-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
40 lines (35 loc) · 1.11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
"""
Graph Representation Learning via Hard Attention Networks in DGL using Adam optimization.
References
----------
Paper: https://arxiv.org/abs/1907.04652
"""
import numpy as np
import torch
import torch.nn as nn
class EarlyStopping:
def __init__(self, patience=10):
self.patience = patience
self.counter = 0
self.best_score = None
self.early_stop = False
def step(self, acc, model):
score = acc
if self.best_score is None:
self.best_score = score
self.save_checkpoint(model)
elif score < self.best_score:
self.counter += 1
print(
f"EarlyStopping counter: {self.counter} out of {self.patience}"
)
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(model)
self.counter = 0
return self.early_stop
def save_checkpoint(self, model):
"""Saves model when validation loss decrease."""
torch.save(model.state_dict(), "es_checkpoint.pt")