-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata_loader.py
283 lines (241 loc) · 9.79 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from collections import defaultdict as ddict
import numpy as np
import torch
from ordered_set import OrderedSet
from torch.utils.data import DataLoader, Dataset
import dgl
class TrainDataset(Dataset):
"""
Training Dataset class.
Parameters
----------
triples: The triples used for training the model
num_ent: Number of entities in the knowledge graph
lbl_smooth: Label smoothing
Returns
-------
A training Dataset class instance used by DataLoader
"""
def __init__(self, triples, num_ent, lbl_smooth):
self.triples = triples
self.num_ent = num_ent
self.lbl_smooth = lbl_smooth
self.entities = np.arange(self.num_ent, dtype=np.int32)
def __len__(self):
return len(self.triples)
def __getitem__(self, idx):
ele = self.triples[idx]
triple, label = torch.LongTensor(ele["triple"]), np.int32(ele["label"])
trp_label = self.get_label(label)
# label smoothing
if self.lbl_smooth != 0.0:
trp_label = (1.0 - self.lbl_smooth) * trp_label + (
1.0 / self.num_ent
)
return triple, trp_label
@staticmethod
def collate_fn(data):
triples = []
labels = []
for triple, label in data:
triples.append(triple)
labels.append(label)
triple = torch.stack(triples, dim=0)
trp_label = torch.stack(labels, dim=0)
return triple, trp_label
# for edges that exist in the graph, the entry is 1.0, otherwise the entry is 0.0
def get_label(self, label):
y = np.zeros([self.num_ent], dtype=np.float32)
for e2 in label:
y[e2] = 1.0
return torch.FloatTensor(y)
class TestDataset(Dataset):
"""
Evaluation Dataset class.
Parameters
----------
triples: The triples used for evaluating the model
num_ent: Number of entities in the knowledge graph
Returns
-------
An evaluation Dataset class instance used by DataLoader for model evaluation
"""
def __init__(self, triples, num_ent):
self.triples = triples
self.num_ent = num_ent
def __len__(self):
return len(self.triples)
def __getitem__(self, idx):
ele = self.triples[idx]
triple, label = torch.LongTensor(ele["triple"]), np.int32(ele["label"])
label = self.get_label(label)
return triple, label
@staticmethod
def collate_fn(data):
triples = []
labels = []
for triple, label in data:
triples.append(triple)
labels.append(label)
triple = torch.stack(triples, dim=0)
label = torch.stack(labels, dim=0)
return triple, label
# for edges that exist in the graph, the entry is 1.0, otherwise the entry is 0.0
def get_label(self, label):
y = np.zeros([self.num_ent], dtype=np.float32)
for e2 in label:
y[e2] = 1.0
return torch.FloatTensor(y)
class Data(object):
def __init__(self, dataset, lbl_smooth, num_workers, batch_size):
"""
Reading in raw triples and converts it into a standard format.
Parameters
----------
dataset: The name of the dataset
lbl_smooth: Label smoothing
num_workers: Number of workers of dataloaders
batch_size: Batch size of dataloaders
Returns
-------
self.ent2id: Entity to unique identifier mapping
self.rel2id: Relation to unique identifier mapping
self.id2ent: Inverse mapping of self.ent2id
self.id2rel: Inverse mapping of self.rel2id
self.num_ent: Number of entities in the knowledge graph
self.num_rel: Number of relations in the knowledge graph
self.g: The dgl graph constucted from the edges in the traing set and all the entities in the knowledge graph
self.data['train']: Stores the triples corresponding to training dataset
self.data['valid']: Stores the triples corresponding to validation dataset
self.data['test']: Stores the triples corresponding to test dataset
self.data_iter: The dataloader for different data splits
"""
self.dataset = dataset
self.lbl_smooth = lbl_smooth
self.num_workers = num_workers
self.batch_size = batch_size
# read in raw data and get mappings
ent_set, rel_set = OrderedSet(), OrderedSet()
