-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgaan.py
153 lines (140 loc) · 6.11 KB
/
gaan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import torch
import torch.nn as nn
import dgl
import dgl.function as fn
import dgl.nn as dglnn
from dgl.base import DGLError
from dgl.nn.functional import edge_softmax
class WeightedGATConv(dglnn.GATConv):
"""
This model inherit from dgl GATConv for traffic prediction task,
it add edge weight when aggregating the node feature.
"""
def forward(self, graph, feat, get_attention=False):
with graph.local_scope():
if not self._allow_zero_in_degree:
if (graph.in_degrees() == 0).any():
raise DGLError(
"There are 0-in-degree nodes in the graph, "
"output for those nodes will be invalid. "
"This is harmful for some applications, "
"causing silent performance regression. "
"Adding self-loop on the input graph by "
"calling `g = dgl.add_self_loop(g)` will resolve "
"the issue. Setting ``allow_zero_in_degree`` "
"to be `True` when constructing this module will "
"suppress the check and let the code run."
)
if isinstance(feat, tuple):
h_src = self.feat_drop(feat[0])
h_dst = self.feat_drop(feat[1])
if not hasattr(self, "fc_src"):
feat_src = self.fc(h_src).view(
-1, self._num_heads, self._out_feats
)
feat_dst = self.fc(h_dst).view(
-1, self._num_heads, self._out_feats
)
else:
feat_src = self.fc_src(h_src).view(
-1, self._num_heads, self._out_feats
)
feat_dst = self.fc_dst(h_dst).view(
-1, self._num_heads, self._out_feats
)
else:
h_src = h_dst = self.feat_drop(feat)
feat_src = feat_dst = self.fc(h_src).view(
-1, self._num_heads, self._out_feats
)
if graph.is_block:
feat_dst = feat_src[: graph.number_of_dst_nodes()]
# NOTE: GAT paper uses "first concatenation then linear projection"
# to compute attention scores, while ours is "first projection then
# addition", the two approaches are mathematically equivalent:
# We decompose the weight vector a mentioned in the paper into
# [a_l || a_r], then
# a^T [Wh_i || Wh_j] = a_l Wh_i + a_r Wh_j
# Our implementation is much efficient because we do not need to
# save [Wh_i || Wh_j] on edges, which is not memory-efficient. Plus,
# addition could be optimized with DGL's built-in function u_add_v,
# which further speeds up computation and saves memory footprint.
el = (feat_src * self.attn_l).sum(dim=-1).unsqueeze(-1)
er = (feat_dst * self.attn_r).sum(dim=-1).unsqueeze(-1)
graph.srcdata.update({"ft": feat_src, "el": el})
graph.dstdata.update({"er": er})
# compute edge attention, el and er are a_l Wh_i and a_r Wh_j respectively.
graph.apply_edges(fn.u_add_v("el", "er", "e"))
e = self.leaky_relu(graph.edata.pop("e"))
# compute softmax
graph.edata["a"] = self.attn_drop(edge_softmax(graph, e))
# compute weighted attention
graph.edata["a"] = (
graph.edata["a"].permute(1, 2, 0) * graph.edata["weight"]
).permute(2, 0, 1)
# message passing
graph.update_all(fn.u_mul_e("ft", "a", "m"), fn.sum("m", "ft"))
rst = graph.dstdata["ft"]
# residual
if self.res_fc is not None:
resval = self.res_fc(h_dst).view(
h_dst.shape[0], -1, self._out_feats
)
rst = rst + resval
# activation
if self.activation:
rst = self.activation(rst)
if get_attention:
return rst, graph.edata["a"]
else:
return rst
class GatedGAT(nn.Module):
"""Gated Graph Attention module, it is a general purpose
graph attention module proposed in paper GaAN. The paper use
it for traffic prediction task
Parameter
==========
in_feats : int
number of input feature
out_feats : int
number of output feature
map_feats : int
intermediate feature size for gate computation
num_heads : int
number of head for multihead attention
"""
def __init__(self, in_feats, out_feats, map_feats, num_heads):
super(GatedGAT, self).__init__()
self.in_feats = in_feats
self.out_feats = out_feats
self.map_feats = map_feats
self.num_heads = num_heads
self.gatlayer = WeightedGATConv(
self.in_feats, self.out_feats, self.num_heads
)
self.gate_fn = nn.Linear(
2 * self.in_feats + self.map_feats, self.num_heads
)
self.gate_m = nn.Linear(self.in_feats, self.map_feats)
self.merger_layer = nn.Linear(
self.in_feats + self.out_feats, self.out_feats
)
def forward(self, g, x):
with g.local_scope():
g.ndata["x"] = x
g.ndata["z"] = self.gate_m(x)
g.update_all(fn.copy_u("x", "x"), fn.mean("x", "mean_z"))
g.update_all(fn.copy_u("z", "z"), fn.max("z", "max_z"))
nft = torch.cat(
[g.ndata["x"], g.ndata["max_z"], g.ndata["mean_z"]], dim=1
)
gate = self.gate_fn(nft).sigmoid()
attn_out = self.gatlayer(g, x)
node_num = g.num_nodes()
gated_out = (
(gate.view(-1) * attn_out.view(-1, self.out_feats).T).T
).view(node_num, self.num_heads, self.out_feats)
gated_out = gated_out.mean(1)
merge = self.merger_layer(torch.cat([x, gated_out], dim=1))
return merge