-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
144 lines (128 loc) · 4.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import os
import pickle
import time
import numpy as np
import torch
import torch.optim as optim
from dataset import LanderDataset
from models import LANDER
import dgl
###########
# ArgParser
parser = argparse.ArgumentParser()
# Dataset
parser.add_argument("--data_path", type=str, required=True)
parser.add_argument("--test_data_path", type=str, required=True)
parser.add_argument("--levels", type=str, default="1")
parser.add_argument("--faiss_gpu", action="store_true")
parser.add_argument("--model_filename", type=str, default="lander.pth")
# KNN
parser.add_argument("--knn_k", type=str, default="10")
# Model
parser.add_argument("--hidden", type=int, default=512)
parser.add_argument("--num_conv", type=int, default=4)
parser.add_argument("--dropout", type=float, default=0.0)
parser.add_argument("--gat", action="store_true")
parser.add_argument("--gat_k", type=int, default=1)
parser.add_argument("--balance", action="store_true")
parser.add_argument("--use_cluster_feat", action="store_true")
parser.add_argument("--use_focal_loss", action="store_true")
# Training
parser.add_argument("--epochs", type=int, default=100)
parser.add_argument("--lr", type=float, default=0.1)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--weight_decay", type=float, default=1e-5)
args = parser.parse_args()
###########################
# Environment Configuration
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
##################
# Data Preparation
def prepare_dataset_graphs(data_path, k_list, lvl_list):
with open(data_path, "rb") as f:
features, labels = pickle.load(f)
gs = []
for k, l in zip(k_list, lvl_list):
dataset = LanderDataset(
features=features,
labels=labels,
k=k,
levels=l,
faiss_gpu=args.faiss_gpu,
)
gs += [g.to(device) for g in dataset.gs]
return gs
k_list = [int(k) for k in args.knn_k.split(",")]
lvl_list = [int(l) for l in args.levels.split(",")]
gs = prepare_dataset_graphs(args.data_path, k_list, lvl_list)
test_gs = prepare_dataset_graphs(args.test_data_path, k_list, lvl_list)
##################
# Model Definition
feature_dim = gs[0].ndata["features"].shape[1]
model = LANDER(
feature_dim=feature_dim,
nhid=args.hidden,
num_conv=args.num_conv,
dropout=args.dropout,
use_GAT=args.gat,
K=args.gat_k,
balance=args.balance,
use_cluster_feat=args.use_cluster_feat,
use_focal_loss=args.use_focal_loss,
)
model = model.to(device)
model.train()
best_model = None
best_loss = np.Inf
#################
# Hyperparameters
opt = optim.SGD(
model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
scheduler = optim.lr_scheduler.CosineAnnealingLR(
opt, T_max=args.epochs, eta_min=1e-5
)
###############
# Training Loop
for epoch in range(args.epochs):
all_loss_den_val = 0
all_loss_conn_val = 0
for g in gs:
opt.zero_grad()
g = model(g)
loss, loss_den_val, loss_conn_val = model.compute_loss(g)
all_loss_den_val += loss_den_val
all_loss_conn_val += loss_conn_val
loss.backward()
opt.step()
scheduler.step()
print(
"Training, epoch: %d, loss_den: %.6f, loss_conn: %.6f"
% (epoch, all_loss_den_val, all_loss_conn_val)
)
# Report test
all_test_loss_den_val = 0
all_test_loss_conn_val = 0
with torch.no_grad():
for g in test_gs:
g = model(g)
loss, loss_den_val, loss_conn_val = model.compute_loss(g)
all_test_loss_den_val += loss_den_val
all_test_loss_conn_val += loss_conn_val
print(
"Testing, epoch: %d, loss_den: %.6f, loss_conn: %.6f"
% (epoch, all_test_loss_den_val, all_test_loss_conn_val)
)
if all_test_loss_conn_val + all_test_loss_den_val < best_loss:
best_loss = all_test_loss_conn_val + all_test_loss_den_val
print("New best epoch", epoch)
torch.save(model.state_dict(), args.model_filename + "_best")
torch.save(model.state_dict(), args.model_filename)
torch.save(model.state_dict(), args.model_filename)