. To alleviate the problem, you can + * pass a pool memory resource or a large enough pre-allocated memory resource to reduce or + * eliminate entirely allocations happening within `search`: + * @code{.cpp} + * ... + * // Create a pooling memory resource with a pre-defined initial size. + * rmm::mr::pool_memory_resource mr( + * rmm::mr::get_current_device_resource(), 1024 * 1024); + * // use default search parameters + * ivf_flat::search_params search_params; + * // Use the same allocator across multiple searches to reduce the number of + * // cuda memory allocations + * ivf_flat::search(handle, search_params, index, queries1, N1, K, out_inds1, out_dists1, &mr); + * ivf_flat::search(handle, search_params, index, queries2, N2, K, out_inds2, out_dists2, &mr); + * ivf_flat::search(handle, search_params, index, queries3, N3, K, out_inds3, out_dists3, &mr); + * ... + * @endcode + * The exact size of the temporary buffer depends on multiple factors and is an implementation + * detail. However, you can safely specify a small initial size for the memory pool, so that only a + * few allocations happen to grow it during the first invocations of the `search`. + * + * @tparam value_t data element type + * @tparam idx_t type of the indices + * @tparam int_t precision / type of integral arguments + * @tparam matrix_idx_t matrix indexing type + * + * @param[in] handle + * @param[in] index ivf-flat constructed index + * @param[in] queries a device pointer to a row-major matrix [n_queries, index->dim()] + * @param[out] neighbors a device pointer to the indices of the neighbors in the source dataset + * [n_queries, k] + * @param[out] distances a device pointer to the distances to the selected neighbors [n_queries, k] + * @param[in] params configure the search + * @param[in] k the number of neighbors to find for each query. + */ +template +void search(const handle_t& handle, + const index& index, + raft::device_matrix_view queries, + raft::device_matrix_view neighbors, + raft::device_matrix_view distances, + const search_params& params, + int_t k) +{ + RAFT_EXPECTS( + queries.extent(0) == neighbors.extent(0) && queries.extent(0) == distances.extent(0), + "Number of rows in output neighbors and distances matrices must equal the number of queries."); + + RAFT_EXPECTS( + neighbors.extent(1) == distances.extent(1) && neighbors.extent(1) == static_cast(k), + "Number of columns in output neighbors and distances matrices must equal k"); + + RAFT_EXPECTS(queries.extent(1) == index.dim(), + "Number of query dimensions should equal number of dimensions in the index."); + + return raft::spatial::knn::ivf_flat::detail::search(handle, + params, + index, + queries.data_handle(), + queries.extent(0), + k, + neighbors.data_handle(), + distances.data_handle(), + nullptr); +} + +} // namespace raft::neighbors::ivf_flat diff --git a/cpp/include/raft/neighbors/ivf_flat_types.hpp b/cpp/include/raft/neighbors/ivf_flat_types.hpp new file mode 100644 index 0000000000..c7e3798f5d --- /dev/null +++ b/cpp/include/raft/neighbors/ivf_flat_types.hpp @@ -0,0 +1,279 @@ +/* + * Copyright (c) 2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#pragma once + +#include "ann_types.hpp" + +#include +#include +#include +#include + +#include + +namespace raft::neighbors::ivf_flat { + +/** Size of the interleaved group (see `index::data` description). */ +constexpr static uint32_t kIndexGroupSize = 32; + +struct index_params : ann::index_params { + /** The number of inverted lists (clusters) */ + uint32_t n_lists = 1024; + /** The number of iterations searching for kmeans centers (index building). */ + uint32_t kmeans_n_iters = 20; + /** The fraction of data to use during iterative kmeans building. */ + double kmeans_trainset_fraction = 0.5; +}; + +struct search_params : ann::search_params { + /** The number of clusters to search. */ + uint32_t n_probes = 20; +}; + +static_assert(std::is_aggregate_v); +static_assert(std::is_aggregate_v); + +/** + * @brief IVF-flat index. + * + * @tparam T data element type + * @tparam IdxT type of the indices in the source dataset + * + */ +template +struct index : ann::index { + static_assert(!raft::is_narrowing_v, + "IdxT must be able to represent all values of uint32_t"); + + public: + /** + * Vectorized load/store size in elements, determines the size of interleaved data chunks. + * + * TODO: in theory, we can lift this to the template parameter and keep it at hardware maximum + * possible value by padding the `dim` of the data https://github.com/rapidsai/raft/issues/711 + */ + [[nodiscard]] constexpr inline auto veclen() const noexcept -> uint32_t { return veclen_; } + /** Distance metric used for clustering. */ + [[nodiscard]] constexpr inline auto metric() const noexcept -> raft::distance::DistanceType + { + return metric_; + } + /** + * Inverted list data [size, dim]. + * + * The data consists of the dataset rows, grouped by their labels (into clusters/lists). + * Within each list (cluster), the data is grouped into blocks of `kIndexGroupSize` interleaved + * vectors. Note, the total index length is slightly larger than the source dataset length, + * because each cluster is padded by `kIndexGroupSize` elements. + * + * Interleaving pattern: + * within groups of `kIndexGroupSize` rows, the data is interleaved with the block size equal to + * `veclen * sizeof(T)`. That is, a chunk of `veclen` consecutive components of one row is + * followed by a chunk of the same size of the next row, and so on. + * + * __Example__: veclen = 2, dim = 6, kIndexGroupSize = 32, list_size = 31 + * + * x[ 0, 0], x[ 0, 1], x[ 1, 0], x[ 1, 1], ... x[14, 0], x[14, 1], x[15, 0], x[15, 1], + * x[16, 0], x[16, 1], x[17, 0], x[17, 1], ... x[30, 0], x[30, 1], - , - , + * x[ 0, 2], x[ 0, 3], x[ 1, 2], x[ 1, 3], ... x[14, 2], x[14, 3], x[15, 2], x[15, 3], + * x[16, 2], x[16, 3], x[17, 2], x[17, 3], ... x[30, 2], x[30, 3], - , - , + * x[ 0, 4], x[ 0, 5], x[ 1, 4], x[ 1, 5], ... x[14, 4], x[14, 5], x[15, 4], x[15, 5], + * x[16, 4], x[16, 5], x[17, 4], x[17, 5], ... x[30, 4], x[30, 5], - , - , + * + */ + inline auto data() noexcept -> device_mdspan, row_major> + { + return data_.view(); + } + [[nodiscard]] inline auto data() const noexcept + -> device_mdspan, row_major> + { + return data_.view(); + } + + /** Inverted list indices: ids of items in the source data [size] */ + inline auto indices() noexcept -> device_mdspan, row_major> + { + return indices_.view(); + } + [[nodiscard]] inline auto indices() const noexcept + -> device_mdspan, row_major> + { + return indices_.view(); + } + + /** Sizes of the lists (clusters) [n_lists] */ + inline auto list_sizes() noexcept -> device_mdspan, row_major> + { + return list_sizes_.view(); + } + [[nodiscard]] inline auto list_sizes() const noexcept + -> device_mdspan, row_major> + { + return list_sizes_.view(); + } + + /** + * Offsets into the lists [n_lists + 1]. + * The last value contains the total length of the index. + */ + inline auto list_offsets() noexcept -> device_mdspan, row_major> + { + return list_offsets_.view(); + } + [[nodiscard]] inline auto list_offsets() const noexcept + -> device_mdspan, row_major> + { + return list_offsets_.view(); + } + + /** k-means cluster centers corresponding to the lists [n_lists, dim] */ + inline auto centers() noexcept -> device_mdspan, row_major> + { + return centers_.view(); + } + [[nodiscard]] inline auto centers() const noexcept + -> device_mdspan, row_major> + { + return centers_.view(); + } + + /** + * (Optional) Precomputed norms of the `centers` w.r.t. the chosen distance metric [n_lists]. + * + * NB: this may be empty if the index is empty or if the metric does not require the center norms + * calculation. + */ + inline auto center_norms() noexcept + -> std::optional, row_major>> + { + if (center_norms_.has_value()) { + return std::make_optional, row_major>>( + center_norms_->view()); + } else { + return std::nullopt; + } + } + [[nodiscard]] inline auto center_norms() const noexcept + -> std::optional, row_major>> + { + if (center_norms_.has_value()) { + return std::make_optional, row_major>>( + center_norms_->view()); + } else { + return std::nullopt; + } + } + + /** Total length of the index. */ + [[nodiscard]] constexpr inline auto size() const noexcept -> IdxT { return indices_.extent(0); } + /** Dimensionality of the data. */ + [[nodiscard]] constexpr inline auto dim() const noexcept -> uint32_t + { + return centers_.extent(1); + } + /** Number of clusters/inverted lists. */ + [[nodiscard]] constexpr inline auto n_lists() const noexcept -> uint32_t + { + return centers_.extent(0); + } + + // Don't allow copying the index for performance reasons (try avoiding copying data) + index(const index&) = delete; + index(index&&) = default; + auto operator=(const index&) -> index& = delete; + auto operator=(index&&) -> index& = default; + ~index() = default; + + /** Construct an empty index. It needs to be trained and then populated. */ + index(const handle_t& handle, raft::distance::DistanceType metric, uint32_t n_lists, uint32_t dim) + : ann::index(), + veclen_(calculate_veclen(dim)), + metric_(metric), + data_(make_device_mdarray(handle, make_extents(0, dim))), + indices_(make_device_mdarray(handle, make_extents(0))), + list_sizes_(make_device_mdarray(handle, make_extents(n_lists))), + list_offsets_(make_device_mdarray(handle, make_extents(n_lists + 1))), + centers_(make_device_mdarray(handle, make_extents(n_lists, dim))), + center_norms_(std::nullopt) + { + check_consistency(); + } + + /** Construct an empty index. It needs to be trained and then populated. */ + index(const handle_t& handle, const index_params& params, uint32_t dim) + : index(handle, params.metric, params.n_lists, dim) + { + } + + /** + * Replace the content of the index with new uninitialized mdarrays to hold the indicated amount + * of data. + */ + void allocate(const handle_t& handle, IdxT index_size, bool allocate_center_norms) + { + data_ = make_device_mdarray(handle, make_extents(index_size, dim())); + indices_ = make_device_mdarray(handle, make_extents(index_size)); + center_norms_ = + allocate_center_norms + ? std::optional(make_device_mdarray(handle, make_extents(n_lists()))) + : std::nullopt; + check_consistency(); + } + + private: + /** + * TODO: in theory, we can lift this to the template parameter and keep it at hardware maximum + * possible value by padding the `dim` of the data https://github.com/rapidsai/raft/issues/711 + */ + uint32_t veclen_; + raft::distance::DistanceType metric_; + device_mdarray, row_major> data_; + device_mdarray, row_major> indices_; + device_mdarray, row_major> list_sizes_; + device_mdarray, row_major> list_offsets_; + device_mdarray, row_major> centers_; + std::optional, row_major>> center_norms_; + + /** Throw an error if the index content is inconsistent. */ + void check_consistency() + { + RAFT_EXPECTS(dim() % veclen_ == 0, "dimensionality is not a multiple of the veclen"); + RAFT_EXPECTS(data_.extent(0) == indices_.extent(0), "inconsistent index size"); + RAFT_EXPECTS(data_.extent(1) == IdxT(centers_.extent(1)), "inconsistent data dimensionality"); + RAFT_EXPECTS( // + (centers_.extent(0) == list_sizes_.extent(0)) && // + (centers_.extent(0) + 1 == list_offsets_.extent(0)) && // + (!center_norms_.has_value() || centers_.extent(0) == center_norms_->extent(0)), + "inconsistent number of lists (clusters)"); + RAFT_EXPECTS(reinterpret_cast(data_.data_handle()) % (veclen_ * sizeof(T)) == 0, + "The data storage pointer is not aligned to the vector length"); + } + + static auto calculate_veclen(uint32_t dim) -> uint32_t + { + // TODO: consider padding the dimensions and fixing veclen to its maximum possible value as a + // template parameter (https://github.com/rapidsai/raft/issues/711) + uint32_t veclen = 16 / sizeof(T); + while (dim % veclen != 0) { + veclen = veclen >> 1; + } + return veclen; + } +}; + +} // namespace raft::neighbors::ivf_flat diff --git a/cpp/include/raft/neighbors/ivf_pq.cuh b/cpp/include/raft/neighbors/ivf_pq.cuh new file mode 100644 index 0000000000..1e32d5d7ba --- /dev/null +++ b/cpp/include/raft/neighbors/ivf_pq.cuh @@ -0,0 +1,194 @@ +/* + * Copyright (c) 2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#pragma once + +#include "ivf_pq_types.hpp" +#include +#include + +#include + +#include +#include + +namespace raft::neighbors::ivf_pq { + +/** + * @brief Build the index from the dataset for efficient search. + * + * NB: Currently, the following distance metrics are supported: + * - L2Expanded + * - L2Unexpanded + * - InnerProduct + * + * Usage example: + * @code{.cpp} + * using namespace raft::spatial::knn; + * // use default index parameters + * ivf_pq::index_params index_params; + * // create and fill the index from a [N, D] dataset + * auto index = ivf_pq::build(handle, index_params, dataset, N, D); + * // use default search parameters + * ivf_pq::search_params search_params; + * // search K nearest neighbours for each of the N queries + * ivf_pq::search(handle, search_params, index, queries, N, K, out_inds, out_dists); + * @endcode + * + * @tparam T data element type + * @tparam IdxT type of the indices in the source dataset + * + * @param handle + * @param params configure the index building + * @param[in] dataset a device pointer to a row-major matrix [n_rows, dim] + * @param n_rows the number of samples + * @param dim the dimensionality of the data + * + * @return the constructed ivf-pq index + */ +template +inline auto build( + const handle_t& handle, const index_params& params, const T* dataset, IdxT n_rows, uint32_t dim) + -> index +{ + return raft::spatial::knn::ivf_pq::detail::build(handle, params, dataset, n_rows, dim); +} + +/** + * @brief Build a new index containing the data of the original plus new extra vectors. + * + * Implementation note: + * The new data is clustered according to existing kmeans clusters, then the cluster + * centers are unchanged. + * + * Usage example: + * @code{.cpp} + * using namespace raft::spatial::knn; + * ivf_pq::index_params index_params; + * index_params.add_data_on_build = false; // don't populate index on build + * index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training + * // train the index from a [N, D] dataset + * auto index_empty = ivf_pq::build(handle, index_params, dataset, N, D); + * // fill the index with the data + * auto index = ivf_pq::extend(handle, index_empty, dataset, nullptr, N); + * @endcode + * + * @tparam T data element type + * @tparam IdxT type of the indices in the source dataset + * + * @param handle + * @param orig_index original index + * @param[in] new_vectors a device pointer to a row-major matrix [n_rows, index.dim()] + * @param[in] new_indices a device pointer to a vector of indices [n_rows]. + * If the original index is empty (`orig_index.size() == 0`), you can pass `nullptr` + * here to imply a continuous range `[0...n_rows)`. + * @param n_rows the number of samples + * + * @return the constructed extended ivf-pq index + */ +template +inline auto extend(const handle_t& handle, + const index& orig_index, + const T* new_vectors, + const IdxT* new_indices, + IdxT n_rows) -> index +{ + return raft::spatial::knn::ivf_pq::detail::extend( + handle, orig_index, new_vectors, new_indices, n_rows); +} + +/** + * @brief Extend the index with the new data. + * * + * @tparam T data element type + * @tparam IdxT type of the indices in the source dataset + * + * @param handle + * @param[inout] index + * @param[in] new_vectors a device pointer to a row-major matrix [n_rows, index.dim()] + * @param[in] new_indices a device pointer to a vector of indices [n_rows]. + * If the original index is empty (`orig_index.size() == 0`), you can pass `nullptr` + * here to imply a continuous range `[0...n_rows)`. + * @param n_rows the number of samples + */ +template +inline void extend(const handle_t& handle, + index* index, + const T* new_vectors, + const IdxT* new_indices, + IdxT n_rows) +{ + *index = extend(handle, *index, new_vectors, new_indices, n_rows); +} + +/** + * @brief Search ANN using the constructed index. + * + * See the [ivf_pq::build](#ivf_pq::build) documentation for a usage example. + * + * Note, this function requires a temporary buffer to store intermediate results between cuda kernel + * calls, which may lead to undesirable allocations and slowdown. To alleviate the problem, you can + * pass a pool memory resource or a large enough pre-allocated memory resource to reduce or + * eliminate entirely allocations happening within `search`: + * @code{.cpp} + * ... + * // Create a pooling memory resource with a pre-defined initial size. + * rmm::mr::pool_memory_resource mr( + * rmm::mr::get_current_device_resource(), 1024 * 1024); + * // use default search parameters + * ivf_pq::search_params search_params; + * // Use the same allocator across multiple searches to reduce the number of + * // cuda memory allocations + * ivf_pq::search(handle, search_params, index, queries1, N1, K, out_inds1, out_dists1, &mr); + * ivf_pq::search(handle, search_params, index, queries2, N2, K, out_inds2, out_dists2, &mr); + * ivf_pq::search(handle, search_params, index, queries3, N3, K, out_inds3, out_dists3, &mr); + * ... + * @endcode + * The exact size of the temporary buffer depends on multiple factors and is an implementation + * detail. However, you can safely specify a small initial size for the memory pool, so that only a + * few allocations happen to grow it during the first invocations of the `search`. + * + * @tparam T data element type + * @tparam IdxT type of the indices + * + * @param handle + * @param params configure the search + * @param index ivf-pq constructed index + * @param[in] queries a device pointer to a row-major matrix [n_queries, index->dim()] + * @param n_queries the batch size + * @param k the number of neighbors to find for each query. + * @param[out] neighbors a device pointer to the indices of the neighbors in the source dataset + * [n_queries, k] + * @param[out] distances a device pointer to the distances to the selected neighbors [n_queries, k] + * @param mr an optional memory resource to use across the searches (you can provide a large enough + * memory pool here to avoid memory allocations within search). + */ +template +inline void search(const handle_t& handle, + const search_params& params, + const index& index, + const T* queries, + uint32_t n_queries, + uint32_t k, + IdxT* neighbors, + float* distances, + rmm::mr::device_memory_resource* mr = nullptr) +{ + return raft::spatial::knn::ivf_pq::detail::search( + handle, params, index, queries, n_queries, k, neighbors, distances, mr); +} + +} // namespace raft::neighbors::ivf_pq diff --git a/cpp/include/raft/neighbors/ivf_pq_types.hpp b/cpp/include/raft/neighbors/ivf_pq_types.hpp new file mode 100644 index 0000000000..3dbf004e95 --- /dev/null +++ b/cpp/include/raft/neighbors/ivf_pq_types.hpp @@ -0,0 +1,434 @@ +/* + * Copyright (c) 2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#pragma once + +#include "ann_types.hpp" + +#include +#include +#include +#include + +#include + +namespace raft::neighbors::ivf_pq { + +/** A type for specifying how PQ codebooks are created. */ +enum class codebook_gen { // NOLINT + PER_SUBSPACE = 0, // NOLINT + PER_CLUSTER = 1, // NOLINT +}; + +struct index_params : ann::index_params { + /** + * The number of inverted lists (clusters) + * + * Hint: the number of vectors per cluster (`n_rows/n_lists`) should be approximately 1,000 to + * 10,000. + */ + uint32_t n_lists = 1024; + /** The number of iterations searching for kmeans centers (index building). */ + uint32_t kmeans_n_iters = 20; + /** The fraction of data to use during iterative kmeans building. */ + double kmeans_trainset_fraction = 0.5; + /** + * The bit length of the vector element after compression by PQ. + * + * Possible values: [4, 5, 6, 7, 8]. + * + * Hint: the smaller the 'pq_bits', the smaller the index size and the better the search + * performance, but the lower the recall. + */ + uint32_t pq_bits = 8; + /** + * The dimensionality of the vector after compression by PQ. When zero, an optimal value is + * selected using a heuristic. + * + * NB: `pq_dim * pq_bits` must be a multiple of 8. + * + * Hint: a smaller 'pq_dim' results in a smaller index size and better search performance, but + * lower recall. If 'pq_bits' is 8, 'pq_dim' can be set to any number, but multiple of 8 are + * desirable for good performance. If 'pq_bits' is not 8, 'pq_dim' should be a multiple of 8. + * For good performance, it is desirable that 'pq_dim' is a multiple of 32. Ideally, 'pq_dim' + * should be also a divisor of the dataset dim. + */ + uint32_t pq_dim = 0; + /** How PQ codebooks are created. */ + codebook_gen codebook_kind = codebook_gen::PER_SUBSPACE; + /** + * Apply a random rotation matrix on the input data and queries even if `dim % pq_dim == 0`. + * + * Note: if `dim` is not multiple of `pq_dim`, a random rotation is always applied to the input + * data and queries to transform the working space from `dim` to `rot_dim`, which may be slightly + * larger than the original space and and is a multiple of `pq_dim` (`rot_dim % pq_dim == 0`). + * However, this transform is not necessary when `dim` is multiple of `pq_dim` + * (`dim == rot_dim`, hence no need in adding "extra" data columns / features). + * + * By default, if `dim == rot_dim`, the rotation transform is initialized with the identity + * matrix. When `force_random_rotation == true`, a random orthogonal transform matrix is generated + * regardless of the values of `dim` and `pq_dim`. + */ + bool force_random_rotation = false; +}; + +struct search_params : ann::search_params { + /** The number of clusters to search. */ + uint32_t n_probes = 20; + /** + * Data type of look up table to be created dynamically at search time. + * + * Possible values: [CUDA_R_32F, CUDA_R_16F, CUDA_R_8U] + * + * The use of low-precision types reduces the amount of shared memory required at search time, so + * fast shared memory kernels can be used even for datasets with large dimansionality. Note that + * the recall is slightly degraded when low-precision type is selected. + */ + cudaDataType_t lut_dtype = CUDA_R_32F; + /** + * Storage data type for distance/similarity computed at search time. + * + * Possible values: [CUDA_R_16F, CUDA_R_32F] + * + * If the performance limiter at search time is device memory access, selecting FP16 will improve + * performance slightly. + */ + cudaDataType_t internal_distance_dtype = CUDA_R_32F; + /** + * Thread block size of the distance calculation kernel at search time. + * When zero, an optimal block size is selected using a heuristic. + * + * Possible values: [0, 256, 512, 1024] + */ + uint32_t preferred_thread_block_size = 0; +}; + +static_assert(std::is_aggregate_v); +static_assert(std::is_aggregate_v); + +/** + * @brief IVF-PQ index. + * + * In the IVF-PQ index, a database vector y is approximated with two level quantization: + * + * y = Q_1(y) + Q_2(y - Q_1(y)) + * + * The first level quantizer (Q_1), maps the vector y to the nearest cluster center. The number of + * clusters is n_lists. + * + * The second quantizer encodes the residual, and it is defined as a product quantizer [1]. + * + * A product quantizer encodes a `dim` dimensional vector with a `pq_dim` dimensional vector. + * First we split the input vector into `pq_dim` subvectors (denoted by u), where each u vector + * contains `pq_len` distinct components of y + * + * y_1, y_2, ... y_{pq_len}, y_{pq_len+1}, ... y_{2*pq_len}, ... y_{dim-pq_len+1} ... y_{dim} + * \___________________/ \____________________________/ \______________________/ + * u_1 u_2 u_{pq_dim} + * + * Then each subvector encoded with a separate quantizer q_i, end the results are concatenated + * + * Q_2(y) = q_1(u_1),q_2(u_2),...,q_{pq_dim}(u_pq_dim}) + * + * Each quantizer q_i outputs a code with pq_bit bits. The second level quantizers are also defined + * by k-means clustering in the corresponding sub-space: the reproduction values are the centroids, + * and the set of reproduction values is the codebook. + * + * When the data dimensionality `dim` is not multiple of `pq_dim`, the feature space is transformed + * using a random orthogonal matrix to have `rot_dim = pq_dim * pq_len` dimensions + * (`rot_dim >= dim`). + * + * The second-level quantizers are trained either for each subspace or for each cluster: + * (a) codebook_gen::PER_SUBSPACE: + * creates `pq_dim` second-level quantizers - one for each slice of the data along features; + * (b) codebook_gen::PER_CLUSTER: + * creates `n_lists` second-level quantizers - one for each first-level cluster. + * In either case, the centroids are again found using k-means clustering interpreting the data as + * having pq_len dimensions. + * + * [1] Product quantization for nearest neighbor search Herve Jegou, Matthijs Douze, Cordelia Schmid + * + * @tparam IdxT type of the indices in the source dataset + * + */ +template +struct index : ann::index { + static_assert(!raft::is_narrowing_v, + "IdxT must be able to represent all values of uint32_t"); + + public: + /** Total length of the index. */ + [[nodiscard]] constexpr inline auto size() const noexcept -> IdxT { return indices_.extent(0); } + /** Dimensionality of the input data. */ + [[nodiscard]] constexpr inline auto dim() const noexcept -> uint32_t { return dim_; } + /** + * Dimensionality of the cluster centers: + * input data dim extended with vector norms and padded to 8 elems. + */ + [[nodiscard]] constexpr inline auto dim_ext() const noexcept -> uint32_t + { + return raft::round_up_safe(dim() + 1, 8u); + } + /** + * Dimensionality of the data after transforming it for PQ processing + * (rotated and augmented to be muplitple of `pq_dim`). + */ + [[nodiscard]] constexpr inline auto rot_dim() const noexcept -> uint32_t + { + return pq_len() * pq_dim(); + } + /** The bit length of an encoded vector element after compression by PQ. */ + [[nodiscard]] constexpr inline auto pq_bits() const noexcept -> uint32_t { return pq_bits_; } + /** The dimensionality of an encoded vector after compression by PQ. */ + [[nodiscard]] constexpr inline auto pq_dim() const noexcept -> uint32_t { return pq_dim_; } + /** Dimensionality of a subspaces, i.e. the number of vector components mapped to a subspace */ + [[nodiscard]] constexpr inline auto pq_len() const noexcept -> uint32_t + { + return raft::div_rounding_up_unsafe(dim(), pq_dim()); + } + /** The number of vectors in a PQ codebook (`1 << pq_bits`). */ + [[nodiscard]] constexpr inline auto pq_book_size() const noexcept -> uint32_t + { + return 1 << pq_bits(); + } + /** Distance metric used for clustering. */ + [[nodiscard]] constexpr inline auto metric() const noexcept -> raft::distance::DistanceType + { + return metric_; + } + /** How PQ codebooks are created. */ + [[nodiscard]] constexpr inline auto codebook_kind() const noexcept -> codebook_gen + { + return codebook_kind_; + } + /** Number of clusters/inverted lists (first level quantization). */ + [[nodiscard]] constexpr inline auto n_lists() const noexcept -> uint32_t { return n_lists_; } + /** Number of non-empty clusters/inverted lists. */ + [[nodiscard]] constexpr inline auto n_nonempty_lists() const noexcept -> uint32_t + { + return n_nonempty_lists_; + } + + // Don't allow copying the index for performance reasons (try avoiding copying data) + index(const index&) = delete; + index(index&&) = default; + auto operator=(const index&) -> index& = delete; + auto operator=(index&&) -> index& = default; + ~index() = default; + + /** Construct an empty index. It needs to be trained and then populated. */ + index(const handle_t& handle, + raft::distance::DistanceType metric, + codebook_gen codebook_kind, + uint32_t n_lists, + uint32_t dim, + uint32_t pq_bits = 8, + uint32_t pq_dim = 0, + uint32_t n_nonempty_lists = 0) + : ann::index(), + metric_(metric), + codebook_kind_(codebook_kind), + n_lists_(n_lists), + dim_(dim), + pq_bits_(pq_bits), + pq_dim_(pq_dim == 0 ? calculate_pq_dim(dim) : pq_dim), + n_nonempty_lists_(n_nonempty_lists), + pq_centers_{make_device_mdarray(handle, make_pq_centers_extents())}, + pq_dataset_{make_device_mdarray( + handle, make_extents(0, this->pq_dim() * this->pq_bits() / 8))}, + indices_{make_device_mdarray(handle, make_extents(0))}, + rotation_matrix_{ + make_device_mdarray(handle, make_extents(this->rot_dim(), this->dim()))}, + list_offsets_{make_device_mdarray(handle, make_extents(this->n_lists() + 1))}, + centers_{make_device_mdarray( + handle, make_extents(this->n_lists(), this->dim_ext()))}, + centers_rot_{make_device_mdarray( + handle, make_extents(this->n_lists(), this->rot_dim()))} + { + check_consistency(); + } + + /** Construct an empty index. It needs to be trained and then populated. */ + index(const handle_t& handle, + const index_params& params, + uint32_t dim, + uint32_t n_nonempty_lists = 0) + : index(handle, + params.metric, + params.codebook_kind, + params.n_lists, + dim, + params.pq_bits, + params.pq_dim, + n_nonempty_lists) + { + } + + /** + * Replace the content of the index with new uninitialized mdarrays to hold the indicated amount + * of data. + */ + void allocate(const handle_t& handle, IdxT index_size) + { + pq_dataset_ = + make_device_mdarray(handle, make_extents(index_size, pq_dataset_.extent(1))); + indices_ = make_device_mdarray(handle, make_extents(index_size)); + check_consistency(); + } + + /** + * PQ cluster centers + * + * - codebook_gen::PER_SUBSPACE: [pq_dim , pq_book_size, pq_len] + * - codebook_gen::PER_CLUSTER: [n_lists, pq_book_size, pq_len] + */ + inline auto pq_centers() noexcept -> device_mdspan, row_major> + { + return pq_centers_.view(); + } + [[nodiscard]] inline auto pq_centers() const noexcept + -> device_mdspan, row_major> + { + return pq_centers_.view(); + } + + /** PQ-encoded data [size, pq_dim * pq_bits / 8]. */ + inline auto pq_dataset() noexcept -> device_mdspan, row_major> + { + return pq_dataset_.view(); + } + [[nodiscard]] inline auto pq_dataset() const noexcept + -> device_mdspan, row_major> + { + return pq_dataset_.view(); + } + + /** Inverted list indices: ids of items in the source data [size] */ + inline auto indices() noexcept -> device_mdspan, row_major> + { + return indices_.view(); + } + [[nodiscard]] inline auto indices() const noexcept + -> device_mdspan, row_major> + { + return indices_.view(); + } + + /** The transform matrix (original space -> rotated padded space) [rot_dim, dim] */ + inline auto rotation_matrix() noexcept -> device_mdspan, row_major> + { + return rotation_matrix_.view(); + } + [[nodiscard]] inline auto rotation_matrix() const noexcept + -> device_mdspan, row_major> + { + return rotation_matrix_.view(); + } + + /** + * Offsets into the lists [n_lists + 1]. + * The last value contains the total length of the index. + */ + inline auto list_offsets() noexcept -> device_mdspan, row_major> + { + return list_offsets_.view(); + } + [[nodiscard]] inline auto list_offsets() const noexcept + -> device_mdspan, row_major> + { + return list_offsets_.view(); + } + + /** Cluster centers corresponding to the lists in the original space [n_lists, dim_ext] */ + inline auto centers() noexcept -> device_mdspan, row_major> + { + return centers_.view(); + } + [[nodiscard]] inline auto centers() const noexcept + -> device_mdspan, row_major> + { + return centers_.view(); + } + + /** Cluster centers corresponding to the lists in the rotated space [n_lists, rot_dim] */ + inline auto centers_rot() noexcept -> device_mdspan, row_major> + { + return centers_rot_.view(); + } + [[nodiscard]] inline auto centers_rot() const noexcept + -> device_mdspan, row_major> + { + return centers_rot_.view(); + } + + private: + raft::distance::DistanceType metric_; + codebook_gen codebook_kind_; + uint32_t n_lists_; + uint32_t dim_; + uint32_t pq_bits_; + uint32_t pq_dim_; + uint32_t n_nonempty_lists_; + + device_mdarray, row_major> pq_centers_; + device_mdarray, row_major> pq_dataset_; + device_mdarray, row_major> indices_; + device_mdarray, row_major> rotation_matrix_; + device_mdarray, row_major> list_offsets_; + device_mdarray, row_major> centers_; + device_mdarray, row_major> centers_rot_; + + /** Throw an error if the index content is inconsistent. */ + void check_consistency() + { + RAFT_EXPECTS(pq_bits() >= 4 && pq_bits() <= 8, + "`pq_bits` must be within closed range [4,8], but got %u.", + pq_bits()); + RAFT_EXPECTS((pq_bits() * pq_dim()) % 8 == 0, + "`pq_bits * pq_dim` must be a multiple of 8, but got %u * %u = %u.", + pq_bits(), + pq_dim(), + pq_bits() * pq_dim()); + } + + auto make_pq_centers_extents() -> extent_3d + { + switch (codebook_kind()) { + case codebook_gen::PER_SUBSPACE: + return make_extents(pq_dim(), pq_book_size(), pq_len()); + case codebook_gen::PER_CLUSTER: + return make_extents(n_lists(), pq_book_size(), pq_len()); + default: RAFT_FAIL("Unreachable code"); + } + } + + static inline auto calculate_pq_dim(uint32_t dim) -> uint32_t + { + // If the dimensionality is large enough, we can reduce it to improve performance + if (dim >= 128) { dim /= 2; } + // Round it down to 32 to improve performance. + uint32_t r = raft::round_down_safe(dim, 32); + if (r > 0) return r; + // If the dimensionality is really low, round it to the closest power-of-two + r = 1; + while ((r << 1) <= dim) { + r = r << 1; + } + return r; + } +}; + +} // namespace raft::neighbors::ivf_pq diff --git a/cpp/include/raft/neighbors/specializations.cuh b/cpp/include/raft/neighbors/specializations.cuh new file mode 100644 index 0000000000..0511bbbf6c --- /dev/null +++ b/cpp/include/raft/neighbors/specializations.cuh @@ -0,0 +1,28 @@ +/* + * Copyright (c) 2021-2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef __KNN_SPECIALIZATIONS_H +#define __KNN_SPECIALIZATIONS_H + +#pragma once + +#include +#include +#include + +#include + +#endif diff --git a/cpp/include/raft/spatial/knn/specializations/ball_cover.cuh b/cpp/include/raft/neighbors/specializations/ball_cover.cuh similarity