`_ to get up-and-running with ``nx-cugraph``.
.. toctree::
- :maxdepth: 2
+ :maxdepth: 1
+ :caption: Contents:
- nx_cugraph.md
+ how-it-works
+ supported-algorithms
+ installation
+ benchmarks
+ faqs
diff --git a/docs/cugraph/source/nx_cugraph/installation.md b/docs/cugraph/source/nx_cugraph/installation.md
new file mode 100644
index 00000000000..8d221f16fec
--- /dev/null
+++ b/docs/cugraph/source/nx_cugraph/installation.md
@@ -0,0 +1,50 @@
+# Getting Started
+
+This guide describes how to install ``nx-cugraph`` and use it in your workflows.
+
+
+## System Requirements
+
+`nx-cugraph` requires the following:
+
+ - **Volta architecture or later NVIDIA GPU, with [compute capability](https://developer.nvidia.com/cuda-gpus) 7.0+**
+ - **[CUDA](https://docs.nvidia.com/cuda/index.html) 11.2, 11.4, 11.5, 11.8, 12.0, 12.2, or 12.5**
+ - **Python >= 3.10**
+ - **[NetworkX](https://networkx.org/documentation/stable/install.html#) >= 3.0 (version 3.2 or higher recommended)**
+
+More details about system requirements can be found in the [RAPIDS System Requirements Documentation](https://docs.rapids.ai/install#system-req).
+
+## Installing nx-cugraph
+
+Read the [RAPIDS Quick Start Guide](https://docs.rapids.ai/install) to learn more about installing all RAPIDS libraries.
+
+`nx-cugraph` can be installed using conda or pip. It is included in the RAPIDS metapackage, or can be installed separately.
+
+### Conda
+**Nightly version**
+```bash
+conda install -c rapidsai-nightly -c conda-forge -c nvidia nx-cugraph
+```
+
+**Stable version**
+```bash
+conda install -c rapidsai -c conda-forge -c nvidia nx-cugraph
+```
+
+### pip
+**Nightly version**
+```bash
+pip install nx-cugraph-cu11 --extra-index-url https://pypi.anaconda.org/rapidsai-wheels-nightly/simple
+```
+
+**Stable version**
+```bash
+pip install nx-cugraph-cu11 --extra-index-url https://pypi.nvidia.com
+```
+
+
+
+**Note:**
+ - The `pip install` examples above are for CUDA 11. To install for CUDA 12, replace `-cu11` with `-cu12`
+
+
diff --git a/docs/cugraph/source/nx_cugraph/nx_cugraph.md b/docs/cugraph/source/nx_cugraph/nx_cugraph.md
index 75a30b0be5c..900362a6e2b 100644
--- a/docs/cugraph/source/nx_cugraph/nx_cugraph.md
+++ b/docs/cugraph/source/nx_cugraph/nx_cugraph.md
@@ -1,18 +1,10 @@
### nx_cugraph
-nx-cugraph is a [NetworkX
-backend]() that provides GPU acceleration to many popular NetworkX algorithms.
-
-By simply [installing and enabling nx-cugraph](), users can see significant speedup on workflows where performance is hindered by the default NetworkX implementation. With nx-cugraph, users can have GPU-based, large-scale performance without changing their familiar and easy-to-use NetworkX code.
-
-Let's look at some examples of algorithm speedups comparing NetworkX with and without GPU acceleration using nx-cugraph.
-
-Each chart has three measurements.
-* NX - default NetworkX, no GPU acceleration
-* nx-cugraph - GPU-accelerated NetworkX using nx-cugraph. This involves an internal conversion/transfer of graph data from CPU to GPU memory
-* nx-cugraph (preconvert) - GPU-accelerated NetworkX using nx-cugraph with the graph data pre-converted/transferred to GPU
+`nx-cugraph` is a [networkX backend]() that accelerates many popular NetworkX functions using cuGraph and NVIDIA GPUs.
+Users simply [install and enable nx-cugraph](installation.md) to experience GPU speedups.
+Lets look at some examples of algorithm speedups comparing CPU based NetworkX to dispatched versions run on GPU with nx_cugraph.
![Ancestors](../images/ancestors.png)
![BFS Tree](../images/bfs_tree.png)
@@ -22,46 +14,3 @@ Each chart has three measurements.
![Pagerank](../images/pagerank.png)
![Single Source Shortest Path](../images/sssp.png)
![Weakly Connected Components](../images/wcc.png)
-
-### Command line example
-Open bc_demo.ipy and paste the code below.
-
-```
-import pandas as pd
-import networkx as nx
-
-url = "https://data.rapids.ai/cugraph/datasets/cit-Patents.csv"
-df = pd.read_csv(url, sep=" ", names=["src", "dst"], dtype="int32")
-G = nx.from_pandas_edgelist(df, source="src", target="dst")
-
-%time result = nx.betweenness_centrality(G, k=10)
-```
-Run the command:
-```
-user@machine:/# ipython bc_demo.ipy
-```
-
-You will observe a run time of approximately 7 minutes...more or less depending on your cpu.
