diff --git a/python/cuml/decomposition/base_mg.pyx b/python/cuml/decomposition/base_mg.pyx index 8615034c88..620b190fbb 100644 --- a/python/cuml/decomposition/base_mg.pyx +++ b/python/cuml/decomposition/base_mg.pyx @@ -1,5 +1,5 @@ # -# Copyright (c) 2019, NVIDIA CORPORATION. +# Copyright (c) 2019-2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -30,7 +30,6 @@ from cython.operator cimport dereference as deref from cuml.common.array import CumlArray import cuml.common.opg_data_utils_mg as opg - import cuml.internals from cuml.common.base import Base from cuml.raft.common.handle cimport handle_t @@ -59,6 +58,11 @@ class BaseDecompositionMG(object): self._set_output_type(X[0]) self._set_n_features_in(n_cols) + if self.n_components is None: + self._n_components = min(total_rows, n_cols) + else: + self._n_components = self.n_components + X_arys = [] for i in range(len(X)): if i == 0: @@ -90,11 +94,11 @@ class BaseDecompositionMG(object): trans_arg = opg.build_data_t(trans_arys) trans_part_desc = opg.build_part_descriptor(total_rows, - self.n_components, + self._n_components, rank_to_sizes, rank) - self._initialize_arrays(self.n_components, total_rows, n_cols) + self._initialize_arrays(self._n_components, total_rows, n_cols) decomp_params = self._build_params(total_rows, n_cols) if _transform: diff --git a/python/cuml/decomposition/pca_mg.pyx b/python/cuml/decomposition/pca_mg.pyx index 175ffdd7e0..e3ee6197d6 100644 --- a/python/cuml/decomposition/pca_mg.pyx +++ b/python/cuml/decomposition/pca_mg.pyx @@ -1,5 +1,5 @@ # -# Copyright (c) 2019, NVIDIA CORPORATION. +# Copyright (c) 2019-2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -116,7 +116,7 @@ class PCAMG(BaseDecompositionMG, PCA): def _build_params(self, n_rows, n_cols): cpdef paramsPCAMG *params = new paramsPCAMG() - params.n_components = self.n_components + params.n_components = self._n_components params.n_rows = n_rows params.n_cols = n_cols params.whiten = self.whiten diff --git a/python/cuml/test/dask/test_pca.py b/python/cuml/test/dask/test_pca.py index 85f0cc6588..6c21844517 100644 --- a/python/cuml/test/dask/test_pca.py +++ b/python/cuml/test/dask/test_pca.py @@ -1,4 +1,4 @@ -# Copyright (c) 2019, NVIDIA CORPORATION. +# Copyright (c) 2019-2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -87,7 +87,9 @@ def test_pca_fit_transform_fp32(nrows, ncols, n_parts, client): random_state=10, dtype=np.float32) cupca = daskPCA(n_components=20, whiten=True) - cupca.fit_transform(X_cudf) + res = cupca.fit_transform(X_cudf) + res = res.compute() + assert res.shape[0] == nrows and res.shape[1] == 20 @pytest.mark.mg @@ -107,4 +109,28 @@ def test_pca_fit_transform_fp64(nrows, ncols, n_parts, client): random_state=10, dtype=np.float64) cupca = daskPCA(n_components=30, whiten=False) - cupca.fit_transform(X_cudf) + res = cupca.fit_transform(X_cudf) + res = res.compute() + assert res.shape[0] == nrows and res.shape[1] == 30 + + +@pytest.mark.mg +@pytest.mark.parametrize("nrows", [1000]) +@pytest.mark.parametrize("ncols", [20]) +@pytest.mark.parametrize("n_parts", [28]) +def test_pca_fit_transform_fp32_noncomponents(nrows, ncols, n_parts, client): + # Tests the case when n_components is not passed for MG scenarios + from cuml.dask.decomposition import PCA as daskPCA + from cuml.dask.datasets import make_blobs + + X_cudf, _ = make_blobs(n_samples=nrows, + n_features=ncols, + centers=1, + n_parts=n_parts, + cluster_std=1.5, + random_state=10, dtype=np.float32) + + cupca = daskPCA(whiten=False) + res = cupca.fit_transform(X_cudf) + res = res.compute() + assert res.shape[0] == nrows and res.shape[1] == 20