for split in ["train", "test", "valid"]:
for line in open("./{}/{}.txt".format(self.dataset, split)):
sub, rel, obj = map(str.lower, line.strip().split("\t"))
ent_set.add(sub)
rel_set.add(rel)
ent_set.add(obj)
self.ent2id = {ent: idx for idx, ent in enumerate(ent_set)}
self.rel2id = {rel: idx for idx, rel in enumerate(rel_set)}
self.rel2id.update(
{
rel + "_reverse": idx + len(self.rel2id)
for idx, rel in enumerate(rel_set)
}
)
self.id2ent = {idx: ent for ent, idx in self.ent2id.items()}
self.id2rel = {idx: rel for rel, idx in self.rel2id.items()}
self.num_ent = len(self.ent2id)
self.num_rel = len(self.rel2id) // 2
# read in ids of subjects, relations, and objects for train/test/valid
self.data = ddict(list) # stores the triples
sr2o = ddict(
set
) # The key of sr20 is (subject, relation), and the items are all the successors following (subject, relation)
src = []
dst = []
rels = []
inver_src = []
inver_dst = []
inver_rels = []
for split in ["train", "test", "valid"]:
for line in open("./{}/{}.txt".format(self.dataset, split)):
sub, rel, obj = map(str.lower, line.strip().split("\t"))
sub_id, rel_id, obj_id = (
self.ent2id[sub],
self.rel2id[rel],
self.ent2id[obj],
)
self.data[split].append((sub_id, rel_id, obj_id))
if split == "train":
sr2o[(sub_id, rel_id)].add(obj_id)
sr2o[(obj_id, rel_id + self.num_rel)].add(
sub_id
) # append the reversed edges
src.append(sub_id)
dst.append(obj_id)
rels.append(rel_id)
inver_src.append(obj_id)
inver_dst.append(sub_id)
inver_rels.append(rel_id + self.num_rel)
# construct dgl graph
src = src + inver_src
dst = dst + inver_dst
rels = rels + inver_rels
self.g = dgl.graph((src, dst), num_nodes=self.num_ent)
self.g.edata["etype"] = torch.Tensor(rels).long()
# identify in and out edges
in_edges_mask = [True] * (self.g.num_edges() // 2) + [False] * (
self.g.num_edges() // 2
)
out_edges_mask = [False] * (self.g.num_edges() // 2) + [True] * (
self.g.num_edges() // 2
)
self.g.edata["in_edges_mask"] = torch.Tensor(in_edges_mask)
self.g.edata["out_edges_mask"] = torch.Tensor(out_edges_mask)
# Prepare train/valid/test data
self.data = dict(self.data)
self.sr2o = {
k: list(v) for k, v in sr2o.items()
} # store only the train data
for split in ["test", "valid"]:
for sub, rel, obj in self.data[split]:
sr2o[(sub, rel)].add(obj)
sr2o[(obj, rel + self.num_rel)].add(sub)
self.sr2o_all = {
k: list(v) for k, v in sr2o.items()
} # store all the data
self.triples = ddict(list)
for (sub, rel), obj in self.sr2o.items():
self.triples["train"].append(
{"triple": (sub, rel, -1), "label": self.sr2o[(sub, rel)]}
)
for split in ["test", "valid"]:
for sub, rel, obj in self.data[split]:
rel_inv = rel + self.num_rel
self.triples["{}_{}".format(split, "tail")].append(
{
"triple": (sub, rel, obj),
"label": self.sr2o_all[(sub, rel)],
}
)
self.triples["{}_{}".format(split, "head")].append(
{
"triple": (obj, rel_inv, sub),
"label": self.sr2o_all[(obj, rel_inv)],
}
)
self.triples = dict(self.triples)
def get_train_data_loader(split, batch_size, shuffle=True):
return DataLoader(
TrainDataset(
self.triples[split], self.num_ent, self.lbl_smooth
),
batch_size=batch_size,
shuffle=shuffle,
num_workers=max(0, self.num_workers),
collate_fn=TrainDataset.collate_fn,
)
def get_test_data_loader(split, batch_size, shuffle=True):
return DataLoader(
TestDataset(self.triples[split], self.num_ent),
batch_size=batch_size,
shuffle=shuffle,
num_workers=max(0, self.num_workers),
collate_fn=TestDataset.collate_fn,
)
# train/valid/test dataloaders
self.data_iter = {
"train": get_train_data_loader("train", self.batch_size),
"valid_head": get_test_data_loader("valid_head", self.batch_size),
"valid_tail": get_test_data_loader("valid_tail", self.batch_size),
"test_head": get_test_data_loader("test_head", self.batch_size),
"test_tail": get_test_data_loader("test_tail", self.batch_size),
}