index 72% rename from cpp/include/raft/spatial/knn/specializations/ball_cover.cuh rename to cpp/include/raft/neighbors/specializations/ball_cover.cuh index a861375b2f..f20d1adc35 100644 --- a/cpp/include/raft/spatial/knn/specializations/ball_cover.cuh +++ b/cpp/include/raft/neighbors/specializations/ball_cover.cuh @@ -16,23 +16,20 @@ #pragma once -#include -#include -#include +#include +#include #include -namespace raft { -namespace spatial { -namespace knn { +namespace raft::neighbors::ball_cover { extern template class BallCoverIndex; extern template class BallCoverIndex; -extern template void rbc_build_index( +extern template void build_index( const raft::handle_t& handle, BallCoverIndex& index); -extern template void rbc_knn_query( +extern template void knn_query( const raft::handle_t& handle, const BallCoverIndex& index, std::uint32_t k, @@ -43,7 +40,7 @@ extern template void rbc_knn_query( bool perform_post_filtering, float weight); -extern template void rbc_all_knn_query( +extern template void all_knn_query( const raft::handle_t& handle, BallCoverIndex& index, std::uint32_t k, @@ -51,6 +48,5 @@ extern template void rbc_all_knn_query #include -#include +#include -namespace raft::sparse::spatial { +namespace raft::sparse::neighbors::brute_force { /** * Search the sparse kNN for the k-nearest neighbors of a set of sparse query vectors @@ -45,27 +45,27 @@ namespace raft::sparse::spatial { * @param[in] metric distance metric/measure to use * @param[in] metricArg potential argument for metric (currently unused) */ -template -void brute_force_knn(const value_idx* idxIndptr, - const value_idx* idxIndices, - const value_t* idxData, - size_t idxNNZ, - int n_idx_rows, - int n_idx_cols, - const value_idx* queryIndptr, - const value_idx* queryIndices, - const value_t* queryData, - size_t queryNNZ, - int n_query_rows, - int n_query_cols, - value_idx* output_indices, - value_t* output_dists, - int k, - const raft::handle_t& handle, - size_t batch_size_index = 2 << 14, // approx 1M - size_t batch_size_query = 2 << 14, - raft::distance::DistanceType metric = raft::distance::DistanceType::L2Expanded, - float metricArg = 0) +template +void knn(const value_idx* idxIndptr, + const value_idx* idxIndices, + const value_t* idxData, + size_t idxNNZ, + int n_idx_rows, + int n_idx_cols, + const value_idx* queryIndptr, + const value_idx* queryIndices, + const value_t* queryData, + size_t queryNNZ, + int n_query_rows, + int n_query_cols, + value_idx* output_indices, + value_t* output_dists, + int k, + const raft::handle_t& handle, + size_t batch_size_index = 2 << 14, // approx 1M + size_t batch_size_query = 2 << 14, + raft::distance::DistanceType metric = raft::distance::DistanceType::L2Expanded, + float metricArg = 0) { detail::sparse_knn_t(idxIndptr, idxIndices, @@ -90,4 +90,4 @@ void brute_force_knn(const value_idx* idxIndptr, .run(); } -}; // namespace raft::sparse::spatial +}; // namespace raft::sparse::neighbors::brute_force diff --git a/cpp/include/raft/sparse/spatial/connect_components.cuh b/cpp/include/raft/sparse/neighbors/connect_components.cuh similarity index 95% rename from cpp/include/raft/sparse/spatial/connect_components.cuh rename to cpp/include/raft/sparse/neighbors/connect_components.cuh index 60c0bba1de..e468643518 100644 --- a/cpp/include/raft/sparse/spatial/connect_components.cuh +++ b/cpp/include/raft/sparse/neighbors/connect_components.cuh @@ -19,9 +19,9 @@ #include #include #include -#include +#include -namespace raft::sparse::spatial { +namespace raft::sparse::neighbors { template using FixConnectivitiesRedOp = detail::FixConnectivitiesRedOp; @@ -76,4 +76,4 @@ void connect_components( detail::connect_components(handle, out, X, orig_colors, n_rows, n_cols, reduction_op, metric); } -}; // end namespace raft::sparse::spatial \ No newline at end of file +}; // end namespace raft::sparse::neighbors \ No newline at end of file diff --git a/cpp/include/raft/sparse/spatial/detail/connect_components.cuh b/cpp/include/raft/sparse/neighbors/detail/connect_components.cuh similarity index 99% rename from cpp/include/raft/sparse/spatial/detail/connect_components.cuh rename to cpp/include/raft/sparse/neighbors/detail/connect_components.cuh index 1c14669e28..38ba1137ac 100644 --- a/cpp/include/raft/sparse/spatial/detail/connect_components.cuh +++ b/cpp/include/raft/sparse/neighbors/detail/connect_components.cuh @@ -45,7 +45,7 @@ #include -namespace raft::sparse::spatial::detail { +namespace raft::sparse::neighbors::detail { /** * Functor with reduction ops for performing fused 1-nn @@ -401,4 +401,4 @@ void connect_components( handle, min_edges.rows(), min_edges.cols(), min_edges.vals(), n_rows, n_rows, size, out); } -}; // end namespace raft::sparse::spatial::detail +}; // end namespace raft::sparse::neighbors::detail diff --git a/cpp/include/raft/sparse/spatial/detail/knn.cuh b/cpp/include/raft/sparse/neighbors/detail/knn.cuh similarity index 99% rename from cpp/include/raft/sparse/spatial/detail/knn.cuh rename to cpp/include/raft/sparse/neighbors/detail/knn.cuh index aa933cd680..38e67036fe 100644 --- a/cpp/include/raft/sparse/spatial/detail/knn.cuh +++ b/cpp/include/raft/sparse/neighbors/detail/knn.cuh @@ -33,7 +33,7 @@ #include -namespace raft::sparse::spatial::detail { +namespace raft::sparse::neighbors::detail { template struct csr_batcher_t { @@ -425,4 +425,4 @@ class sparse_knn_t { const raft::handle_t& handle; }; -}; // namespace raft::sparse::spatial::detail \ No newline at end of file +}; // namespace raft::sparse::neighbors::detail \ No newline at end of file diff --git a/cpp/include/raft/sparse/spatial/detail/knn_graph.cuh b/cpp/include/raft/sparse/neighbors/detail/knn_graph.cuh similarity index 98% rename from cpp/include/raft/sparse/spatial/detail/knn_graph.cuh rename to cpp/include/raft/sparse/neighbors/detail/knn_graph.cuh index 1331393719..ffd742f080 100644 --- a/cpp/include/raft/sparse/spatial/detail/knn_graph.cuh +++ b/cpp/include/raft/sparse/neighbors/detail/knn_graph.cuh @@ -35,7 +35,7 @@ #include #include -namespace raft::sparse::spatial::detail { +namespace raft::sparse::neighbors::detail { /** * Fills indices array of pairwise distance array @@ -147,4 +147,4 @@ void knn_graph(const handle_t& handle, handle, rows.data(), indices.data(), data.data(), m, k, nnz, out); } -}; // namespace raft::sparse::spatial::detail +}; // namespace raft::sparse::neighbors::detail diff --git a/cpp/include/raft/sparse/neighbors/knn.cuh b/cpp/include/raft/sparse/neighbors/knn.cuh new file mode 100644 index 0000000000..14404adcb4 --- /dev/null +++ b/cpp/include/raft/sparse/neighbors/knn.cuh @@ -0,0 +1,103 @@ +/* + * Copyright (c) 2020-2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +/** + * This file is deprecated and will be removed in release 22.06. + * Please use the cuh version instead. + */ + +/** + * DISCLAIMER: this file is deprecated: use knn.cuh instead + */ + +#pragma once + +#pragma message(__FILE__ \ + " is deprecated and will be removed in a future release." \ + " Please use the sparse/spatial version instead.") + +#include + +namespace raft::sparse::neighbors { + +/** + * Search the sparse kNN for the k-nearest neighbors of a set of sparse query vectors + * using some distance implementation + * @param[in] idxIndptr csr indptr of the index matrix (size n_idx_rows + 1) + * @param[in] idxIndices csr column indices array of the index matrix (size n_idx_nnz) + * @param[in] idxData csr data array of the index matrix (size idxNNZ) + * @param[in] idxNNZ number of non-zeros for sparse index matrix + * @param[in] n_idx_rows number of data samples in index matrix + * @param[in] n_idx_cols + * @param[in] queryIndptr csr indptr of the query matrix (size n_query_rows + 1) + * @param[in] queryIndices csr indices array of the query matrix (size queryNNZ) + * @param[in] queryData csr data array of the query matrix (size queryNNZ) + * @param[in] queryNNZ number of non-zeros for sparse query matrix + * @param[in] n_query_rows number of data samples in query matrix + * @param[in] n_query_cols number of features in query matrix + * @param[out] output_indices dense matrix for output indices (size n_query_rows * k) + * @param[out] output_dists dense matrix for output distances (size n_query_rows * k) + * @param[in] k the number of neighbors to query + * @param[in] handle CUDA handle.get_stream() to order operations with respect to + * @param[in] batch_size_index maximum number of rows to use from index matrix per batch + * @param[in] batch_size_query maximum number of rows to use from query matrix per batch + * @param[in] metric distance metric/measure to use + * @param[in] metricArg potential argument for metric (currently unused) + */ +template +void brute_force_knn(const value_idx* idxIndptr, + const value_idx* idxIndices, + const value_t* idxData, + size_t idxNNZ, + int n_idx_rows, + int n_idx_cols, + const value_idx* queryIndptr, + const value_idx* queryIndices, + const value_t* queryData, + size_t queryNNZ, + int n_query_rows, + int n_query_cols, + value_idx* output_indices, + value_t* output_dists, + int k, + const raft::handle_t& handle, + size_t batch_size_index = 2 << 14, // approx 1M + size_t batch_size_query = 2 << 14, + raft::distance::DistanceType metric = raft::distance::DistanceType::L2Expanded, + float metricArg = 0) +{ + brute_force::knn(idxIndptr, + idxIndices, + idxData, + idxNNZ, + n_idx_rows, + n_idx_cols, + queryIndptr, + queryIndices, + queryData, + queryNNZ, + n_query_rows, + n_query_cols, + output_indices, + output_dists, + k, + handle, + batch_size_index, + batch_size_query, + metric, + metricArg); +} + +}; // namespace raft::sparse::neighbors diff --git a/cpp/include/raft/sparse/spatial/knn_graph.cuh b/cpp/include/raft/sparse/neighbors/knn_graph.cuh similarity index 92% rename from cpp/include/raft/sparse/spatial/knn_graph.cuh rename to cpp/include/raft/sparse/neighbors/knn_graph.cuh index 9694e6a293..582df703db 100644 --- a/cpp/include/raft/sparse/spatial/knn_graph.cuh +++ b/cpp/include/raft/sparse/neighbors/knn_graph.cuh @@ -18,11 +18,11 @@ #include #include -#include +#include #include -namespace raft::sparse::spatial { +namespace raft::sparse::neighbors { /** * Constructs a (symmetrized) knn graph edge list from @@ -52,4 +52,4 @@ void knn_graph(const handle_t& handle, detail::knn_graph(handle, X, m, n, metric, out, c); } -}; // namespace raft::sparse::spatial +}; // namespace raft::sparse::neighbors diff --git a/cpp/include/raft/sparse/neighbors/specializations.cuh b/cpp/include/raft/sparse/neighbors/specializations.cuh new file mode 100644 index 0000000000..23ba38ccda --- /dev/null +++ b/cpp/include/raft/sparse/neighbors/specializations.cuh @@ -0,0 +1,20 @@ +/* + * Copyright (c) 2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#pragma once + +#include +#include \ No newline at end of file diff --git a/cpp/include/raft/sparse/selection/connect_components.cuh b/cpp/include/raft/sparse/selection/connect_components.cuh index 22d8d7e936..c4479bc451 100644 --- a/cpp/include/raft/sparse/selection/connect_components.cuh +++ b/cpp/include/raft/sparse/selection/connect_components.cuh @@ -28,10 +28,10 @@ " is deprecated and will be removed in a future release." \ " Please use the sparse/spatial version instead.") -#include +#include namespace raft::linkage { -using raft::sparse::spatial::connect_components; -using raft::sparse::spatial::FixConnectivitiesRedOp; -using raft::sparse::spatial::get_n_components; +using raft::sparse::neighbors::connect_components; +using raft::sparse::neighbors::FixConnectivitiesRedOp; +using raft::sparse::neighbors::get_n_components; } // namespace raft::linkage \ No newline at end of file diff --git a/cpp/include/raft/sparse/selection/knn.cuh b/cpp/include/raft/sparse/selection/knn.cuh index f6895addd1..c5b6a7ab2f 100644 --- a/cpp/include/raft/sparse/selection/knn.cuh +++ b/cpp/include/raft/sparse/selection/knn.cuh @@ -28,8 +28,8 @@ " is deprecated and will be removed in a future release." \ " Please use the sparse/spatial version instead.") -#include +#include namespace raft::sparse::selection { -using raft::sparse::spatial::brute_force_knn; +using raft::sparse::neighbors::brute_force_knn; } \ No newline at end of file diff --git a/cpp/include/raft/sparse/selection/knn_graph.cuh b/cpp/include/raft/sparse/selection/knn_graph.cuh index 54cc52f4ae..bd009bf297 100644 --- a/cpp/include/raft/sparse/selection/knn_graph.cuh +++ b/cpp/include/raft/sparse/selection/knn_graph.cuh @@ -28,8 +28,8 @@ " is deprecated and will be removed in a future release." \ " Please use the sparse/spatial version instead.") -#include +#include namespace raft::sparse::selection { -using raft::sparse::spatial::knn_graph; +using raft::sparse::neighbors::knn_graph; } diff --git a/cpp/include/raft/spatial/knn/ball_cover.cuh b/cpp/include/raft/spatial/knn/ball_cover.cuh index 9cb9b573b1..fdc2d41161 100644 --- a/cpp/include/raft/spatial/knn/ball_cover.cuh +++ b/cpp/include/raft/spatial/knn/ball_cover.cuh @@ -1,5 +1,5 @@ /* - * Copyright (c) 2021-2022, NVIDIA CORPORATION. + * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -13,77 +13,33 @@ * See the License for the specific language governing permissions and * limitations under the License. */ -#ifndef __BALL_COVER_H -#define __BALL_COVER_H +/** + * This file is deprecated and will be removed in release 22.06. + * Please use the cuh version instead. + */ + +/** + * DISCLAIMER: this file is deprecated: use epsilon_neighborhood.cuh instead + */ #pragma once -#include +#pragma message(__FILE__ \ + " is deprecated and will be removed in a future release." \ + " Please use the raft::neighbors version instead.") -#include "ball_cover_types.hpp" -#include "detail/ball_cover.cuh" -#include "detail/ball_cover/common.cuh" -#include -#include +#include +#include -namespace raft { -namespace spatial { -namespace knn { +namespace raft::spatial::knn { -/** - * Builds and populates a previously unbuilt BallCoverIndex - * @tparam idx_t knn index type - * @tparam value_t knn value type - * @tparam int_t integral type for knn params - * @tparam matrix_idx_t matrix indexing type - * @param[in] handle library resource management handle - * @param[inout] index an empty (and not previous built) instance of BallCoverIndex - */ template void rbc_build_index(const raft::handle_t& handle, BallCoverIndex& index) { - ASSERT(index.n <= 3, "only 2d and 3d vectors are supported in current implementation"); - if (index.metric == raft::distance::DistanceType::Haversine) { - detail::rbc_build_index(handle, index, detail::HaversineFunc()); - } else if (index.metric == raft::distance::DistanceType::L2SqrtExpanded || - index.metric == raft::distance::DistanceType::L2SqrtUnexpanded) { - detail::rbc_build_index(handle, index, detail::EuclideanFunc()); - } else { - RAFT_FAIL("Metric not support"); - } - - index.set_index_trained(); + raft::neighbors::ball_cover::build_index(handle, index); } -/** - * Performs a faster exact knn in metric spaces using the triangle - * inequality with a number of landmark points to reduce the - * number of distance computations from O(n^2) to O(sqrt(n)). This - * performs an all neighbors knn, which can reuse memory when - * the index and query are the same array. This function will - * build the index and assumes rbc_build_index() has not already - * been called. - * @tparam idx_t knn index type - * @tparam value_t knn distance type - * @tparam int_t type for integers, such as number of rows/cols - * @param[in] handle raft handle for resource management - * @param[inout] index ball cover index which has not yet been built - * @param[in] k number of nearest neighbors to find - * @param[in] perform_post_filtering if this is false, only the closest k landmarks - * are considered (which will return approximate - * results). - * @param[out] inds output knn indices - * @param[out] dists output knn distances - * @param[in] weight a weight for overlap between the closest landmark and - * the radius of other landmarks when pruning distances. - * Setting this value below 1 can effectively turn off - * computing distances against many other balls, enabling - * approximate nearest neighbors. Recall can be adjusted - * based on how many relevant balls are ignored. Note that - * many datasets can still have great recall even by only - * looking in the closest landmark. - */ template void rbc_all_knn_query(const raft::handle_t& handle, BallCoverIndex& index, @@ -93,114 +49,10 @@ void rbc_all_knn_query(const raft::handle_t& handle, bool perform_post_filtering = true, float weight = 1.0) { - ASSERT(index.n <= 3, "only 2d and 3d vectors are supported in current implementation"); - if (index.metric == raft::distance::DistanceType::Haversine) { - detail::rbc_all_knn_query(handle, - index, - k, - inds, - dists, - detail::HaversineFunc(), - perform_post_filtering, - weight); - } else if (index.metric == raft::distance::DistanceType::L2SqrtExpanded || - index.metric == raft::distance::DistanceType::L2SqrtUnexpanded) { - detail::rbc_all_knn_query(handle, - index, - k, - inds, - dists, - detail::EuclideanFunc(), - perform_post_filtering, - weight); - } else { - RAFT_FAIL("Metric not supported"); - } - - index.set_index_trained(); -} - -/** - * Performs a faster exact knn in metric spaces using the triangle - * inequality with a number of landmark points to reduce the - * number of distance computations from O(n^2) to O(sqrt(n)). This - * performs an all neighbors knn, which can reuse memory when - * the index and query are the same array. This function will - * build the index and assumes rbc_build_index() has not already - * been called. - * @tparam idx_t knn index type - * @tparam value_t knn distance type - * @tparam int_t type for integers, such as number of rows/cols - * @tparam matrix_idx_t matrix indexing type - * @param[in] handle raft handle for resource management - * @param[in] index ball cover index which has not yet been built - * @param[out] inds output knn indices - * @param[out] dists output knn distances - * @param[in] k number of nearest neighbors to find - * @param[in] perform_post_filtering if this is false, only the closest k landmarks - * are considered (which will return approximate - * results). - * @param[in] weight a weight for overlap between the closest landmark and - * the radius of other landmarks when pruning distances. - * Setting this value below 1 can effectively turn off - * computing distances against many other balls, enabling - * approximate nearest neighbors. Recall can be adjusted - * based on how many relevant balls are ignored. Note that - * many datasets can still have great recall even by only - * looking in the closest landmark. - */ -template -void rbc_all_knn_query(const raft::handle_t& handle, - BallCoverIndex& index, - raft::device_matrix_view inds, - raft::device_matrix_view dists, - int_t k, - bool perform_post_filtering = true, - float weight = 1.0) -{ - RAFT_EXPECTS(index.n <= 3, "only 2d and 3d vectors are supported in current implementation"); - RAFT_EXPECTS(k <= index.m, - "k must be less than or equal to the number of data points in the index"); - RAFT_EXPECTS(inds.extent(1) == dists.extent(1) && dists.extent(1) == static_cast(k), - "Number of columns in output indices and distances matrices must be equal to k"); - - RAFT_EXPECTS(inds.extent(0) == dists.extent(0) && dists.extent(0) == index.get_X().extent(0), - "Number of rows in output indices and distances matrices must equal number of rows " - "in index matrix."); - - rbc_all_knn_query( - handle, index, k, inds.data_handle(), dists.data_handle(), perform_post_filtering, weight); + raft::neighbors::ball_cover::all_knn_query( + handle, index, k, inds, dists, perform_post_filtering, weight); } -/** - * Performs a faster exact knn in metric spaces using the triangle - * inequality with a number of landmark points to reduce the - * number of distance computations from O(n^2) to O(sqrt(n)). This - * function does not build the index and assumes rbc_build_index() has - * already been called. Use this function when the index and - * query arrays are different, otherwise use rbc_all_knn_query(). - * @tparam idx_t index type - * @tparam value_t distances type - * @tparam int_t integer type for size info - * @param[in] handle raft handle for resource management - * @param[inout] index ball cover index which has not yet been built - * @param[in] k number of nearest neighbors to find - * @param[in] query the - * @param[in] perform_post_filtering if this is false, only the closest k landmarks - * are considered (which will return approximate - * results). - * @param[out] inds output knn indices - * @param[out] dists output knn distances - * @param[in] weight a weight for overlap between the closest landmark and - * the radius of other landmarks when pruning distances. - * Setting this value below 1 can effectively turn off - * computing distances against many other balls, enabling - * approximate nearest neighbors. Recall can be adjusted - * based on how many relevant balls are ignored. Note that - * many datasets can still have great recall even by only - * looking in the closest landmark. - * @param[in] n_query_pts number of query points - */ template void rbc_knn_query(const raft::handle_t& handle, const BallCoverIndex& index, @@ -212,103 +64,7 @@ void rbc_knn_query(const raft::handle_t& handle, bool perform_post_filtering = true, float weight = 1.0) { - ASSERT(index.n <= 3, "only 2d and 3d vectors are supported in current implementation"); - if (index.metric == raft::distance::DistanceType::Haversine) { - detail::rbc_knn_query(handle, - index, - k, - query, - n_query_pts, - inds, - dists, - detail::HaversineFunc(), - perform_post_filtering, - weight); - } else if (index.metric == raft::distance::DistanceType::L2SqrtExpanded || - index.metric == raft::distance::DistanceType::L2SqrtUnexpanded) { - detail::rbc_knn_query(handle, - index, - k, - query, - n_query_pts, - inds, - dists, - detail::EuclideanFunc(), - perform_post_filtering, - weight); - } else { - RAFT_FAIL("Metric not supported"); - } + raft::neighbors::ball_cover::knn_query( + handle, index, k, query, n_query_pts, inds, dists, perform_post_filtering, weight); } - -/** - * Performs a faster exact knn in metric spaces using the triangle - * inequality with a number of landmark points to reduce the - * number of distance computations from O(n^2) to O(sqrt(n)). This - * function does not build the index and assumes rbc_build_index() has - * already been called. Use this function when the index and - * query arrays are different, otherwise use rbc_all_knn_query(). - * @tparam idx_t index type - * @tparam value_t distances type - * @tparam int_t integer type for size info - * @tparam matrix_idx_t - * @param[in] handle raft handle for resource management - * @param[in] index ball cover index which has not yet been built - * @param[in] query device matrix containing query data points - * @param[out] inds output knn indices - * @param[out] dists output knn distances - * @param[in] k number of nearest neighbors to find - * @param[in] perform_post_filtering if this is false, only the closest k landmarks - * are considered (which will return approximate - * results). - * @param[in] weight a weight for overlap between the closest landmark and - * the radius of other landmarks when pruning distances. - * Setting this value below 1 can effectively turn off - * computing distances against many other balls, enabling - * approximate nearest neighbors. Recall can be adjusted - * based on how many relevant balls are ignored. Note that - * many datasets can still have great recall even by only - * looking in the closest landmark. - */ -template -void rbc_knn_query(const raft::handle_t& handle, - const BallCoverIndex& index, - raft::device_matrix_view query, - raft::device_matrix_view inds, - raft::device_matrix_view dists, - int_t k, - bool perform_post_filtering = true, - float weight = 1.0) -{ - RAFT_EXPECTS(k <= index.m, - "k must be less than or equal to the number of data points in the index"); - RAFT_EXPECTS(inds.extent(1) == dists.extent(1) && dists.extent(1) == static_cast(k), - "Number of columns in output indices and distances matrices must be equal to k"); - - RAFT_EXPECTS(inds.extent(0) == dists.extent(0) && dists.extent(0) == query.extent(0), - "Number of rows in output indices and distances matrices must equal number of rows " - "in search matrix."); - - RAFT_EXPECTS(query.extent(1) == index.get_X().extent(1), - "Number of columns in query and index matrices must match."); - - rbc_knn_query(handle, - index, - k, - query.data_handle(), - query.extent(0), - inds.data_handle(), - dists.data_handle(), - perform_post_filtering, - weight); -} - -// TODO: implement functions for: -// 4. rbc_eps_neigh() - given a populated index, perform query against different query array -// 5. rbc_all_eps_neigh() - populate a BallCoverIndex and query against training data - -} // namespace knn -} // namespace spatial -} // namespace raft - -#endif +} // namespace raft::spatial::knn diff --git a/cpp/include/raft/spatial/knn/ball_cover_types.hpp b/cpp/include/raft/spatial/knn/ball_cover_types.hpp index 897bb4df5b..6ebdcd7877 100644 --- a/cpp/include/raft/spatial/knn/ball_cover_types.hpp +++ b/cpp/include/raft/spatial/knn/ball_cover_types.hpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2021-2022, NVIDIA CORPORATION. + * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -13,153 +13,25 @@ * See the License for the specific language governing permissions and * limitations under the License. */ - -#pragma once - -#include -#include -#include -#include -#include -#include - -namespace raft { -namespace spatial { -namespace knn { - /** - * Stores raw index data points, sampled landmarks, the 1-nns of index points - * to their closest landmarks, and the ball radii of each landmark. This - * class is intended to be constructed once and reused across subsequent - * queries. - * @tparam value_idx - * @tparam value_t - * @tparam value_int + * This file is deprecated and will be removed in release 22.06. + * Please use the cuh version instead. */ -template -class BallCoverIndex { - public: - explicit BallCoverIndex(const raft::handle_t& handle_, - const value_t* X_, - value_int m_, - value_int n_, - raft::distance::DistanceType metric_) - : handle(handle_), - X(raft::make_device_matrix_view(X_, m_, n_)), - m(m_), - n(n_), - metric(metric_), - /** - * the sqrt() here makes the sqrt(m)^2 a linear-time lower bound - * - * Total memory footprint of index: (2 * sqrt(m)) + (n * sqrt(m)) + (2 * m) - */ - n_landmarks(sqrt(m_)), - R_indptr(raft::make_device_vector(handle, sqrt(m_) + 1)), - R_1nn_cols(raft::make_device_vector(handle, m_)), - R_1nn_dists(raft::make_device_vector(handle, m_)), - R_closest_landmark_dists(raft::make_device_vector(handle, m_)), - R(raft::make_device_matrix(handle, sqrt(m_), n_)), - R_radius(raft::make_device_vector(handle, sqrt(m_))), - index_trained(false) - { - } - - explicit BallCoverIndex(const raft::handle_t& handle_, - raft::device_matrix_view X_, - raft::distance::DistanceType metric_) - : handle(handle_), - X(X_), - m(X_.extent(0)), - n(X_.extent(1)), - metric(metric_), - /** - * the sqrt() here makes the sqrt(m)^2 a linear-time lower bound - * - * Total memory footprint of index: (2 * sqrt(m)) + (n * sqrt(m)) + (2 * m) - */ - n_landmarks(sqrt(X_.extent(0))), - R_indptr(raft::make_device_vector(handle, sqrt(X_.extent(0)) + 1)), - R_1nn_cols(raft::make_device_vector(handle, X_.extent(0))), - R_1nn_dists(raft::make_device_vector(handle, X_.extent(0))), - R_closest_landmark_dists(raft::make_device_vector(handle, X_.extent(0))), - R(raft::make_device_matrix(handle, sqrt(X_.extent(0)), X_.extent(1))), - R_radius(raft::make_device_vector(handle, sqrt(X_.extent(0)))), - index_trained(false) - { - } - - auto get_R_indptr() const -> raft::device_vector_view - { - return R_indptr.view(); - } - auto get_R_1nn_cols() const -> raft::device_vector_view - { - return R_1nn_cols.view(); - } - auto get_R_1nn_dists() const -> raft::device_vector_view - { - return R_1nn_dists.view(); - } - auto get_R_radius() const -> raft::device_vector_view - { - return R_radius.view(); - } - auto get_R() const -> raft::device_matrix_view - { - return R.view(); - } - auto get_R_closest_landmark_dists() const -> raft::device_vector_view - { - return R_closest_landmark_dists.view(); - } - - raft::device_vector_view get_R_indptr() { return R_indptr.view(); } - raft::device_vector_view get_R_1nn_cols() { return R_1nn_cols.view(); } - raft::device_vector_view get_R_1nn_dists() { return R_1nn_dists.view(); } - raft::device_vector_view get_R_radius() { return R_radius.view(); } - raft::device_matrix_view get_R() { return R.view(); } - raft::device_vector_view get_R_closest_landmark_dists() - { - return R_closest_landmark_dists.view(); - } - raft::device_matrix_view get_X() const { return X; } - raft::distance::DistanceType get_metric() const { return metric; } - - value_int get_n_landmarks() const { return n_landmarks; } - bool is_index_trained() const { return index_trained; }; - - // This should only be set by internal functions - void set_index_trained() { index_trained = true; } - - const raft::handle_t& handle; - - value_int m; - value_int n; - value_int n_landmarks; +/** + * DISCLAIMER: this file is deprecated: use epsilon_neighborhood.cuh instead + */ - raft::device_matrix_view X; +#pragma once - raft::distance::DistanceType metric; +#pragma message(__FILE__ \ + " is deprecated and will be removed in a future release." \ + " Please use the raft::neighbors version instead.") - private: - // CSR storing the neighborhoods for each data point - raft::device_vector R_indptr; - raft::device_vector R_1nn_cols; - raft::device_vector R_1nn_dists; - raft::device_vector R_closest_landmark_dists; +#include - raft::device_vector R_radius; +namespace raft::spatial::knn { - raft::device_matrix R; +using raft::neighbors::ball_cover::BallCoverIndex; - protected: - bool index_trained; -}; -} // namespace knn -} // namespace spatial -} // namespace raft +} // namespace raft::spatial::knn diff --git a/cpp/include/raft/spatial/knn/epsilon_neighborhood.cuh b/cpp/include/raft/spatial/knn/epsilon_neighborhood.cuh index 53fe76fada..e0a63ee42a 100644 --- a/cpp/include/raft/spatial/knn/epsilon_neighborhood.cuh +++ b/cpp/include/raft/spatial/knn/epsilon_neighborhood.cuh @@ -13,90 +13,26 @@ * See the License for the specific language governing permissions and * limitations under the License. */ +/** + * This file is deprecated and will be removed in release 22.06. + * Please use the cuh version instead. + */ -#ifndef __EPSILON_NEIGH_H -#define __EPSILON_NEIGH_H +/** + * DISCLAIMER: this file is deprecated: use epsilon_neighborhood.cuh instead + */ #pragma once -#include -#include +#pragma message(__FILE__ \ + " is deprecated and will be removed in a future release." \ + " Please use the raft::neighbors version instead.") -namespace raft { -namespace spatial { -namespace knn { +#include -/** - * @brief Computes epsilon neighborhood for the L2-Squared distance metric - * - * @tparam value_t IO and math type - * @tparam idx_t Index type - * - * @param[out] adj adjacency matrix [row-major] [on device] [dim = m x n] - * @param[out] vd vertex degree array [on device] [len = m + 1] - * `vd + m` stores the total number of edges in the adjacency - * matrix. Pass a nullptr if you don't need this info. - * @param[in] x first matrix [row-major] [on device] [dim = m x k] - * @param[in] y second matrix [row-major] [on device] [dim = n x k] - * @param[in] m number of rows in x - * @param[in] n number of rows in y - * @param[in] k number of columns in x and k - * @param[in] eps defines epsilon neighborhood radius (should be passed as - * squared as we compute L2-squared distance in this method) - * @param[in] stream cuda stream - */ -template -void epsUnexpL2SqNeighborhood(bool* adj, - idx_t* vd, - const value_t* x, - const value_t* y, - idx_t m, - idx_t n, - idx_t k, - value_t eps, - cudaStream_t stream) -{ - detail::epsUnexpL2SqNeighborhood(adj, vd, x, y, m, n, k, eps, stream); -} - -/** - * @brief Computes epsilon neighborhood for the L2-Squared distance metric - * - * @tparam value_t IO and math type - * @tparam idx_t Index type - * @tparam matrix_idx_t matrix indexing type - * - * @param[in] handle raft handle to manage library resources - * @param[in] x first matrix [row-major] [on device] [dim = m x k] - * @param[in] y second matrix [row-major] [on device] [dim = n x k] - * @param[out] adj adjacency matrix [row-major] [on device] [dim = m x n] - * @param[out] vd vertex degree array [on device] [len = m + 1] - * `vd + m` stores the total number of edges in the adjacency - * matrix. Pass a nullptr if you don't need this info. - * @param[in] eps defines epsilon neighborhood radius (should be passed as - * squared as we compute L2-squared distance in this method) - */ -template -void eps_neighbors_l2sq(const raft::handle_t& handle, - raft::device_matrix_view x, - raft::device_matrix_view y, - raft::device_matrix_view adj, - raft::device_vector_view vd, - value_t eps) -{ - epsUnexpL2SqNeighborhood(adj.data_handle(), - vd.data_handle(), - x.data_handle(), - y.data_handle(), - x.extent(0), - y.extent(0), - x.extent(1), - eps, - handle.get_stream()); -} +namespace raft::spatial::knn { -} // namespace knn -} // namespace spatial -} // namespace raft +using raft::neighbors::epsilon_neighborhood::eps_neighbors_l2sq; +using raft::neighbors::epsilon_neighborhood::epsUnexpL2SqNeighborhood; -#endif \ No newline at end of file +} // namespace raft::spatial::knn diff --git a/cpp/include/raft/spatial/knn/ivf_flat.cuh b/cpp/include/raft/spatial/knn/ivf_flat.cuh index 58ca96d392..d7c3d80fb5 100644 --- a/cpp/include/raft/spatial/knn/ivf_flat.cuh +++ b/cpp/include/raft/spatial/knn/ivf_flat.cuh @@ -1,5 +1,5 @@ /* - * Copyright (c) 2022, NVIDIA CORPORATION. + * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -13,375 +13,28 @@ * See the License for the specific language governing permissions and * limitations under the License. */ - -#pragma once - -#include "detail/ivf_flat_build.cuh" -#include "detail/ivf_flat_search.cuh" -#include "ivf_flat_types.hpp" - -#include - -#include -#include -#include - -namespace raft::spatial::knn::ivf_flat { - -/** - * @brief Build the index from the dataset for efficient search. - * - * NB: Currently, the following distance metrics are supported: - * - L2Expanded - * - L2Unexpanded - * - InnerProduct - * - * Usage example: - * @code{.cpp} - * using namespace raft::spatial::knn; - * // use default index parameters - * ivf_flat::index_params index_params; - * // create and fill the index from a [N, D] dataset - * auto index = ivf_flat::build(handle, index_params, dataset, N, D); - * // use default search parameters - * ivf_flat::search_params search_params; - * // search K nearest neighbours for each of the N queries - * ivf_flat::search(handle, search_params, index, queries, N, K, out_inds, out_dists); - * @endcode - * - * @tparam T data element type - * @tparam IdxT type of the indices in the source dataset - * - * @param[in] handle - * @param[in] params configure the index building - * @param[in] dataset a device pointer to a row-major matrix [n_rows, dim] - * @param[in] n_rows the number of samples - * @param[in] dim the dimensionality of the data - * - * @return the constructed ivf-flat index - */ -template -inline auto build( - const handle_t& handle, const index_params& params, const T* dataset, IdxT n_rows, uint32_t dim) - -> index -{ - return raft::spatial::knn::ivf_flat::detail::build(handle, params, dataset, n_rows, dim); -} - -/** - * @brief Build the index from the dataset for efficient search. - * - * NB: Currently, the following distance metrics are supported: - * - L2Expanded - * - L2Unexpanded - * - InnerProduct - * - * Usage example: - * @code{.cpp} - * using namespace raft::spatial::knn; - * // use default index parameters - * ivf_flat::index_params index_params; - * // create and fill the index from a [N, D] dataset - * auto index = ivf_flat::build(handle, index_params, dataset, N, D); - * // use default search parameters - * ivf_flat::search_params search_params; - * // search K nearest neighbours for each of the N queries - * ivf_flat::search(handle, search_params, index, queries, N, K, out_inds, out_dists); - * @endcode - * - * @tparam value_t data element type - * @tparam idx_t type of the indices in the source dataset - * @tparam int_t precision / type of integral arguments - * @tparam matrix_idx_t matrix indexing type - * - * @param[in] handle - * @param[in] params configure the index building - * @param[in] dataset a device pointer to a row-major matrix [n_rows, dim] - * - * @return the constructed ivf-flat index - */ -template -auto build_index(const handle_t& handle, - raft::device_matrix_view dataset, - const index_params& params) -> index -{ - return raft::spatial::knn::ivf_flat::detail::build(handle, - params, - dataset.data_handle(), - static_cast(dataset.extent(0)), - static_cast(dataset.extent(1))); -} - -/** - * @brief Build a new index containing the data of the original plus new extra vectors. - * - * Implementation note: - * The new data is clustered according to existing kmeans clusters, then the cluster - * centers are adjusted to match the newly labeled data. - * - * Usage example: - * @code{.cpp} - * using namespace raft::spatial::knn; - * ivf_flat::index_params index_params; - * index_params.add_data_on_build = false; // don't populate index on build - * index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training - * // train the index from a [N, D] dataset - * auto index_empty = ivf_flat::build(handle, index_params, dataset, N, D); - * // fill the index with the data - * auto index = ivf_flat::extend(handle, index_empty, dataset, nullptr, N); - * @endcode - * - * @tparam T data element type - * @tparam IdxT type of the indices in the source dataset - * - * @param[in] handle - * @param[in] orig_index original index - * @param[in] new_vectors a device pointer to a row-major matrix [n_rows, index.dim()] - * @param[in] new_indices a device pointer to a vector of indices [n_rows]. - * If the original index is empty (`orig_index.size() == 0`), you can pass `nullptr` - * here to imply a continuous range `[0...n_rows)`. - * @param[in] n_rows number of rows in `new_vectors` - * - * @return the constructed extended ivf-flat index - */ -template -inline auto extend(const handle_t& handle, - const index& orig_index, - const T* new_vectors, - const IdxT* new_indices, - IdxT n_rows) -> index -{ - return raft::spatial::knn::ivf_flat::detail::extend( - handle, orig_index, new_vectors, new_indices, n_rows); -} - -/** - * @brief Build a new index containing the data of the original plus new extra vectors. - * - * Implementation note: - * The new data is clustered according to existing kmeans clusters, then the cluster - * centers are adjusted to match the newly labeled data. - * - * Usage example: - * @code{.cpp} - * using namespace raft::spatial::knn; - * ivf_flat::index_params index_params; - * index_params.add_data_on_build = false; // don't populate index on build - * index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training - * // train the index from a [N, D] dataset - * auto index_empty = ivf_flat::build(handle, index_params, dataset, N, D); - * // fill the index with the data - * auto index = ivf_flat::extend(handle, index_empty, dataset, nullptr, N); - * @endcode - * - * @tparam value_t data element type - * @tparam idx_t type of the indices in the source dataset - * @tparam int_t precision / type of integral arguments - * @tparam matrix_idx_t matrix indexing type - * - * @param[in] handle - * @param[in] orig_index original index - * @param[in] new_vectors a device pointer to a row-major matrix [n_rows, index.dim()] - * @param[in] new_indices a device pointer to a vector of indices [n_rows]. - * If the original index is empty (`orig_index.size() == 0`), you can pass `nullptr` - * here to imply a continuous range `[0...n_rows)`. - * - * @return the constructed extended ivf-flat index - */ -template -auto extend(const handle_t& handle, - const index& orig_index, - raft::device_matrix_view new_vectors, - std::optional> new_indices = std::nullopt) - -> index -{ - return raft::spatial::knn::ivf_flat::detail::extend( - handle, - orig_index, - new_vectors.data_handle(), - new_indices.has_value() ? new_indices.value().data_handle() : nullptr, - new_vectors.extent(0)); -} - /** - * @brief Extend the index with the new data. - * * - * @tparam T data element type - * @tparam IdxT type of the indices in the source dataset - * - * @param handle - * @param[inout] index - * @param[in] new_vectors a device pointer to a row-major matrix [n_rows, index.dim()] - * @param[in] new_indices a device pointer to a vector of indices [n_rows]. - * If the original index is empty (`orig_index.size() == 0`), you can pass `nullptr` - * here to imply a continuous range `[0...n_rows)`. - * @param[in] n_rows the number of samples + * This file is deprecated and will be removed in release 22.06. + * Please use the cuh version instead. */ -template -inline void extend(const handle_t& handle, - index* index, - const T* new_vectors, - const IdxT* new_indices, - IdxT n_rows) -{ - *index = extend(handle, *index, new_vectors, new_indices, n_rows); -} /** - * @brief Extend the index with the new data. - * * - * @tparam value_t data element type - * @tparam idx_t type of the indices in the source dataset - * @tparam int_t precision / type of integral arguments - * @tparam matrix_idx_t matrix indexing type - * - * @param[in] handle - * @param[inout] index - * @param[in] new_vectors a device pointer to a row-major matrix [n_rows, index.dim()] - * @param[in] new_indices a device pointer to a vector of indices [n_rows]. - * If the original index is empty (`orig_index.size() == 0`), you can pass `std::nullopt` - * here to imply a continuous range `[0...n_rows)`. + * DISCLAIMER: this file is deprecated: use epsilon_neighborhood.cuh instead */ -template -void extend(const handle_t& handle, - index* index, - raft::device_matrix_view new_vectors, - std::optional> new_indices = std::nullopt) -{ - *index = extend(handle, - *index, - new_vectors.data_handle(), - new_indices.has_value() ? new_indices.value().data_handle() : nullptr, - static_cast(new_vectors.extent(0))); -} -/** - * @brief Search ANN using the constructed index. - * - * See the [ivf_flat::build](#ivf_flat::build) documentation for a usage example. - * - * Note, this function requires a temporary buffer to store intermediate results between cuda kernel - * calls, which may lead to undesirable allocations and slowdown. To alleviate the problem, you can - * pass a pool memory resource or a large enough pre-allocated memory resource to reduce or - * eliminate entirely allocations happening within `search`: - * @code{.cpp} - * ... - * // Create a pooling memory resource with a pre-defined initial size. - * rmm::mr::pool_memory_resource mr( - * rmm::mr::get_current_device_resource(), 1024 * 1024); - * // use default search parameters - * ivf_flat::search_params search_params; - * // Use the same allocator across multiple searches to reduce the number of - * // cuda memory allocations - * ivf_flat::search(handle, search_params, index, queries1, N1, K, out_inds1, out_dists1, &mr); - * ivf_flat::search(handle, search_params, index, queries2, N2, K, out_inds2, out_dists2, &mr); - * ivf_flat::search(handle, search_params, index, queries3, N3, K, out_inds3, out_dists3, &mr); - * ... - * @endcode - * The exact size of the temporary buffer depends on multiple factors and is an implementation - * detail. However, you can safely specify a small initial size for the memory pool, so that only a - * few allocations happen to grow it during the first invocations of the `search`. - * - * @tparam T data element type - * @tparam IdxT type of the indices - * - * @param[in] handle - * @param[in] params configure the search - * @param[in] index ivf-flat constructed index - * @param[in] queries a device pointer to a row-major matrix [n_queries, index->dim()] - * @param[in] n_queries the batch size - * @param[in] k the number of neighbors to find for each query. - * @param[out] neighbors a device pointer to the indices of the neighbors in the source dataset - * [n_queries, k] - * @param[out] distances a device pointer to the distances to the selected neighbors [n_queries, k] - * @param[in] mr an optional memory resource to use across the searches (you can provide a large - * enough memory pool here to avoid memory allocations within search). - */ -template -inline void search(const handle_t& handle, - const search_params& params, - const index& index, - const T* queries, - uint32_t n_queries, - uint32_t k, - IdxT* neighbors, - float* distances, - rmm::mr::device_memory_resource* mr = nullptr) -{ - return raft::spatial::knn::ivf_flat::detail::search( - handle, params, index, queries, n_queries, k, neighbors, distances, mr); -} +#pragma once -/** - * @brief Search ANN using the constructed index. - * - * See the [ivf_flat::build](#ivf_flat::build) documentation for a usage example. - * - * Note, this function requires a temporary buffer to store intermediate results between cuda kernel - * calls, which may lead to undesirable allocations and slowdown. To alleviate the problem, you can - * pass a pool memory resource or a large enough pre-allocated memory resource to reduce or - * eliminate entirely allocations happening within `search`: - * @code{.cpp} - * ... - * // Create a pooling memory resource with a pre-defined initial size. - * rmm::mr::pool_memory_resource mr( - * rmm::mr::get_current_device_resource(), 1024 * 1024); - * // use default search parameters - * ivf_flat::search_params search_params; - * // Use the same allocator across multiple searches to reduce the number of - * // cuda memory allocations - * ivf_flat::search(handle, search_params, index, queries1, N1, K, out_inds1, out_dists1, &mr); - * ivf_flat::search(handle, search_params, index, queries2, N2, K, out_inds2, out_dists2, &mr); - * ivf_flat::search(handle, search_params, index, queries3, N3, K, out_inds3, out_dists3, &mr); - * ... - * @endcode - * The exact size of the temporary buffer depends on multiple factors and is an implementation - * detail. However, you can safely specify a small initial size for the memory pool, so that only a - * few allocations happen to grow it during the first invocations of the `search`. - * - * @tparam value_t data element type - * @tparam idx_t type of the indices - * @tparam int_t precision / type of integral arguments - * @tparam matrix_idx_t matrix indexing type - * - * @param[in] handle - * @param[in] index ivf-flat constructed index - * @param[in] queries a device pointer to a row-major matrix [n_queries, index->dim()] - * @param[out] neighbors a device pointer to the indices of the neighbors in the source dataset - * [n_queries, k] - * @param[out] distances a device pointer to the distances to the selected neighbors [n_queries, k] - * @param[in] params configure the search - * @param[in] k the number of neighbors to find for each query. - */ -template -void search(const handle_t& handle, - const index& index, - raft::device_matrix_view queries, - raft::device_matrix_view neighbors, - raft::device_matrix_view distances, - const search_params& params, - int_t k) -{ - RAFT_EXPECTS( - queries.extent(0) == neighbors.extent(0) && queries.extent(0) == distances.extent(0), - "Number of rows in output neighbors and distances matrices must equal the number of queries."); +#pragma message(__FILE__ \ + " is deprecated and will be removed in a future release." \ + " Please use the raft::neighbors version instead.") - RAFT_EXPECTS( - neighbors.extent(1) == distances.extent(1) && neighbors.extent(1) == static_cast(k), - "Number of columns in output neighbors and distances matrices must equal k"); +#include - RAFT_EXPECTS(queries.extent(1) == index.dim(), - "Number of query dimensions should equal number of dimensions in the index."); +namespace raft::spatial::knn::ivf_flat { - return raft::spatial::knn::ivf_flat::detail::search(handle, - params, - index, - queries.data_handle(), - queries.extent(0), - k, - neighbors.data_handle(), - distances.data_handle(), - nullptr); -} +using raft::neighbors::ivf_flat::build; +using raft::neighbors::ivf_flat::build_index; +using raft::neighbors::ivf_flat::extend; +using raft::neighbors::ivf_flat::search; } // namespace raft::spatial::knn::ivf_flat diff --git a/cpp/include/raft/spatial/knn/ivf_flat_types.hpp b/cpp/include/raft/spatial/knn/ivf_flat_types.hpp index 41fa1dd8ce..2db29eeb58 100644 --- a/cpp/include/raft/spatial/knn/ivf_flat_types.hpp +++ b/cpp/include/raft/spatial/knn/ivf_flat_types.hpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2022, NVIDIA CORPORATION. + * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -13,267 +13,28 @@ * See the License for the specific language governing permissions and * limitations under the License. */ - -#pragma once - -#include "ann_types.hpp" - -#include -#include -#include -#include - -#include - -namespace raft::spatial::knn::ivf_flat { - -/** Size of the interleaved group (see `index::data` description). */ -constexpr static uint32_t kIndexGroupSize = 32; - -struct index_params : knn::index_params { - /** The number of inverted lists (clusters) */ - uint32_t n_lists = 1024; - /** The number of iterations searching for kmeans centers (index building). */ - uint32_t kmeans_n_iters = 20; - /** The fraction of data to use during iterative kmeans building. */ - double kmeans_trainset_fraction = 0.5; -}; - -struct search_params : knn::search_params { - /** The number of clusters to search. */ - uint32_t n_probes = 20; -}; - -static_assert(std::is_aggregate_v); -static_assert(std::is_aggregate_v); - /** - * @brief IVF-flat index. - * - * @tparam T data element type - * @tparam IdxT type of the indices in the source dataset - * + * This file is deprecated and will be removed in release 22.06. + * Please use the cuh version instead. */ -template -struct index : knn::index { - static_assert(!raft::is_narrowing_v, - "IdxT must be able to represent all values of uint32_t"); - - public: - /** - * Vectorized load/store size in elements, determines the size of interleaved data chunks. - * - * TODO: in theory, we can lift this to the template parameter and keep it at hardware maximum - * possible value by padding the `dim` of the data https://github.com/rapidsai/raft/issues/711 - */ - [[nodiscard]] constexpr inline auto veclen() const noexcept -> uint32_t { return veclen_; } - /** Distance metric used for clustering. */ - [[nodiscard]] constexpr inline auto metric() const noexcept -> raft::distance::DistanceType - { - return metric_; - } - /** - * Inverted list data [size, dim]. - * - * The data consists of the dataset rows, grouped by their labels (into