========================================================================= FAILURES ========================================================================= _________________________________________________________ test_score[dataframe-50-50-30-5000000.0] _________________________________________________________ nrows = 5000000.0, ncols = 30, nclusters = 50, n_parts = 50, input_type = 'dataframe' client = @pytest.mark.mg @pytest.mark.parametrize("nrows", [unit_param(1e3), quality_param(1e5), stress_param(5e6)]) @pytest.mark.parametrize("ncols", [10, 30]) @pytest.mark.parametrize("nclusters", [unit_param(5), quality_param(10), stress_param(50)]) @pytest.mark.parametrize("n_parts", [unit_param(None), quality_param(7), stress_param(50)]) @pytest.mark.parametrize("input_type", ["dataframe", "array"]) def test_score(nrows, ncols, nclusters, n_parts, input_type, client): from cuml.dask.cluster import KMeans as cumlKMeans from cuml.dask.datasets import make_blobs X, y = make_blobs(n_samples=int(nrows), n_features=ncols, centers=nclusters, n_parts=n_parts, cluster_std=0.01, shuffle=False, random_state=10) if input_type == "dataframe": X_train = to_dask_cudf(X) y_train = to_dask_cudf(y) y = y_train elif input_type == "array": X_train, y_train = X, y cumlModel = cumlKMeans(init="k-means||", n_clusters=nclusters, random_state=10) cumlModel.fit(X_train) actual_score = cumlModel.score(X_train) local_model = cumlModel.get_combined_model() expected_score = local_model.score(X_train.compute()) > assert actual_score == expected_score E assert array(-14973.28295898) == -14973.283203125 E +array(-14973.28295898) E --14973.283203125 dask/test_kmeans.py:196: AssertionError ================================================================= short test summary info ================================================================== FAILED dask/test_kmeans.py::test_score[dataframe-50-50-30-5000000.0] - assert array(-14973.28295898) == -14973.283203125 ==================================================================== 1 failed in 13.74s ==================================================================== ___________________________________________________________ test_score[array-50-50-10-5000000.0] ___________________________________________________________ nrows = 5000000.0, ncols = 10, nclusters = 50, n_parts = 50, input_type = 'array' client = @pytest.mark.mg @pytest.mark.parametrize("nrows", [unit_param(1e3), quality_param(1e5), stress_param(5e6)]) @pytest.mark.parametrize("ncols", [10, 30]) @pytest.mark.parametrize("nclusters", [unit_param(5), quality_param(10), stress_param(50)]) @pytest.mark.parametrize("n_parts", [unit_param(None), quality_param(7), stress_param(50)]) @pytest.mark.parametrize("input_type", ["dataframe", "array"]) def test_score(nrows, ncols, nclusters, n_parts, input_type, client): from cuml.dask.cluster import KMeans as cumlKMeans from cuml.dask.datasets import make_blobs X, y = make_blobs(n_samples=int(nrows), n_features=ncols, centers=nclusters, n_parts=n_parts, cluster_std=0.01, shuffle=False, random_state=10) if input_type == "dataframe": X_train = to_dask_cudf(X) y_train = to_dask_cudf(y) y = y_train elif input_type == "array": X_train, y_train = X, y cumlModel = cumlKMeans(init="k-means||", n_clusters=nclusters, random_state=10) cumlModel.fit(X_train) actual_score = cumlModel.score(X_train) local_model = cumlModel.get_combined_model() expected_score = local_model.score(X_train.compute()) > assert actual_score == expected_score E assert array(-5003.67196655) == -5003.67236328125 E +array(-5003.67196655) E --5003.67236328125 dask/test_kmeans.py:196: AssertionError ================================================================= short test summary info ================================================================== FAILED dask/test_kmeans.py::test_score[array-50-50-10-5000000.0] - assert array(-5003.67196655) == -5003.67236328125 ==================================================================== 1 failed in 11.54s ====================================================================