=================================== FAILURES ===================================\ ______________________ test_pca_fit[dataframe-data_info1] ______________________\ \ data_info = [9000000.0, 5000, 30], input_type = 'dataframe'\ client = \ \ @pytest.mark.mg\ @pytest.mark.parametrize("data_info", [unit_param([1000, 20, 30]),\ stress_param([9e6, 5000, 30])])\ @pytest.mark.parametrize("input_type", ["dataframe", "array"])\ def test_pca_fit(data_info, input_type, client):\ \ nrows, ncols, n_parts = data_info\ from cuml.dask.decomposition import TruncatedSVD as daskTPCA\ from sklearn.decomposition import TruncatedSVD\ \ from cuml.dask.datasets import make_blobs\ \ X, _ = make_blobs(n_samples=nrows,\ n_features=ncols,\ centers=1,\ n_parts=n_parts,\ cluster_std=0.5,\ > random_state=10, dtype=np.float32)\ \ test_tsvd.py:43:\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\ ../../common/memory_utils.py:56: in cupy_rmm_wrapper\ return func(*args, **kwargs)\ ../../dask/datasets/blobs.py:118: in make_blobs\ dtype)\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\ \ rs = , centers = 1\ center_box = (-10, 10), n_samples = 9000000.0, n_features = 5000\ dtype = \ \ def _get_centers(rs, centers, center_box, n_samples, n_features, dtype):\ if isinstance(n_samples, numbers.Integral):\ # Set n_centers by looking at centers arg\ if centers is None:\ centers = 3\ \ if isinstance(centers, numbers.Integral):\ n_centers = centers\ centers = rs.uniform(center_box[0], center_box[1],\ size=(n_centers, n_features),\ dtype=dtype)\ \ else:\ if n_features != centers.shape[1]:\ raise ValueError("Expected `n_features` to be equal to"\ " the length of axis 1 of centers array")\ n_centers = centers.shape[0]\ \ else:\ # Set n_centers by looking at [n_samples] arg\ > n_centers = len(n_samples)\ E TypeError: object of type 'float' has no len()\ \ ../../datasets/blobs.py:46: TypeError\ ________________________ test_pca_fit[array-data_info1] ________________________\ \ data_info = [9000000.0, 5000, 30], input_type = 'array'\ client = \ \ @pytest.mark.mg\ @pytest.mark.parametrize("data_info", [unit_param([1000, 20, 30]),\ stress_param([9e6, 5000, 30])])\ @pytest.mark.parametrize("input_type", ["dataframe", "array"])\ def test_pca_fit(data_info, input_type, client):\ \ nrows, ncols, n_parts = data_info\ from cuml.dask.decomposition import TruncatedSVD as daskTPCA\ from sklearn.decomposition import TruncatedSVD\ \ from cuml.dask.datasets import make_blobs\ \ X, _ = make_blobs(n_samples=nrows,\ n_features=ncols,\ centers=1,\ n_parts=n_parts,\ cluster_std=0.5,\ > random_state=10, dtype=np.float32)\ \ test_tsvd.py:43:\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\ ../../common/memory_utils.py:56: in cupy_rmm_wrapper\ return func(*args, **kwargs)\ ../../dask/datasets/blobs.py:118: in make_blobs\ dtype)\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\ \ rs = , centers = 1\ center_box = (-10, 10), n_samples = 9000000.0, n_features = 5000\ dtype = \ \ def _get_centers(rs, centers, center_box, n_samples, n_features, dtype):\ if isinstance(n_samples, numbers.Integral):\ # Set n_centers by looking at centers arg\ if centers is None:\ centers = 3\ \ if isinstance(centers, numbers.Integral):\ n_centers = centers\ centers = rs.uniform(center_box[0], center_box[1],\ size=(n_centers, n_features),\ dtype=dtype)\ \ else:\ if n_features != centers.shape[1]:\ raise ValueError("Expected `n_features` to be equal to"\ " the length of axis 1 of centers array")\ n_centers = centers.shape[0]\ \ else:\ # Set n_centers by looking at [n_samples] arg\ > n_centers = len(n_samples)\ E TypeError: object of type 'float' has no len()\ \ ../../datasets/blobs.py:46: TypeError\ ___________________ test_pca_fit_transform_fp32[data_info1] ____________________\ \ data_info = [9000000.0, 5000, 46]\ client = \ \ @pytest.mark.mg\ @pytest.mark.parametrize("data_info", [unit_param([1000, 20, 46]),\ stress_param([9e6, 5000, 46])])\ def test_pca_fit_transform_fp32(data_info, client):\ \ nrows, ncols, n_parts = data_info\ from