clusters/lists). - * Within each list (cluster), the data is grouped into blocks of `kIndexGroupSize` interleaved - * vectors. Note, the total index length is slightly larger than the source dataset length, - * because each cluster is padded by `kIndexGroupSize` elements. - * - * Interleaving pattern: - * within groups of `kIndexGroupSize` rows, the data is interleaved with the block size equal to - * `veclen * sizeof(T)`. That is, a chunk of `veclen` consecutive components of one row is - * followed by a chunk of the same size of the next row, and so on. - * - * __Example__: veclen = 2, dim = 6, kIndexGroupSize = 32, list_size = 31 - * - * x[ 0, 0], x[ 0, 1], x[ 1, 0], x[ 1, 1], ... x[14, 0], x[14, 1], x[15, 0], x[15, 1], - * x[16, 0], x[16, 1], x[17, 0], x[17, 1], ... x[30, 0], x[30, 1], - , - , - * x[ 0, 2], x[ 0, 3], x[ 1, 2], x[ 1, 3], ... x[14, 2], x[14, 3], x[15, 2], x[15, 3], - * x[16, 2], x[16, 3], x[17, 2], x[17, 3], ... x[30, 2], x[30, 3], - , - , - * x[ 0, 4], x[ 0, 5], x[ 1, 4], x[ 1, 5], ... x[14, 4], x[14, 5], x[15, 4], x[15, 5], - * x[16, 4], x[16, 5], x[17, 4], x[17, 5], ... x[30, 4], x[30, 5], - , - , - * - */ - inline auto data() noexcept -> device_mdspan, row_major> - { - return data_.view(); - } - [[nodiscard]] inline auto data() const noexcept - -> device_mdspan, row_major> - { - return data_.view(); - } - - /** Inverted list indices: ids of items in the source data [size] */ - inline auto indices() noexcept -> device_mdspan, row_major> - { - return indices_.view(); - } - [[nodiscard]] inline auto indices() const noexcept - -> device_mdspan, row_major> - { - return indices_.view(); - } - - /** Sizes of the lists (clusters) [n_lists] */ - inline auto list_sizes() noexcept -> device_mdspan, row_major> - { - return list_sizes_.view(); - } - [[nodiscard]] inline auto list_sizes() const noexcept - -> device_mdspan, row_major> - { - return list_sizes_.view(); - } - - /** - * Offsets into the lists [n_lists + 1]. - * The last value contains the total length of the index. - */ - inline auto list_offsets() noexcept -> device_mdspan, row_major> - { - return list_offsets_.view(); - } - [[nodiscard]] inline auto list_offsets() const noexcept - -> device_mdspan, row_major> - { - return list_offsets_.view(); - } - - /** k-means cluster centers corresponding to the lists [n_lists, dim] */ - inline auto centers() noexcept -> device_mdspan, row_major> - { - return centers_.view(); - } - [[nodiscard]] inline auto centers() const noexcept - -> device_mdspan, row_major> - { - return centers_.view(); - } - - /** - * (Optional) Precomputed norms of the `centers` w.r.t. the chosen distance metric [n_lists]. - * - * NB: this may be empty if the index is empty or if the metric does not require the center norms - * calculation. - */ - inline auto center_norms() noexcept - -> std::optional, row_major>> - { - if (center_norms_.has_value()) { - return std::make_optional, row_major>>( - center_norms_->view()); - } else { - return std::nullopt; - } - } - [[nodiscard]] inline auto center_norms() const noexcept - -> std::optional, row_major>> - { - if (center_norms_.has_value()) { - return std::make_optional, row_major>>( - center_norms_->view()); - } else { - return std::nullopt; - } - } - /** Total length of the index. */ - [[nodiscard]] constexpr inline auto size() const noexcept -> IdxT { return indices_.extent(0); } - /** Dimensionality of the data. */ - [[nodiscard]] constexpr inline auto dim() const noexcept -> uint32_t - { - return centers_.extent(1); - } - /** Number of clusters/inverted lists. */ - [[nodiscard]] constexpr inline auto n_lists() const noexcept -> uint32_t - { - return centers_.extent(0); - } - - // Don't allow copying the index for performance reasons (try avoiding copying data) - index(const index&) = delete; - index(index&&) = default; - auto operator=(const index&) -> index& = delete; - auto operator=(index&&) -> index& = default; - ~index() = default; - - /** Construct an empty index. It needs to be trained and then populated. */ - index(const handle_t& handle, raft::distance::DistanceType metric, uint32_t n_lists, uint32_t dim) - : knn::index(), - veclen_(calculate_veclen(dim)), - metric_(metric), - data_(make_device_mdarray(handle, make_extents(0, dim))), - indices_(make_device_mdarray(handle, make_extents(0))), - list_sizes_(make_device_mdarray(handle, make_extents(n_lists))), - list_offsets_(make_device_mdarray(handle, make_extents(n_lists + 1))), - centers_(make_device_mdarray(handle, make_extents(n_lists, dim))), - center_norms_(std::nullopt) - { - check_consistency(); - } +/** + * DISCLAIMER: this file is deprecated: use epsilon_neighborhood.cuh instead + */ - /** Construct an empty index. It needs to be trained and then populated. */ - index(const handle_t& handle, const index_params& params, uint32_t dim) - : index(handle, params.metric, params.n_lists, dim) - { - } +#pragma once - /** - * Replace the content of the index with new uninitialized mdarrays to hold the indicated amount - * of data. - */ - void allocate(const handle_t& handle, IdxT index_size, bool allocate_center_norms) - { - data_ = make_device_mdarray(handle, make_extents(index_size, dim())); - indices_ = make_device_mdarray(handle, make_extents(index_size)); - center_norms_ = - allocate_center_norms - ? std::optional(make_device_mdarray(handle, make_extents(n_lists()))) - : std::nullopt; - check_consistency(); - } +#pragma message(__FILE__ \ + " is deprecated and will be removed in a future release." \ + " Please use the raft::neighbors version instead.") - private: - /** - * TODO: in theory, we can lift this to the template parameter and keep it at hardware maximum - * possible value by padding the `dim` of the data https://github.com/rapidsai/raft/issues/711 - */ - uint32_t veclen_; - raft::distance::DistanceType metric_; - device_mdarray, row_major> data_; - device_mdarray, row_major> indices_; - device_mdarray, row_major> list_sizes_; - device_mdarray, row_major> list_offsets_; - device_mdarray, row_major> centers_; - std::optional, row_major>> center_norms_; +#include - /** Throw an error if the index content is inconsistent. */ - void check_consistency() - { - RAFT_EXPECTS(dim() % veclen_ == 0, "dimensionality is not a multiple of the veclen"); - RAFT_EXPECTS(data_.extent(0) == indices_.extent(0), "inconsistent index size"); - RAFT_EXPECTS(data_.extent(1) == IdxT(centers_.extent(1)), "inconsistent data dimensionality"); - RAFT_EXPECTS( // - (centers_.extent(0) == list_sizes_.extent(0)) && // - (centers_.extent(0) + 1 == list_offsets_.extent(0)) && // - (!center_norms_.has_value() || centers_.extent(0) == center_norms_->extent(0)), - "inconsistent number of lists (clusters)"); - RAFT_EXPECTS(reinterpret_cast(data_.data_handle()) % (veclen_ * sizeof(T)) == 0, - "The data storage pointer is not aligned to the vector length"); - } +namespace raft::spatial::knn::ivf_flat { - static auto calculate_veclen(uint32_t dim) -> uint32_t - { - // TODO: consider padding the dimensions and fixing veclen to its maximum possible value as a - // template parameter (https://github.com/rapidsai/raft/issues/711) - uint32_t veclen = 16 / sizeof(T); - while (dim % veclen != 0) { - veclen = veclen >> 1; - } - return veclen; - } -}; +using raft::neighbors::ivf_flat::index; +using raft::neighbors::ivf_flat::index_params; +using raft::neighbors::ivf_flat::kIndexGroupSize; +using raft::neighbors::ivf_flat::search_params; } // namespace raft::spatial::knn::ivf_flat diff --git a/cpp/include/raft/spatial/knn/ivf_pq.cuh b/cpp/include/raft/spatial/knn/ivf_pq.cuh index 35cd408092..0f175f41bb 100644 --- a/cpp/include/raft/spatial/knn/ivf_pq.cuh +++ b/cpp/include/raft/spatial/knn/ivf_pq.cuh @@ -1,5 +1,5 @@ /* - * Copyright (c) 2022, NVIDIA CORPORATION. + * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -13,182 +13,27 @@ * See the License for the specific language governing permissions and * limitations under the License. */ - -#pragma once - -#include "detail/ivf_pq_build.cuh" -#include "detail/ivf_pq_search.cuh" -#include "ivf_pq_types.hpp" - -#include - -#include -#include - -namespace raft::spatial::knn::ivf_pq { - /** - * @brief Build the index from the dataset for efficient search. - * - * NB: Currently, the following distance metrics are supported: - * - L2Expanded - * - L2Unexpanded - * - InnerProduct - * - * Usage example: - * @code{.cpp} - * using namespace raft::spatial::knn; - * // use default index parameters - * ivf_pq::index_params index_params; - * // create and fill the index from a [N, D] dataset - * auto index = ivf_pq::build(handle, index_params, dataset, N, D); - * // use default search parameters - * ivf_pq::search_params search_params; - * // search K nearest neighbours for each of the N queries - * ivf_pq::search(handle, search_params, index, queries, N, K, out_inds, out_dists); - * @endcode - * - * @tparam T data element type - * @tparam IdxT type of the indices in the source dataset - * - * @param handle - * @param params configure the index building - * @param[in] dataset a device pointer to a row-major matrix [n_rows, dim] - * @param n_rows the number of samples - * @param dim the dimensionality of the data - * - * @return the constructed ivf-pq index + * This file is deprecated and will be removed in release 22.06. + * Please use the cuh version instead. */ -template -inline auto build( - const handle_t& handle, const index_params& params, const T* dataset, IdxT n_rows, uint32_t dim) - -> index -{ - return raft::spatial::knn::ivf_pq::detail::build(handle, params, dataset, n_rows, dim); -} /** - * @brief Build a new index containing the data of the original plus new extra vectors. - * - * Implementation note: - * The new data is clustered according to existing kmeans clusters, then the cluster - * centers are unchanged. - * - * Usage example: - * @code{.cpp} - * using namespace raft::spatial::knn; - * ivf_pq::index_params index_params; - * index_params.add_data_on_build = false; // don't populate index on build - * index_params.kmeans_trainset_fraction = 1.0; // use whole dataset for kmeans training - * // train the index from a [N, D] dataset - * auto index_empty = ivf_pq::build(handle, index_params, dataset, N, D); - * // fill the index with the data - * auto index = ivf_pq::extend(handle, index_empty, dataset, nullptr, N); - * @endcode - * - * @tparam T data element type - * @tparam IdxT type of the indices in the source dataset - * - * @param handle - * @param orig_index original index - * @param[in] new_vectors a device pointer to a row-major matrix [n_rows, index.dim()] - * @param[in] new_indices a device pointer to a vector of indices [n_rows]. - * If the original index is empty (`orig_index.size() == 0`), you can pass `nullptr` - * here to imply a continuous range `[0...n_rows)`. - * @param n_rows the number of samples - * - * @return the constructed extended ivf-pq index + * DISCLAIMER: this file is deprecated: use epsilon_neighborhood.cuh instead */ -template -inline auto extend(const handle_t& handle, - const index& orig_index, - const T* new_vectors, - const IdxT* new_indices, - IdxT n_rows) -> index -{ - return raft::spatial::knn::ivf_pq::detail::extend( - handle, orig_index, new_vectors, new_indices, n_rows); -} -/** - * @brief Extend the index with the new data. - * * - * @tparam T data element type - * @tparam IdxT type of the indices in the source dataset - * - * @param handle - * @param[inout] index - * @param[in] new_vectors a device pointer to a row-major matrix [n_rows, index.dim()] - * @param[in] new_indices a device pointer to a vector of indices [n_rows]. - * If the original index is empty (`orig_index.size() == 0`), you can pass `nullptr` - * here to imply a continuous range `[0...n_rows)`. - * @param n_rows the number of samples - */ -template -inline void extend(const handle_t& handle, - index* index, - const T* new_vectors, - const IdxT* new_indices, - IdxT n_rows) -{ - *index = extend(handle, *index, new_vectors, new_indices, n_rows); -} +#pragma once -/** - * @brief Search ANN using the constructed index. - * - * See the [ivf_pq::build](#ivf_pq::build) documentation for a usage example. - * - * Note, this function requires a temporary buffer to store intermediate results between cuda kernel - * calls, which may lead to undesirable allocations and slowdown. To alleviate the problem, you can - * pass a pool memory resource or a large enough pre-allocated memory resource to reduce or - * eliminate entirely allocations happening within `search`: - * @code{.cpp} - * ... - * // Create a pooling memory resource with a pre-defined initial size. - * rmm::mr::pool_memory_resource mr( - * rmm::mr::get_current_device_resource(), 1024 * 1024); - * // use default search parameters - * ivf_pq::search_params search_params; - * // Use the same allocator across multiple searches to reduce the number of - * // cuda memory allocations - * ivf_pq::search(handle, search_params, index, queries1, N1, K, out_inds1, out_dists1, &mr); - * ivf_pq::search(handle, search_params, index, queries2, N2, K, out_inds2, out_dists2, &mr); - * ivf_pq::search(handle, search_params, index, queries3, N3, K, out_inds3, out_dists3, &mr); - * ... - * @endcode - * The exact size of the temporary buffer depends on multiple factors and is an implementation - * detail. However, you can safely specify a small initial size for the memory pool, so that only a - * few allocations happen to grow it during the first invocations of the `search`. - * - * @tparam T data element type - * @tparam IdxT type of the indices - * - * @param handle - * @param params configure the search - * @param index ivf-pq constructed index - * @param[in] queries a device pointer to a row-major matrix [n_queries, index->dim()] - * @param n_queries the batch size - * @param k the number of neighbors to find for each query. - * @param[out] neighbors a device pointer to the indices of the neighbors in the source dataset - * [n_queries, k] - * @param[out] distances a device pointer to the distances to the selected neighbors [n_queries, k] - * @param mr an optional memory resource to use across the searches (you can provide a large enough - * memory pool here to avoid memory allocations within search). - */ -template -inline void search(const handle_t& handle, - const search_params& params, - const index& index, - const T* queries, - uint32_t n_queries, - uint32_t k, - IdxT* neighbors, - float* distances, - rmm::mr::device_memory_resource* mr = nullptr) -{ - return raft::spatial::knn::ivf_pq::detail::search( - handle, params, index, queries, n_queries, k, neighbors, distances, mr); -} +#pragma message(__FILE__ \ + " is deprecated and will be removed in a future release." \ + " Please use the raft::neighbors version instead.") + +#include + +namespace raft::spatial::knn::ivf_pq { + +using raft::neighbors::ivf_pq::build; +using raft::neighbors::ivf_pq::extend; +using raft::neighbors::ivf_pq::search; } // namespace raft::spatial::knn::ivf_pq diff --git a/cpp/include/raft/spatial/knn/ivf_pq_types.hpp b/cpp/include/raft/spatial/knn/ivf_pq_types.hpp index b0b8b8d45f..83fb78eb46 100644 --- a/cpp/include/raft/spatial/knn/ivf_pq_types.hpp +++ b/cpp/include/raft/spatial/knn/ivf_pq_types.hpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2022, NVIDIA CORPORATION. + * Copyright (c) 2020-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -13,422 +13,28 @@ * See the License for the specific language governing permissions and * limitations under the License. */ - -#pragma once - -#include "common.hpp" - -#include -#include -#include -#include - -#include - -namespace raft::spatial::knn::ivf_pq { - -/** A type for specifying how PQ codebooks are created. */ -enum class codebook_gen { // NOLINT - PER_SUBSPACE = 0, // NOLINT - PER_CLUSTER = 1, // NOLINT -}; - -struct index_params : knn::index_params { - /** - * The number of inverted lists (clusters) - * - * Hint: the number of vectors per cluster (`n_rows/n_lists`) should be approximately 1,000 to - * 10,000. - */ - uint32_t n_lists = 1024; - /** The number of iterations searching for kmeans centers (index building). */ - uint32_t kmeans_n_iters = 20; - /** The fraction of data to use during iterative kmeans building. */ - double kmeans_trainset_fraction = 0.5; - /** - * The bit length of the vector element after compression by PQ. - * - * Possible values: [4, 5, 6, 7, 8]. - * - * Hint: the smaller the 'pq_bits', the smaller the index size and the better the search - * performance, but the lower the recall. - */ - uint32_t pq_bits = 8; - /** - * The dimensionality of the vector after compression by PQ. When zero, an optimal value is - * selected using a heuristic. - * - * NB: `pq_dim * pq_bits` must be a multiple of 8. - * - * Hint: a smaller 'pq_dim' results in a smaller index size and better search performance, but - * lower recall. If 'pq_bits' is 8, 'pq_dim' can be set to any number, but multiple of 8 are - * desirable for good performance. If 'pq_bits' is not 8, 'pq_dim' should be a multiple of 