We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Describe the bug
FAILED test_adapters.py::test_check_array - RuntimeError: UnownedMemory requires explicit device ID for a null pointer. [2147](https://github.com/rapidsai/cuml/actions/runs/3734738186/jobs/6337919174#step:6:2148) FAILED test_svm.py::test_svm_no_support_vectors - RuntimeError: UnownedMemory requires explicit device ID for a null pointer.
Steps/Code to reproduce bug Tests will be xfailed to merge GHA PR, but can be seen here: https://github.com/rapidsai/cuml/actions/runs/3734738186/jobs/6337919174
Full error:
_______________________________ test_check_array _______________________________ [gw0] linux -- Python 3.9.15 /opt/conda/envs/test/bin/python3.9 def test_check_array(): # accept_sparse arr = coo_matrix((3, 4), dtype=cp.float64) check_array(arr, accept_sparse=True) with pytest.raises(ValueError): check_array(arr, accept_sparse=False) # dtype arr = cp.array([[1, 2]], dtype=cp.int64) check_array(arr, dtype=cp.int64, copy=False) arr = cp.array([[1, 2]], dtype=cp.float32) new_arr = check_array(arr, dtype=cp.int64) assert new_arr.dtype == cp.int64 # order arr = cp.array([[1, 2]], dtype=cp.int64, order='F') new_arr = check_array(arr, order='F') assert new_arr.flags.f_contiguous new_arr = check_array(arr, order='C') assert new_arr.flags.c_contiguous # force_all_finite arr = cp.array([[1, cp.inf]]) check_array(arr, force_all_finite=False) with pytest.raises(ValueError): check_array(arr, force_all_finite=True) # ensure_2d arr = cp.array([1, 2], dtype=cp.float32) check_array(arr, ensure_2d=False) with pytest.raises(ValueError): check_array(arr, ensure_2d=True) # ensure_2d arr = cp.array([[1, 2, 3], [4, 5, 6]], dtype=cp.float32) check_array(arr, ensure_2d=True) # ensure_min_samples arr = cp.array([[1, 2]], dtype=cp.float32) check_array(arr, ensure_min_samples=1) with pytest.raises(ValueError): check_array(arr, ensure_min_samples=2) # ensure_min_features arr = cp.array([[]], dtype=cp.float32) > check_array(arr, ensure_min_features=0) python/cuml/tests/test_adapters.py:124: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /opt/conda/envs/test/lib/python3.9/site-packages/cuml/thirdparty_adapters/adapters.py:288: in check_array X, n_rows, n_cols, dtype = input_to_cupy_array(array, /opt/conda/envs/test/lib/python3.9/contextlib.py:79: in inner return func(*args, **kwds) /opt/conda/envs/test/lib/python3.9/site-packages/cuml/internals/input_utils.py:434: in input_to_cupy_array return out_data._replace(array=out_data.array.to_output("cupy")) /opt/conda/envs/test/lib/python3.9/site-packages/cuml/internals/memory_utils.py:85: in cupy_rmm_wrapper return func(*args, **kwargs) /opt/conda/envs/test/lib/python3.9/contextlib.py:79: in inner return func(*args, **kwds) /opt/conda/envs/test/lib/python3.9/site-packages/cuml/internals/array.py:630: in to_output return output_mem_type.xpy.asarray( /opt/conda/envs/test/lib/python3.9/site-packages/cupy/_creation/from_data.py:76: in asarray return _core.array(a, dtype, False, order) cupy/_core/core.pyx:2249: in cupy._core.core.array ??? cupy/_core/core.pyx:2261: in cupy._core.core.array ??? cupy/_core/core.pyx:2301: in cupy._core.core._array_from_cuda_array_interface ??? cupy/_core/core.pyx:2632: in cupy._core.core._convert_object_with_cuda_array_interface ??? _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ > ??? E RuntimeError: UnownedMemory requires explicit device ID for a null pointer. cupy/cuda/memory.pyx:190: RuntimeError _________________________ test_svm_no_support_vectors __________________________ [gw1] linux -- Python 3.9.15 /opt/conda/envs/test/bin/python3.9 def test_svm_no_support_vectors(): n_rows = 10 n_cols = 3 X = cp.random.uniform(size=(n_rows, n_cols), dtype=cp.float64) y = cp.ones((n_rows, 1)) model = cuml.svm.SVR(kernel="linear", C=10) model.fit(X, y) pred = model.predict(X) assert svm_array_equal(pred, y, 0) assert model.n_support_ == 0 assert abs(model.intercept_ - 1) <= 1e-6 assert svm_array_equal(model.coef_, cp.zeros((1, n_cols))) > assert model.dual_coef_.shape == (1, 0) python/cuml/tests/test_svm.py:552: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /opt/conda/envs/test/lib/python3.9/site-packages/cuml/common/array_descriptor.py:134: in __get__ return self._to_output(instance, output_type) /opt/conda/envs/test/lib/python3.9/site-packages/cuml/common/array_descriptor.py:99: in _to_output output = cuml_arr.to_output(output_type=to_output_type, /opt/conda/envs/test/lib/python3.9/site-packages/cuml/internals/memory_utils.py:85: in cupy_rmm_wrapper return func(*args, **kwargs) /opt/conda/envs/test/lib/python3.9/contextlib.py:79: in inner return func(*args, **kwds) /opt/conda/envs/test/lib/python3.9/site-packages/cuml/internals/array.py:630: in to_output return output_mem_type.xpy.asarray( /opt/conda/envs/test/lib/python3.9/site-packages/cupy/_creation/from_data.py:76: in asarray return _core.array(a, dtype, False, order) cupy/_core/core.pyx:2249: in cupy._core.core.array ??? cupy/_core/core.pyx:2261: in cupy._core.core.array ??? cupy/_core/core.pyx:2301: in cupy._core.core._array_from_cuda_array_interface ??? cupy/_core/core.pyx:2632: in cupy._core.core._convert_object_with_cuda_array_interface ??? _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ > ??? E RuntimeError: UnownedMemory requires explicit device ID for a null pointer.
Environment details (please complete the following information):
conda list
docker pull
docker run
cmake
gcc/g++
Additional context Related to #4095
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Describe the bug
Steps/Code to reproduce bug
Tests will be xfailed to merge GHA PR, but can be seen here: https://github.com/rapidsai/cuml/actions/runs/3734738186/jobs/6337919174
Full error:
Environment details (please complete the following information):
conda list
and include results heredocker pull
&docker run
commands usedcmake
&gcc/g++
and commit hash of buildAdditional context
Related to #4095
The text was updated successfully, but these errors were encountered: