diff --git a/cpp/include/raft/random/rmat_rectangular_generator.cuh b/cpp/include/raft/random/rmat_rectangular_generator.cuh index aad1cf0c88..89a2690bfa 100644 --- a/cpp/include/raft/random/rmat_rectangular_generator.cuh +++ b/cpp/include/raft/random/rmat_rectangular_generator.cuh @@ -18,42 +18,110 @@ #include "detail/rmat_rectangular_generator.cuh" +#include + namespace raft::random { /** - * @brief Generate RMAT for a rectangular shaped adjacency matrices (useful when + * @brief Generate RMAT for a rectangular adjacency matrix (useful when * graphs to be generated are bipartite) * - * @tparam IdxT node indices type + * @tparam IdxT type of each node index * @tparam ProbT data type used for probability distributions (either fp32 or fp64) * - * @param[out] out generated edgelist [on device] [dim = n_edges x 2]. On each row - * the first element corresponds to the source node id while the - * second, the destination node id. If you don't need this output + * @param[in] handle RAFT handle, containing the CUDA stream on which to schedule work + * @param[in] r underlying state of the random generator. Especially useful when + * one wants to call this API for multiple times in order to generate + * a larger graph. For that case, just create this object with the + * initial seed once and after every call continue to pass the same + * object for the successive calls. + * @param[out] out generated edgelist [on device] [dim = n_edges x 2]. In each row + * the first element is the source node id, and the second element + * is the destination node id. If you don't need this output * then pass a `nullptr` in its place. * @param[out] out_src list of source node id's [on device] [len = n_edges]. If you * don't need this output then pass a `nullptr` in its place. * @param[out] out_dst list of destination node id's [on device] [len = n_edges]. If * you don't need this output then pass a `nullptr` in its place. * @param[in] theta distribution of each quadrant at each level of resolution. - * Since these are probabilities, each of the 2x2 matrix for + * Since these are probabilities, each of the 2x2 matrices for * each level of the RMAT must sum to one. [on device] * [dim = max(r_scale, c_scale) x 2 x 2]. Of course, it is assumed * that each of the group of 2 x 2 numbers all sum up to 1. * @param[in] r_scale 2^r_scale represents the number of source nodes * @param[in] c_scale 2^c_scale represents the number of destination nodes * @param[in] n_edges number of edges to generate - * @param[in] stream cuda stream to schedule the work on + * + * We call the `r_scale != c_scale` case the "rectangular adjacency matrix" case (IOW generating + * bipartite graphs). In this case, at `depth >= r_scale`, the distribution is assumed to be: + * `[theta[4 * depth] + theta[4 * depth + 2], theta[4 * depth + 1] + theta[4 * depth + 3]; 0, 0]`. + * Then for `depth >= c_scale`, the distribution is assumed to be: + * `[theta[4 * depth] + theta[4 * depth + 1], 0; theta[4 * depth + 2] + theta[4 * depth + 3], 0]`. + * + * @note This can generate duplicate edges and self-loops. It is the responsibility of the + * caller to clean them up accordingly. + + * @note This also only generates directed graphs. If undirected graphs are needed, then a + * separate post-processing step is expected to be done by the caller. + * + * @{ + */ +template +void rmat_rectangular_gen(const raft::handle_t& handle, + raft::random::RngState& r, + raft::device_vector_view out, + raft::device_vector_view out_src, + raft::device_vector_view out_dst, + raft::device_vector_view theta, + IdxT r_scale, + IdxT c_scale, + IdxT n_edges) +{ + detail::rmat_rectangular_gen_caller(out.data_handle(), + out_src.data_handle(), + out_dst.data_handle(), + theta.data_handle(), + r_scale, + c_scale, + n_edges, + handle.get_stream(), + r); +} + +/** + * @brief Generate RMAT for a rectangular adjacency matrix (useful when + * graphs to be generated are bipartite) + * + * @tparam IdxT type of each node index + * @tparam ProbT data type used for probability distributions (either fp32 or fp64) + * + * @param[out] out generated edgelist [on device] [dim = n_edges x 2]. In each row + * the first element is the source node id, and the second element + * is the destination node id. If you don't need this output + * then pass a `nullptr` in its place. + * @param[out] out_src list of source node id's [on device] [len = n_edges]. If you + * don't need this output then pass a `nullptr` in its place. + * @param[out] out_dst list of destination node id's [on device] [len = n_edges]. If + * you don't need this output then pass a `nullptr` in its place. + * @param[in] theta distribution of each quadrant at each level of resolution. + * Since these are probabilities, each of the 2x2 matrices for + * each level of the RMAT must sum to one. [on device] + * [dim = max(r_scale, c_scale) x 2 x 2]. Of course, it is assumed + * that each of the group of 2 x 2 numbers all sum up to 1. + * @param[in] r_scale 2^r_scale represents the number of source nodes + * @param[in] c_scale 2^c_scale represents the number of destination nodes + * @param[in] n_edges number of edges to generate + * @param[in] stream cuda stream on which to schedule the work * @param[in] r underlying state of the random generator. Especially useful when * one wants to call this API for multiple times in order to generate * a larger graph. For that case, just create this object with the * initial seed once and after every call continue to pass the same * object for the successive calls. * - * When `r_scale != c_scale` it is referred to as rectangular adjacency matrix case (IOW generating + * We call the `r_scale != c_scale` case the "rectangular adjacency matrix" case (IOW generating * bipartite graphs). In this case, at `depth >= r_scale`, the distribution is assumed to be: * `[theta[4 * depth] + theta[4 * depth + 2], theta[4 * depth + 1] + theta[4 * depth + 3]; 0, 0]`. - * Then for the `depth >= c_scale`, the distribution is assumed to be: + * Then for `depth >= c_scale`, the distribution is assumed to be: * `[theta[4 * depth] + theta[4 * depth + 1], 0; theta[4 * depth + 2] + theta[4 * depth + 3], 0]`. * * @note This can generate duplicate edges and self-loops. It is the responsibility of the @@ -61,8 +129,6 @@ namespace raft::random { * @note This also only generates directed graphs. If undirected graphs are needed, then a * separate post-processing step is expected to be done by the caller. - * - * @{ */ template void rmat_rectangular_gen(IdxT* out, @@ -99,6 +165,36 @@ void rmat_rectangular_gen(IdxT* out, detail::rmat_rectangular_gen_caller( out, out_src, out_dst, a, b, c, r_scale, c_scale, n_edges, stream, r); } + +/** + * This is the same as the previous method but assumes the same a, b, c, d probability + * distributions across all the scales + */ +template +void rmat_rectangular_gen(const raft::handle_t& handle, + raft::random::RngState& r, + raft::device_vector_view out, + raft::device_vector_view out_src, + raft::device_vector_view out_dst, + ProbT a, + ProbT b, + ProbT c, + IdxT r_scale, + IdxT c_scale, + IdxT n_edges) +{ + detail::rmat_rectangular_gen_caller(out.data_handle(), + out_src.data_handle(), + out_dst.data_handle(), + a, + b, + c, + r_scale, + c_scale, + n_edges, + handle.get_stream(), + r); +} /** @} */ } // end namespace raft::random diff --git a/cpp/test/random/rmat_rectangular_generator.cu b/cpp/test/random/rmat_rectangular_generator.cu index 194f89dd65..0230952205 100644 --- a/cpp/test/random/rmat_rectangular_generator.cu +++ b/cpp/test/random/rmat_rectangular_generator.cu @@ -253,6 +253,105 @@ class RmatGenTest : public ::testing::TestWithParam { size_t max_scale; }; +class RmatGenMdspanTest : public ::testing::TestWithParam { + public: + RmatGenMdspanTest() + : handle{}, + stream{handle.get_stream()}, + params{::testing::TestWithParam::GetParam()}, + out{params.n_edges * 2, stream}, + out_src{params.n_edges, stream}, + out_dst{params.n_edges, stream}, + theta{0, stream}, + h_theta{}, + state{params.seed, GeneratorType::GenPC}, + max_scale{std::max(params.r_scale, params.c_scale)} + { + theta.resize(4 * max_scale, stream); + uniform(state, theta.data(), theta.size(), 0.0f, 1.0f, stream); + normalize(theta.data(), + theta.data(), + max_scale, + params.r_scale, + params.c_scale, + params.r_scale != params.c_scale, + params.theta_array, + stream); + h_theta.resize(theta.size()); + RAFT_CUDA_TRY(cudaStreamSynchronize(stream)); + raft::update_host(h_theta.data(), theta.data(), theta.size(), stream); + RAFT_CUDA_TRY(cudaStreamSynchronize(stream)); + } + + protected: + void SetUp() override + { + using index_type = size_t; + raft::device_vector_view out_view(out.data(), out.size()); + raft::device_vector_view out_src_view(out_src.data(), out_src.size()); + raft::device_vector_view out_dst_view(out_dst.data(), out_dst.size()); + + if (params.theta_array) { + raft::device_vector_view theta_view(theta.data(), theta.size()); + rmat_rectangular_gen(handle, + state, + out_view, + out_src_view, + out_dst_view, + theta_view, + params.r_scale, + params.c_scale, + params.n_edges); + } else { + rmat_rectangular_gen(handle, + state, + out_view, + out_src_view, + out_dst_view, + h_theta[0], + h_theta[1], + h_theta[2], + params.r_scale, + params.c_scale, + params.n_edges); + } + RAFT_CUDA_TRY(cudaStreamSynchronize(stream)); + } + + void validate() + { + rmm::device_uvector hist{theta.size(), stream}; + RAFT_CUDA_TRY(cudaMemsetAsync(hist.data(), 0, hist.size() * sizeof(int), stream)); + compute_hist<<(out.size() / 2, 256), 256, 0, stream>>>( + hist.data(), out.data(), out.size(), max_scale, params.r_scale, params.c_scale); + RAFT_CUDA_TRY(cudaGetLastError()); + rmm::device_uvector computed_theta{theta.size(), stream}; + normalize(computed_theta.data(), + hist.data(), + max_scale, + params.r_scale, + params.c_scale, + false, + true, + stream); + RAFT_CUDA_TRY(cudaGetLastError()); + RAFT_CUDA_TRY(cudaStreamSynchronize(stream)); + ASSERT_TRUE(devArrMatchHost( + h_theta.data(), computed_theta.data(), theta.size(), CompareApprox(params.eps))); + } + + protected: + raft::handle_t handle; + cudaStream_t stream; + + RmatInputs params; + rmm::device_uvector out, out_src, out_dst; + rmm::device_uvector theta; + std::vector h_theta; + RngState state; + size_t max_scale; +}; + static const float TOLERANCE = 0.01f; const std::vector inputs = { @@ -287,5 +386,8 @@ const std::vector inputs = { TEST_P(RmatGenTest, Result) { validate(); } INSTANTIATE_TEST_SUITE_P(RmatGenTests, RmatGenTest, ::testing::ValuesIn(inputs)); +TEST_P(RmatGenMdspanTest, Result) { validate(); } +INSTANTIATE_TEST_SUITE_P(RmatGenMdspanTests, RmatGenMdspanTest, ::testing::ValuesIn(inputs)); + } // namespace random } // namespace raft