8. - * For good performance, it is desirable that 'pq_dim' is a multiple of 32. Ideally, 'pq_dim' - * should be also a divisor of the dataset dim. - */ - uint32_t pq_dim = 0; - /** How PQ codebooks are created. */ - codebook_gen codebook_kind = codebook_gen::PER_SUBSPACE; - /** - * Apply a random rotation matrix on the input data and queries even if `dim % pq_dim == 0`. - * - * Note: if `dim` is not multiple of `pq_dim`, a random rotation is always applied to the input - * data and queries to transform the working space from `dim` to `rot_dim`, which may be slightly - * larger than the original space and and is a multiple of `pq_dim` (`rot_dim % pq_dim == 0`). - * However, this transform is not necessary when `dim` is multiple of `pq_dim` - * (`dim == rot_dim`, hence no need in adding "extra" data columns / features). - * - * By default, if `dim == rot_dim`, the rotation transform is initialized with the identity - * matrix. When `force_random_rotation == true`, a random orthogonal transform matrix is generated - * regardless of the values of `dim` and `pq_dim`. - */ - bool force_random_rotation = false; -}; - -struct search_params : knn::search_params { - /** The number of clusters to search. */ - uint32_t n_probes = 20; - /** - * Data type of look up table to be created dynamically at search time. - * - * Possible values: [CUDA_R_32F, CUDA_R_16F, CUDA_R_8U] - * - * The use of low-precision types reduces the amount of shared memory required at search time, so - * fast shared memory kernels can be used even for datasets with large dimansionality. Note that - * the recall is slightly degraded when low-precision type is selected. - */ - cudaDataType_t lut_dtype = CUDA_R_32F; - /** - * Storage data type for distance/similarity computed at search time. - * - * Possible values: [CUDA_R_16F, CUDA_R_32F] - * - * If the performance limiter at search time is device memory access, selecting FP16 will improve - * performance slightly. - */ - cudaDataType_t internal_distance_dtype = CUDA_R_32F; - /** - * Thread block size of the distance calculation kernel at search time. - * When zero, an optimal block size is selected using a heuristic. - * - * Possible values: [0, 256, 512, 1024] - */ - uint32_t preferred_thread_block_size = 0; -}; - -static_assert(std::is_aggregate_v); -static_assert(std::is_aggregate_v); - /** - * @brief IVF-PQ index. - * - * In the IVF-PQ index, a database vector y is approximated with two level quantization: - * - * y = Q_1(y) + Q_2(y - Q_1(y)) - * - * The first level quantizer (Q_1), maps the vector y to the nearest cluster center. The number of - * clusters is n_lists. - * - * The second quantizer encodes the residual, and it is defined as a product quantizer [1]. - * - * A product quantizer encodes a `dim` dimensional vector with a `pq_dim` dimensional vector. - * First we split the input vector into `pq_dim` subvectors (denoted by u), where each u vector - * contains `pq_len` distinct components of y - * - * y_1, y_2, ... y_{pq_len}, y_{pq_len+1}, ... y_{2*pq_len}, ... y_{dim-pq_len+1} ... y_{dim} - * \___________________/ \____________________________/ \______________________/ - * u_1 u_2 u_{pq_dim} - * - * Then each subvector encoded with a separate quantizer q_i, end the results are concatenated - * - * Q_2(y) = q_1(u_1),q_2(u_2),...,q_{pq_dim}(u_pq_dim}) - * - * Each quantizer q_i outputs a code with pq_bit bits. The second level quantizers are also defined - * by k-means clustering in the corresponding sub-space: the reproduction values are the centroids, - * and the set of reproduction values is the codebook. - * - * When the data dimensionality `dim` is not multiple of `pq_dim`, the feature space is transformed - * using a random orthogonal matrix to have `rot_dim = pq_dim * pq_len` dimensions - * (`rot_dim >= dim`). - * - * The second-level quantizers are trained either for each subspace or for each cluster: - * (a) codebook_gen::PER_SUBSPACE: - * creates `pq_dim` second-level quantizers - one for each slice of the data along features; - * (b) codebook_gen::PER_CLUSTER: - * creates `n_lists` second-level quantizers - one for each first-level cluster. - * In either case, the centroids are again found using k-means clustering interpreting the data as - * having pq_len dimensions. - * - * [1] Product quantization for nearest neighbor search Herve Jegou, Matthijs Douze, Cordelia Schmid - * - * @tparam IdxT type of the indices in the source dataset - * + * This file is deprecated and will be removed in release 22.06. + * Please use the cuh version instead. */ -template -struct index : knn::index { - static_assert(!raft::is_narrowing_v, - "IdxT must be able to represent all values of uint32_t"); - - public: - /** Total length of the index. */ - [[nodiscard]] constexpr inline auto size() const noexcept -> IdxT { return indices_.extent(0); } - /** Dimensionality of the input data. */ - [[nodiscard]] constexpr inline auto dim() const noexcept -> uint32_t { return dim_; } - /** - * Dimensionality of the cluster centers: - * input data dim extended with vector norms and padded to 8 elems. - */ - [[nodiscard]] constexpr inline auto dim_ext() const noexcept -> uint32_t - { - return raft::round_up_safe(dim() + 1, 8u); - } - /** - * Dimensionality of the data after transforming it for PQ processing - * (rotated and augmented to be muplitple of `pq_dim`). - */ - [[nodiscard]] constexpr inline auto rot_dim() const noexcept -> uint32_t - { - return pq_len() * pq_dim(); - } - /** The bit length of an encoded vector element after compression by PQ. */ - [[nodiscard]] constexpr inline auto pq_bits() const noexcept -> uint32_t { return pq_bits_; } - /** The dimensionality of an encoded vector after compression by PQ. */ - [[nodiscard]] constexpr inline auto pq_dim() const noexcept -> uint32_t { return pq_dim_; } - /** Dimensionality of a subspaces, i.e. the number of vector components mapped to a subspace */ - [[nodiscard]] constexpr inline auto pq_len() const noexcept -> uint32_t - { - return raft::div_rounding_up_unsafe(dim(), pq_dim()); - } - /** The number of vectors in a PQ codebook (`1 << pq_bits`). */ - [[nodiscard]] constexpr inline auto pq_book_size() const noexcept -> uint32_t - { - return 1 << pq_bits(); - } - /** Distance metric used for clustering. */ - [[nodiscard]] constexpr inline auto metric() const noexcept -> raft::distance::DistanceType - { - return metric_; - } - /** How PQ codebooks are created. */ - [[nodiscard]] constexpr inline auto codebook_kind() const noexcept -> codebook_gen - { - return codebook_kind_; - } - /** Number of clusters/inverted lists (first level quantization). */ - [[nodiscard]] constexpr inline auto n_lists() const noexcept -> uint32_t { return n_lists_; } - /** Number of non-empty clusters/inverted lists. */ - [[nodiscard]] constexpr inline auto n_nonempty_lists() const noexcept -> uint32_t - { - return n_nonempty_lists_; - } - - // Don't allow copying the index for performance reasons (try avoiding copying data) - index(const index&) = delete; - index(index&&) = default; - auto operator=(const index&) -> index& = delete; - auto operator=(index&&) -> index& = default; - ~index() = default; - - /** Construct an empty index. It needs to be trained and then populated. */ - index(const handle_t& handle, - raft::distance::DistanceType metric, - codebook_gen codebook_kind, - uint32_t n_lists, - uint32_t dim, - uint32_t pq_bits = 8, - uint32_t pq_dim = 0, - uint32_t n_nonempty_lists = 0) - : knn::index(), - metric_(metric), - codebook_kind_(codebook_kind), - n_lists_(n_lists), - dim_(dim), - pq_bits_(pq_bits), - pq_dim_(pq_dim == 0 ? calculate_pq_dim(dim) : pq_dim), - n_nonempty_lists_(n_nonempty_lists), - pq_centers_{make_device_mdarray(handle, make_pq_centers_extents())}, - pq_dataset_{make_device_mdarray( - handle, make_extents(0, this->pq_dim() * this->pq_bits() / 8))}, - indices_{make_device_mdarray(handle, make_extents(0))}, - rotation_matrix_{ - make_device_mdarray(handle, make_extents(this->rot_dim(), this->dim()))}, - list_offsets_{make_device_mdarray(handle, make_extents(this->n_lists() + 1))}, - centers_{make_device_mdarray( - handle, make_extents(this->n_lists(), this->dim_ext()))}, - centers_rot_{make_device_mdarray( - handle, make_extents(this->n_lists(), this->rot_dim()))} - { - check_consistency(); - } - - /** Construct an empty index. It needs to be trained and then populated. */ - index(const handle_t& handle, - const index_params& params, - uint32_t dim, - uint32_t n_nonempty_lists = 0) - : index(handle, - params.metric, - params.codebook_kind, - params.n_lists, - dim, - params.pq_bits, - params.pq_dim, - n_nonempty_lists) - { - } - - /** - * Replace the content of the index with new uninitialized mdarrays to hold the indicated amount - * of data. - */ - void allocate(const handle_t& handle, IdxT index_size) - { - pq_dataset_ = - make_device_mdarray(handle, make_extents(index_size, pq_dataset_.extent(1))); - indices_ = make_device_mdarray(handle, make_extents(index_size)); - check_consistency(); - } - /** - * PQ cluster centers - * - * - codebook_gen::PER_SUBSPACE: [pq_dim , pq_book_size, pq_len] - * - codebook_gen::PER_CLUSTER: [n_lists, pq_book_size, pq_len] - */ - inline auto pq_centers() noexcept -> device_mdspan, row_major> - { - return pq_centers_.view(); - } - [[nodiscard]] inline auto pq_centers() const noexcept - -> device_mdspan, row_major> - { - return pq_centers_.view(); - } - - /** PQ-encoded data [size, pq_dim * pq_bits / 8]. */ - inline auto pq_dataset() noexcept -> device_mdspan, row_major> - { - return pq_dataset_.view(); - } - [[nodiscard]] inline auto pq_dataset() const noexcept - -> device_mdspan, row_major> - { - return pq_dataset_.view(); - } - - /** Inverted list indices: ids of items in the source data [size] */ - inline auto indices() noexcept -> device_mdspan, row_major> - { - return indices_.view(); - } - [[nodiscard]] inline auto indices() const noexcept - -> device_mdspan, row_major> - { - return indices_.view(); - } - - /** The transform matrix (original space -> rotated padded space) [rot_dim, dim] */ - inline auto rotation_matrix() noexcept -> device_mdspan, row_major> - { - return rotation_matrix_.view(); - } - [[nodiscard]] inline auto rotation_matrix() const noexcept - -> device_mdspan, row_major> - { - return rotation_matrix_.view(); - } - - /** - * Offsets into the lists [n_lists + 1]. - * The last value contains the total length of the index. - */ - inline auto list_offsets() noexcept -> device_mdspan, row_major> - { - return list_offsets_.view(); - } - [[nodiscard]] inline auto list_offsets() const noexcept - -> device_mdspan, row_major> - { - return list_offsets_.view(); - } - - /** Cluster centers corresponding to the lists in the original space [n_lists, dim_ext] */ - inline auto centers() noexcept -> device_mdspan, row_major> - { - return centers_.view(); - } - [[nodiscard]] inline auto centers() const noexcept - -> device_mdspan, row_major> - { - return centers_.view(); - } - - /** Cluster centers corresponding to the lists in the rotated space [n_lists, rot_dim] */ - inline auto centers_rot() noexcept -> device_mdspan, row_major> - { - return centers_rot_.view(); - } - [[nodiscard]] inline auto centers_rot() const noexcept - -> device_mdspan, row_major> - { - return centers_rot_.view(); - } +/** + * DISCLAIMER: this file is deprecated: use epsilon_neighborhood.cuh instead + */ - private: - raft::distance::DistanceType metric_; - codebook_gen codebook_kind_; - uint32_t n_lists_; - uint32_t dim_; - uint32_t pq_bits_; - uint32_t pq_dim_; - uint32_t n_nonempty_lists_; +#pragma once - device_mdarray, row_major> pq_centers_; - device_mdarray, row_major> pq_dataset_; - device_mdarray, row_major> indices_; - device_mdarray, row_major> rotation_matrix_; - device_mdarray, row_major> list_offsets_; - device_mdarray, row_major> centers_; - device_mdarray, row_major> centers_rot_; +#pragma message(__FILE__ \ + " is deprecated and will be removed in a future release." \ + " Please use the raft::neighbors version instead.") - /** Throw an error if the index content is inconsistent. */ - void check_consistency() - { - RAFT_EXPECTS(pq_bits() >= 4 && pq_bits() <= 8, - "`pq_bits` must be within closed range [4,8], but got %u.", - pq_bits()); - RAFT_EXPECTS((pq_bits() * pq_dim()) % 8 == 0, - "`pq_bits * pq_dim` must be a multiple of 8, but got %u * %u = %u.", - pq_bits(), - pq_dim(), - pq_bits() * pq_dim()); - } +#include - auto make_pq_centers_extents() -> extent_3d - { - switch (codebook_kind()) { - case codebook_gen::PER_SUBSPACE: - return make_extents(pq_dim(), pq_book_size(), pq_len()); - case codebook_gen::PER_CLUSTER: - return make_extents(n_lists(), pq_book_size(), pq_len()); - default: RAFT_FAIL("Unreachable code"); - } - } +namespace raft::spatial::knn::ivf_pq { - static inline auto calculate_pq_dim(uint32_t dim) -> uint32_t - { - // If the dimensionality is large enough, we can reduce it to improve performance - if (dim >= 128) { dim /= 2; } - // Round it down to 32 to improve performance. - uint32_t r = raft::round_down_safe(dim, 32); - if (r > 0) return r; - // If the dimensionality is really low, round it to the closest power-of-two - r = 1; - while ((r << 1) <= dim) { - r = r << 1; - } - return r; - } -}; +using raft::neighbors::ivf_pq::codebook_gen; +using raft::neighbors::ivf_pq::index; +using raft::neighbors::ivf_pq::index_params; +using raft::neighbors::ivf_pq::search_params; } // namespace raft::spatial::knn::ivf_pq diff --git a/cpp/include/raft/spatial/knn/specializations.cuh b/cpp/include/raft/spatial/knn/specializations.cuh index b1f174e716..0511bbbf6c 100644 --- a/cpp/include/raft/spatial/knn/specializations.cuh +++ b/cpp/include/raft/spatial/knn/specializations.cuh @@ -19,10 +19,10 @@ #pragma once -#include -#include -#include +#include +#include +#include -#include +#include #endif diff --git a/cpp/src/nn/specializations/ball_cover.cu b/cpp/src/nn/specializations/ball_cover.cu index 15af9f6e68..b608a1a865 100644 --- a/cpp/src/nn/specializations/ball_cover.cu +++ b/cpp/src/nn/specializations/ball_cover.cu @@ -14,28 +14,29 @@ * limitations under the License. */ -#include -#include +#include +#include // Ignore upstream specializations to avoid unnecessary recompiling +#ifdef RAFT_DISTANCE_COMPILED #include -#include -#include -#include +#endif + +#include +#include +#include #include -namespace raft { -namespace spatial { -namespace knn { +namespace raft::neighbors::ball_cover { template class BallCoverIndex; template class BallCoverIndex; -template void rbc_build_index( +template void build_index( const raft::handle_t& handle, BallCoverIndex& index); -template void rbc_knn_query( +template void knn_query( const raft::handle_t& handle, const BallCoverIndex& index, std::uint32_t k, @@ -46,7 +47,7 @@ template void rbc_knn_query( bool perform_post_filtering, float weight); -template void rbc_all_knn_query( +template void all_knn_query( const raft::handle_t& handle, BallCoverIndex& index, std::uint32_t k, @@ -55,6 +56,4 @@ template void rbc_all_knn_query( bool perform_post_filtering, float weight); -}; // namespace knn -}; // namespace spatial -}; // namespace raft +}; // namespace raft::neighbors::ball_cover diff --git a/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_one_2d.cu b/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_one_2d.cu index d2d729a52d..961af0b89c 100644 --- a/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_one_2d.cu +++ b/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_one_2d.cu @@ -15,8 +15,8 @@ */ #include +#include #include -#include namespace raft { namespace spatial { diff --git a/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_one_3d.cu b/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_one_3d.cu index 0b32d43ba9..daa509b5b1 100644 --- a/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_one_3d.cu +++ b/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_one_3d.cu @@ -15,8 +15,8 @@ */ #include +#include #include -#include namespace raft { namespace spatial { diff --git a/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_two_2d.cu b/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_two_2d.cu index 7c8f18859f..9487641945 100644 --- a/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_two_2d.cu +++ b/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_two_2d.cu @@ -15,8 +15,8 @@ */ #include +#include #include -#include namespace raft { namespace spatial { diff --git a/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_two_3d.cu b/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_two_3d.cu index 1ef071033c..c07ed45427 100644 --- a/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_two_3d.cu +++ b/cpp/src/nn/specializations/detail/ball_cover_lowdim_pass_two_3d.cu @@ -15,8 +15,8 @@ */ #include +#include #include -#include namespace raft { namespace spatial { diff --git a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_float_fast.cu b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_float_fast.cu index 52544995ad..21f0b3f976 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_float_fast.