cuml.dask.decomposition import TruncatedSVD as daskTPCA\ from cuml.dask.datasets import make_blobs\ \ X_cudf, _ = make_blobs(n_samples=nrows,\ n_features=ncols,\ centers=1,\ n_parts=n_parts,\ cluster_std=1.5,\ > random_state=10, dtype=np.float32)\ \ test_tsvd.py:87:\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\ ../../common/memory_utils.py:56: in cupy_rmm_wrapper\ return func(*args, **kwargs)\ ../../dask/datasets/blobs.py:118: in make_blobs\ dtype)\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\ \ rs = , centers = 1\ center_box = (-10, 10), n_samples = 9000000.0, n_features = 5000\ dtype = \ \ def _get_centers(rs, centers, center_box, n_samples, n_features, dtype):\ if isinstance(n_samples, numbers.Integral):\ # Set n_centers by looking at centers arg\ if centers is None:\ centers = 3\ \ if isinstance(centers, numbers.Integral):\ n_centers = centers\ centers = rs.uniform(center_box[0], center_box[1],\ size=(n_centers, n_features),\ dtype=dtype)\ \ else:\ if n_features != centers.shape[1]:\ raise ValueError("Expected `n_features` to be equal to"\ " the length of axis 1 of centers array")\ n_centers = centers.shape[0]\ \ else:\ # Set n_centers by looking at [n_samples] arg\ > n_centers = len(n_samples)\ E TypeError: object of type 'float' has no len()\ \ ../../datasets/blobs.py:46: TypeError\ ___________________ test_pca_fit_transform_fp64[data_info1] ____________________\ \ data_info = [9000000.0, 5000, 33]\ client = \ \ @pytest.mark.mg\ @pytest.mark.parametrize("data_info", [unit_param([1000, 20, 33]),\ stress_param([9e6, 5000, 33])])\ def test_pca_fit_transform_fp64(data_info, client):\ \ nrows, ncols, n_parts = data_info\ \ from cuml.dask.decomposition import TruncatedSVD as daskTPCA\ from cuml.dask.datasets import make_blobs\ \ X_cudf, _ = make_blobs(n_samples=nrows,\ n_features=ncols,\ centers=1,\ n_parts=n_parts,\ cluster_std=1.5,\ > random_state=10, dtype=np.float64)\ \ test_tsvd.py:108:\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\ ../../common/memory_utils.py:56: in cupy_rmm_wrapper\ return func(*args, **kwargs)\ ../../dask/datasets/blobs.py:118: in make_blobs\ dtype)\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\ \ rs = , centers = 1\ center_box = (-10, 10), n_samples = 9000000.0, n_features = 5000\ dtype = \ \ def _get_centers(rs, centers, center_box, n_samples, n_features, dtype):\ if isinstance(n_samples, numbers.Integral):\ # Set n_centers by looking at centers arg\ if centers is None:\ centers = 3\ \ if isinstance(centers, numbers.Integral):\ n_centers = centers\ centers = rs.uniform(center_box[0], center_box[1],\ size=(n_centers, n_features),\ dtype=dtype)\ \ else:\ if n_features != centers.shape[1]:\ raise ValueError("Expected `n_features` to be equal to"\ " the length of axis 1 of centers array")\ n_centers = centers.shape[0]\ \ else:\ # Set n_centers by looking at [n_samples] arg\ > n_centers = len(n_samples)\ E TypeError: object of type 'float' has no len()\ \ ../../datasets/blobs.py:46: TypeError\ =============================== warnings summary ===============================\ cuml/test/dask/test_tfidf.py: 12 warnings\ /opt/conda/envs/rapids/lib/python3.7/site-packages/sklearn/feature_extraction/text.py:1447: RuntimeWarning: divide by zero encountered in true_divide\ idf = np.log(n_samples / df) + 1\ \ cuml/test/dask/test_tsvd.py::test_pca_fit[dataframe-data_info1]\ /opt/conda/envs/rapids/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\ return f(*args, **kwds)\ \ -- Docs: https://docs.pytest.org/en/stable/warnings.html\ =========================== short test summary info ============================\ FAILED test_tsvd.py::test_pca_fit[dataframe-data_info1] - TypeError: object o...\ FAILED test_tsvd.py::test_pca_fit[array-data_info1] - TypeError: object of ty...\ FAILED test_tsvd.py::test_pca_fit_transform_fp32[data_info1] - TypeError: obj...\ FAILED test_tsvd.py::test_pca_fit_transform_fp64[data_info1] - TypeError: obj...\ = 4 failed, 206 passed, 4 skipped, 2 xfailed, 13 warnings in 153.21s (0:02:33) =}