diff --git a/README.md b/README.md index fd81257bb..d406bbe6c 100644 --- a/README.md +++ b/README.md @@ -105,6 +105,8 @@ Below is the list of algorithms that are currently supported in nx-cugraph.
bipartite + ├─ centrality + │ └─ betweenness_centrality └─ generators └─ complete_bipartite_graph centrality diff --git a/_nx_cugraph/__init__.py b/_nx_cugraph/__init__.py index 6b905e8db..a52583d4d 100644 --- a/_nx_cugraph/__init__.py +++ b/_nx_cugraph/__init__.py @@ -60,6 +60,7 @@ "bfs_successors", "bfs_tree", "bidirectional_shortest_path", + "bipartite_betweenness_centrality", "bull_graph", "caveman_graph", "chvatal_graph", diff --git a/benchmarks/pytest-based/bench_algos.py b/benchmarks/pytest-based/bench_algos.py index 6549c7a61..3a9a171cf 100644 --- a/benchmarks/pytest-based/bench_algos.py +++ b/benchmarks/pytest-based/bench_algos.py @@ -875,6 +875,27 @@ def bench_ego_graph(benchmark, graph_obj, backend_wrapper): assert type(result) is type(G) +def bench_bipartite_BC_n1000_m3000_k100000(benchmark, backend_wrapper): + # Example how to run: + # $ pytest -sv -k "bench_bipartite_BC" \ + # --benchmark-json="logs/None__bipartite_BC__None.json" \ + # bench_algos.py + n = 1000 + m = 3000 + k = 100000 + graph_obj = nx.bipartite.generators.gnmk_random_graph(n, m, k) + G = get_graph_obj_for_benchmark(graph_obj, backend_wrapper) + nodes = list(range(n)) + result = benchmark.pedantic( + target=backend_wrapper(nx.bipartite.betweenness_centrality), + args=(G, nodes), + rounds=rounds, + iterations=iterations, + warmup_rounds=warmup_rounds, + ) + assert type(result) is dict + + @pytest.mark.skip(reason="benchmark not implemented") def bench_complete_bipartite_graph(benchmark, graph_obj, backend_wrapper): pass diff --git a/nx_cugraph/algorithms/bipartite/__init__.py b/nx_cugraph/algorithms/bipartite/__init__.py index bfc7f1d4d..ce5e47ead 100644 --- a/nx_cugraph/algorithms/bipartite/__init__.py +++ b/nx_cugraph/algorithms/bipartite/__init__.py @@ -10,4 +10,6 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + +from .centrality import * from .generators import * diff --git a/nx_cugraph/algorithms/bipartite/centrality.py b/nx_cugraph/algorithms/bipartite/centrality.py new file mode 100644 index 000000000..7e4b0baa9 --- /dev/null +++ b/nx_cugraph/algorithms/bipartite/centrality.py @@ -0,0 +1,62 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import cupy as cp +import pylibcugraph as plc + +from nx_cugraph.convert import _to_graph +from nx_cugraph.utils import networkx_algorithm + +__all__ = ["betweenness_centrality"] + + +@networkx_algorithm( + name="bipartite_betweenness_centrality", + version_added="24.12", + _plc="betweenness_centrality", +) +def betweenness_centrality(G, nodes): + G = _to_graph(G) + + node_ids, values = plc.betweenness_centrality( + resource_handle=plc.ResourceHandle(), + graph=G._get_plc_graph(), + k=None, + random_state=None, + normalized=False, + include_endpoints=False, + do_expensive_check=False, + ) + top_node_ids = G._nodekeys_to_nodearray(set(nodes)) + bottom_node_ids = cp.delete(cp.arange(G._N, dtype=top_node_ids.dtype), top_node_ids) + n = top_node_ids.size + m = bottom_node_ids.size + s, t = divmod(n - 1, m) + bet_max_top = ( + ((m**2) * ((s + 1) ** 2)) + + (m * (s + 1) * (2 * t - s - 1)) + - (t * ((2 * s) - t + 3)) + ) / 2.0 + p, r = divmod(m - 1, n) + bet_max_bot = ( + ((n**2) * ((p + 1) ** 2)) + + (n * (p + 1) * (2 * r - p - 1)) + - (r * ((2 * p) - r + 3)) + ) / 2.0 + + values = values[cp.argsort(node_ids)] + + values[top_node_ids] /= bet_max_top + values[bottom_node_ids] /= bet_max_bot + + return G._nodearray_to_dict(values)