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_float_fast.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include #include diff --git a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_float_no_basediff.cu b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_float_no_basediff.cu index 8dbd0bf37f..78c7eebae0 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_float_no_basediff.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_float_no_basediff.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include #include diff --git a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_float_no_smem_lut.cu b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_float_no_smem_lut.cu index 7f141e377e..9cb8dddf13 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_float_no_smem_lut.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_float_no_smem_lut.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include #include diff --git a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8s_fast.cu b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8s_fast.cu index 570b9a83ae..079aa796c6 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8s_fast.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8s_fast.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include #include diff --git a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8s_no_basediff.cu b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8s_no_basediff.cu index 7d66dd1239..ed69e70116 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8s_no_basediff.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8s_no_basediff.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include #include diff --git a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8s_no_smem_lut.cu b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8s_no_smem_lut.cu index 2d07f1ec58..4e9d441910 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8s_no_smem_lut.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8s_no_smem_lut.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include #include diff --git a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8u_fast.cu b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8u_fast.cu index 964f8e1836..4ae2a073ce 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8u_fast.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8u_fast.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include #include diff --git a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8u_no_basediff.cu b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8u_no_basediff.cu index 338bfb16da..8277e41b5f 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8u_no_basediff.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8u_no_basediff.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include #include diff --git a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8u_no_smem_lut.cu b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8u_no_smem_lut.cu index 618812d8dd..f865ef167f 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8u_no_smem_lut.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_fp8u_no_smem_lut.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include #include diff --git a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_half_fast.cu b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_half_fast.cu index e12ea80b93..0627d7a2b8 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_half_fast.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_half_fast.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include #include diff --git a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_half_no_basediff.cu b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_half_no_basediff.cu index 4014c0322d..af761191ee 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_half_no_basediff.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_half_no_basediff.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include #include diff --git a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_half_no_smem_lut.cu b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_half_no_smem_lut.cu index 604527af9a..e24663ca0b 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_half_no_smem_lut.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_compute_similarity_half_no_smem_lut.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include #include diff --git a/cpp/src/nn/specializations/detail/ivfpq_search_float_int64_t.cu b/cpp/src/nn/specializations/detail/ivfpq_search_float_int64_t.cu index b3715b642d..a32147b2b1 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_search_float_int64_t.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_search_float_int64_t.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include namespace raft::spatial::knn::ivf_pq::detail { diff --git a/cpp/src/nn/specializations/detail/ivfpq_search_float_uint32_t.cu b/cpp/src/nn/specializations/detail/ivfpq_search_float_uint32_t.cu index adac4942ad..f3e80206e4 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_search_float_uint32_t.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_search_float_uint32_t.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include namespace raft::spatial::knn::ivf_pq::detail { diff --git a/cpp/src/nn/specializations/detail/ivfpq_search_float_uint64_t.cu b/cpp/src/nn/specializations/detail/ivfpq_search_float_uint64_t.cu index 44d4505e3d..e732646f99 100644 --- a/cpp/src/nn/specializations/detail/ivfpq_search_float_uint64_t.cu +++ b/cpp/src/nn/specializations/detail/ivfpq_search_float_uint64_t.cu @@ -14,7 +14,7 @@ * limitations under the License. */ -#include +#include namespace raft::spatial::knn::ivf_pq::detail { diff --git a/cpp/test/CMakeLists.txt b/cpp/test/CMakeLists.txt index a7f203ba6a..b10de9d1cc 100644 --- a/cpp/test/CMakeLists.txt +++ b/cpp/test/CMakeLists.txt @@ -209,29 +209,29 @@ if(BUILD_TESTS) OPTIONAL DIST NN ) - ConfigureTest(NAME SPARSE_NN_TEST + ConfigureTest(NAME SPARSE_NEIGHBORS_TEST PATH - test/sparse/connect_components.cu - test/sparse/knn.cu - test/sparse/knn_graph.cu + test/sparse/neighbors/connect_components.cu + test/sparse/neighbors/brute_force.cu + test/sparse/neighbors/knn_graph.cu OPTIONAL DIST NN ) - ConfigureTest(NAME SPATIAL_TEST + ConfigureTest(NAME NEIGHBORS_TEST PATH - test/spatial/ann_ivf_flat.cu - test/spatial/ann_ivf_pq/test_float_int64_t.cu - test/spatial/ann_ivf_pq/test_float_uint32_t.cu - test/spatial/ann_ivf_pq/test_float_uint64_t.cu - test/spatial/ann_ivf_pq/test_int8_t_uint64_t.cu - test/spatial/ann_ivf_pq/test_uint8_t_uint64_t.cu - test/spatial/knn.cu - test/spatial/fused_l2_knn.cu - test/spatial/haversine.cu - test/spatial/ball_cover.cu - test/spatial/epsilon_neighborhood.cu - test/spatial/faiss_mr.cu - test/spatial/selection.cu + test/neighbors/ann_ivf_flat.cu + test/neighbors/ann_ivf_pq/test_float_int64_t.cu + test/neighbors/ann_ivf_pq/test_float_uint32_t.cu + test/neighbors/ann_ivf_pq/test_float_uint64_t.cu + test/neighbors/ann_ivf_pq/test_int8_t_uint64_t.cu + test/neighbors/ann_ivf_pq/test_uint8_t_uint64_t.cu + test/neighbors/knn.cu + test/neighbors/fused_l2_knn.cu + test/neighbors/haversine.cu + test/neighbors/ball_cover.cu + test/neighbors/epsilon_neighborhood.cu + test/neighbors/faiss_mr.cu + test/neighbors/selection.cu OPTIONAL DIST NN ) diff --git a/cpp/test/spatial/ann_ivf_flat.cu b/cpp/test/neighbors/ann_ivf_flat.cu similarity index 100% rename from cpp/test/spatial/ann_ivf_flat.cu rename to cpp/test/neighbors/ann_ivf_flat.cu diff --git a/cpp/test/spatial/ann_ivf_pq.cuh b/cpp/test/neighbors/ann_ivf_pq.cuh similarity index 100% rename from cpp/test/spatial/ann_ivf_pq.cuh rename to cpp/test/neighbors/ann_ivf_pq.cuh diff --git a/cpp/test/spatial/ann_ivf_pq/test_float_int64_t.cu b/cpp/test/neighbors/ann_ivf_pq/test_float_int64_t.cu similarity index 100% rename from cpp/test/spatial/ann_ivf_pq/test_float_int64_t.cu rename to cpp/test/neighbors/ann_ivf_pq/test_float_int64_t.cu diff --git a/cpp/test/spatial/ann_ivf_pq/test_float_uint32_t.cu b/cpp/test/neighbors/ann_ivf_pq/test_float_uint32_t.cu similarity index 100% rename from cpp/test/spatial/ann_ivf_pq/test_float_uint32_t.cu rename to cpp/test/neighbors/ann_ivf_pq/test_float_uint32_t.cu diff --git a/cpp/test/spatial/ann_ivf_pq/test_float_uint64_t.cu b/cpp/test/neighbors/ann_ivf_pq/test_float_uint64_t.cu similarity index 100% rename from cpp/test/spatial/ann_ivf_pq/test_float_uint64_t.cu rename to cpp/test/neighbors/ann_ivf_pq/test_float_uint64_t.cu diff --git a/cpp/test/spatial/ann_ivf_pq/test_int8_t_uint64_t.cu b/cpp/test/neighbors/ann_ivf_pq/test_int8_t_uint64_t.cu similarity index 100% rename from cpp/test/spatial/ann_ivf_pq/test_int8_t_uint64_t.cu rename to cpp/test/neighbors/ann_ivf_pq/test_int8_t_uint64_t.cu diff --git a/cpp/test/spatial/ann_ivf_pq/test_uint8_t_uint64_t.cu b/cpp/test/neighbors/ann_ivf_pq/test_uint8_t_uint64_t.cu similarity index 100% rename from cpp/test/spatial/ann_ivf_pq/test_uint8_t_uint64_t.cu rename to cpp/test/neighbors/ann_ivf_pq/test_uint8_t_uint64_t.cu diff --git a/cpp/test/spatial/ann_utils.cuh b/cpp/test/neighbors/ann_utils.cuh similarity index 100% rename from cpp/test/spatial/ann_utils.cuh rename to cpp/test/neighbors/ann_utils.cuh diff --git a/cpp/test/spatial/ball_cover.cu b/cpp/test/neighbors/ball_cover.cu similarity index 96% rename from cpp/test/spatial/ball_cover.cu rename to cpp/test/neighbors/ball_cover.cu index d9ad9cc358..47030b0d62 100644 --- a/cpp/test/spatial/ball_cover.cu +++ b/cpp/test/neighbors/ball_cover.cu @@ -18,12 +18,12 @@ #include "spatial_data.h" #include #include +#include #include -#include #include #include #if defined RAFT_NN_COMPILED -#include +#include #endif #include @@ -38,10 +38,7 @@ #include #include -namespace raft { -namespace spatial { -namespace knn { - +namespace raft::neighbors::ball_cover { using namespace std; template @@ -214,9 +211,8 @@ class BallCoverKNNQueryTest : public ::testing::TestWithParam index(handle, X_view, metric); - raft::spatial::knn::rbc_build_index(handle, index); - raft::spatial::knn::rbc_knn_query( - handle, index, X2_view, d_pred_I_view, d_pred_D_view, k, true); + build_index(handle, index); + knn_query(handle, index, X2_view, d_pred_I_view, d_pred_D_view, k, true); handle.sync_stream(); // What we really want are for the distances to match exactly. The @@ -304,7 +300,7 @@ class BallCoverAllKNNTest : public ::testing::TestWithParam index(handle, X_view, metric); - raft::spatial::knn::rbc_all_knn_query(handle, index, d_pred_I_view, d_pred_D_view, k, true); + all_knn_query(handle, index, d_pred_I_view, d_pred_D_view, k, true); handle.sync_stream(); // What we really want are for the distances to match exactly. The @@ -365,6 +361,4 @@ INSTANTIATE_TEST_CASE_P(BallCoverKNNQueryTest, TEST_P(BallCoverAllKNNTestF, Fit) { basicTest(); } TEST_P(BallCoverKNNQueryTestF, Fit) { basicTest(); } -} // namespace knn -} // namespace spatial -} // namespace raft +} // namespace raft::neighbors::ball_cover \ No newline at end of file diff --git a/cpp/test/spatial/epsilon_neighborhood.cu b/cpp/test/neighbors/epsilon_neighborhood.cu similarity index 100% rename from cpp/test/spatial/epsilon_neighborhood.cu rename to cpp/test/neighbors/epsilon_neighborhood.cu diff --git a/cpp/test/spatial/faiss_mr.cu b/cpp/test/neighbors/faiss_mr.cu similarity index 100% rename from cpp/test/spatial/faiss_mr.cu rename to cpp/test/neighbors/faiss_mr.cu diff --git a/cpp/test/spatial/fused_l2_knn.cu b/cpp/test/neighbors/fused_l2_knn.cu similarity index 99% rename from cpp/test/spatial/fused_l2_knn.cu rename to cpp/test/neighbors/fused_l2_knn.cu index ef032ed442..b22d10bf54 100644 --- a/cpp/test/spatial/fused_l2_knn.cu +++ b/cpp/test/neighbors/fused_l2_knn.cu @@ -26,7 +26,7 @@ #include #if defined RAFT_NN_COMPILED -#include +#include #endif #include diff --git a/cpp/test/spatial/haversine.cu b/cpp/test/neighbors/haversine.cu similarity index 100% rename from cpp/test/spatial/haversine.cu rename to cpp/test/neighbors/haversine.cu diff --git a/cpp/test/spatial/knn.cu b/cpp/test/neighbors/knn.cu similarity index 95% rename from cpp/test/spatial/knn.cu rename to cpp/test/neighbors/knn.cu index 5807705038..710950e312 100644 --- a/cpp/test/spatial/knn.cu +++ b/cpp/test/neighbors/knn.cu @@ -19,9 +19,9 @@ #include #include #include -#include +#include #if defined RAFT_NN_COMPILED -#include +#include #endif #include @@ -32,9 +32,7 @@ #include #include -namespace raft { -namespace spatial { -namespace knn { +namespace raft::neighbors::brute_force { struct KNNInputs { std::vector> input; int k; @@ -96,7 +94,7 @@ class KNNTest : public ::testing::TestWithParam { auto distances = raft::make_device_matrix_view(distances_.data(), rows_, k_); - brute_force_knn(handle, index, search, indices, distances, k_); + knn(handle, index, search, indices, distances, k_); build_actual_output<<>>( actual_labels_.data(), rows_, k_, search_labels_.data(), indices_.data()); @@ -197,6 +195,4 @@ TEST_P(KNNTestFuint32_t, BruteForce) { this->testBruteForce(); } INSTANTIATE_TEST_CASE_P(KNNTest, KNNTestFint64_t, ::testing::ValuesIn(inputs)); INSTANTIATE_TEST_CASE_P(KNNTest, KNNTestFuint32_t, ::testing::ValuesIn(inputs)); -} // namespace knn -} // namespace spatial -} // namespace raft +} // namespace raft::neighbors::brute_force diff --git a/cpp/test/spatial/selection.cu b/cpp/test/neighbors/selection.cu similarity index 99% rename from cpp/test/spatial/selection.cu rename to cpp/test/neighbors/selection.cu index 7b1f92f182..bfcfca5ead 100644 --- a/cpp/test/spatial/selection.cu +++ b/cpp/test/neighbors/selection.cu @@ -25,7 +25,7 @@ #include #include #if defined RAFT_NN_COMPILED -#include +#include #endif namespace raft::spatial::selection { diff --git a/cpp/test/spatial/spatial_data.h b/cpp/test/neighbors/spatial_data.h similarity index 100% rename from cpp/test/spatial/spatial_data.h rename to cpp/test/neighbors/spatial_data.h diff --git a/cpp/test/sparse/knn.cu b/cpp/test/sparse/neighbors/brute_force.cu similarity index 75% rename from cpp/test/sparse/knn.cu rename to cpp/test/sparse/neighbors/brute_force.cu index 6717ba411d..8fa5e8322d 100644 --- a/cpp/test/sparse/knn.cu +++ b/cpp/test/sparse/neighbors/brute_force.cu @@ -17,9 +17,9 @@ #include #include -#include "../test_utils.h" +#include "../../test_utils.h" #include -#include +#include #include @@ -79,25 +79,25 @@ class SparseKNNTest : public ::testing::TestWithParam(indptr.data(), - indices.data(), - data.data(), - nnz, - n_rows, - params.n_cols, - indptr.data(), - indices.data(), - data.data(), - nnz, - n_rows, - params.n_cols, - out_indices.data(), - out_dists.data(), - k, - handle, - params.batch_size_index, - params.batch_size_query, - params.metric); + raft::sparse::neighbors::brute_force_knn(indptr.data(), + indices.data(), + data.data(), + nnz, + n_rows, + params.n_cols, + indptr.data(), + indices.data(), + data.data(), + nnz, + n_rows, + params.n_cols, + out_indices.data(), + out_dists.data(), + k, + handle, + params.batch_size_index, + params.batch_size_query, + params.metric); RAFT_CUDA_TRY(cudaStreamSynchronize(handle.get_stream())); } diff --git a/cpp/test/sparse/connect_components.cu b/cpp/test/sparse/neighbors/connect_components.cu similarity index 97% rename from cpp/test/sparse/connect_components.cu rename to cpp/test/sparse/neighbors/connect_components.cu index 6278e7ef80..fc4eecd4ee 100644 --- a/cpp/test/sparse/connect_components.cu +++ b/cpp/test/sparse/neighbors/connect_components.cu @@ -24,8 +24,8 @@ #include #include +#include #include -#include #include #include @@ -34,7 +34,7 @@ #include #include -#include "../test_utils.h" +#include "../../test_utils.h" namespace raft { namespace sparse { @@ -75,13 +75,13 @@ class ConnectComponentsTest */ raft::sparse::COO knn_graph_coo(stream); - raft::sparse::spatial::knn_graph(handle, - data.data(), - params.n_row, - params.n_col, - raft::distance::DistanceType::L2SqrtExpanded, - knn_graph_coo, - params.c); + raft::sparse::neighbors::knn_graph(handle, + data.data(), + params.n_row, + params.n_col, + raft::distance::DistanceType::L2SqrtExpanded, + knn_graph_coo, + params.c); raft::sparse::convert::sorted_coo_to_csr( knn_graph_coo.rows(), knn_graph_coo.nnz, indptr.data(), params.n_row + 1, stream); diff --git a/cpp/test/sparse/knn_graph.cu b/cpp/test/sparse/neighbors/knn_graph.cu similarity index 96% rename from cpp/test/sparse/knn_graph.cu rename to cpp/test/sparse/neighbors/knn_graph.cu index 47c1819e79..d6f9e8386f 100644 --- a/cpp/test/sparse/knn_graph.cu +++ b/cpp/test/sparse/neighbors/knn_graph.cu @@ -14,14 +14,14 @@ * limitations under the License. */ -#include "../test_utils.h" +#include "../../test_utils.h" #include #include #include #include #include -#include +#include #if defined RAFT_NN_COMPILED #include #endif @@ -77,7 +77,7 @@ class KNNGraphTest : public ::testing::TestWithParam sum(stream);