diff --git a/CHANGELOG.md b/CHANGELOG.md index c65f2758a6..1f8bbc6f76 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -52,6 +52,7 @@ - PR #3117: Fix two crashes in experimental RF backend - PR #3119: Fix memset args for benchmark - PR #3130: Return Python string from `dump_as_json()` of RF +- PR #3136: Fix stochastic gradient descent example # cuML 0.16.0 (Date TBD) diff --git a/python/cuml/solvers/sgd.pyx b/python/cuml/solvers/sgd.pyx index 091fada5ed..8c968b2d1b 100644 --- a/python/cuml/solvers/sgd.pyx +++ b/python/cuml/solvers/sgd.pyx @@ -137,15 +137,15 @@ class SGD(Base): import cudf from cuml.solvers import SGD as cumlSGD X = cudf.DataFrame() - X['col1'] = np.array([1,1,2,2], dtype = np.float32) - X['col2'] = np.array([1,2,2,3], dtype = np.float32) + X['col1'] = np.array([1,1,2,2], dtype=np.float32) + X['col2'] = np.array([1,2,2,3], dtype=np.float32) y = cudf.Series(np.array([1, 1, 2, 2], dtype=np.float32)) pred_data = cudf.DataFrame() - pred_data['col1'] = np.asarray([3, 2], dtype=dtype) - pred_data['col2'] = np.asarray([5, 5], dtype=dtype) - cu_sgd = cumlSGD(learning_rate=lrate, eta0=0.005, epochs=2000, + pred_data['col1'] = np.asarray([3, 2], dtype=np.float32) + pred_data['col2'] = np.asarray([5, 5], dtype=np.float32) + cu_sgd = cumlSGD(learning_rate='constant', eta0=0.005, epochs=2000, fit_intercept=True, batch_size=2, - tol=0.0, penalty=penalty, loss=loss) + tol=0.0, penalty='none', loss='squared_loss') cu_sgd.fit(X, y) cu_pred = cu_sgd.predict(pred_data).to_array() print(" cuML intercept : ", cu_sgd.intercept_) @@ -156,11 +156,11 @@ class SGD(Base): .. code-block:: python - cuML intercept : 0.004561662673950195 - cuML coef : 0 0.9834546 - 1 0.010128272 - dtype: float32 - cuML predictions : [3.0055666 2.0221121] + cuML intercept : 0.0041877031326293945 + cuML coef : 0 0.984174 + 1 0.009776 + dtype: float32 + cuML predictions : [3.005588 2.0214138] Parameters