-
-Run the command again, this time specifying cugraph as the NetworkX backend.
-```
-user@machine:/# NETWORKX_BACKEND_PRIORITY=cugraph ipython bc_demo.ipy
-```
-This run will be much faster, typically around 20 seconds depending on your GPU.
-```
-user@machine:/# NETWORKX_BACKEND_PRIORITY=cugraph ipython bc_demo.ipy
-```
-There is also an option to cache the graph conversion to GPU. This can dramatically improve performance when running multiple algorithms on the same graph.
-```
-NETWORKX_BACKEND_PRIORITY=cugraph NETWORKX_CACHE_CONVERTED_GRAPHS=True ipython bc_demo.ipy
-```
-
-When running Python interactively, the cugraph backend can be specified as an argument in the algorithm call.
-
-For example:
-```
-nx.betweenness_centrality(cit_patents_graph, k=k, backend="cugraph")
-```
-
-
-The latest list of algorithms supported by nx-cugraph can be found [here](https://github.com/rapidsai/cugraph/blob/main/python/nx-cugraph/README.md#algorithms).
diff --git a/docs/cugraph/source/nx_cugraph/supported-algorithms.rst b/docs/cugraph/source/nx_cugraph/supported-algorithms.rst
new file mode 100644
index 00000000000..b21ef7bb668
--- /dev/null
+++ b/docs/cugraph/source/nx_cugraph/supported-algorithms.rst
@@ -0,0 +1,354 @@
+Supported Algorithms
+=====================
+
+The nx-cugraph backend to NetworkX connects
+`pylibcugraph <../../readme_pages/pylibcugraph.md>`_ (cuGraph's low-level Python
+interface to its CUDA-based graph analytics library) and
+`CuPy `_ (a GPU-accelerated array library) to NetworkX's
+familiar and easy-to-use API.
+
+Below is the list of algorithms that are currently supported in nx-cugraph.
+
+
+Algorithms
+----------
+
++-----------------------------+
+| **Centrality** |
++=============================+
+| betweenness_centrality |
++-----------------------------+
+| edge_betweenness_centrality |
++-----------------------------+
+| degree_centrality |
++-----------------------------+
+| in_degree_centrality |
++-----------------------------+
+| out_degree_centrality |
++-----------------------------+
+| eigenvector_centrality |
++-----------------------------+
+| katz_centrality |
++-----------------------------+
+
++---------------------+
+| **Cluster** |
++=====================+
+| average_clustering |
++---------------------+
+| clustering |
++---------------------+
+| transitivity |
++---------------------+
+| triangles |
++---------------------+
+
++--------------------------+
+| **Community** |
++==========================+
+| louvain_communities |
++--------------------------+
+
++--------------------------+
+| **Bipartite** |
++==========================+
+| complete_bipartite_graph |
++--------------------------+
+
++------------------------------------+
+| **Components** |
++====================================+
+| connected_components |
++------------------------------------+
+| is_connected |
++------------------------------------+
+| node_connected_component |
++------------------------------------+
+| number_connected_components |
++------------------------------------+
+| weakly_connected |
++------------------------------------+
+| is_weakly_connected |
++------------------------------------+
+| number_weakly_connected_components |
++------------------------------------+
+| weakly_connected_components |
++------------------------------------+
+
++-------------+
+| **Core** |
++=============+
+| core_number |
++-------------+
+| k_truss |
++-------------+
+
++-------------+
+| **DAG** |
++=============+
+| ancestors |
++-------------+
+| descendants |
++-------------+
+
++--------------------+
+| **Isolate** |
++====================+
+| is_isolate |
++--------------------+
+| isolates |
++--------------------+
+| number_of_isolates |
++--------------------+
+
++-------------------+
+| **Link analysis** |
++===================+
+| hits |
++-------------------+
+| pagerank |
++-------------------+
+
++----------------+
+| **Operators** |
++================+
+| complement |
++----------------+
+| reverse |
++----------------+
+
++----------------------+
+| **Reciprocity** |
++======================+
+| overall_reciprocity |
++----------------------+
+| reciprocity |
++----------------------+
+
++---------------------------------------+
+| **Shortest Paths** |
++=======================================+
+| has_path |
++---------------------------------------+
+| shortest_path |
++---------------------------------------+
+| shortest_path_length |
++---------------------------------------+
+| all_pairs_shortest_path |
++---------------------------------------+
+| all_pairs_shortest_path_length |
++---------------------------------------+
+| bidirectional_shortest_path |
++---------------------------------------+
+| single_source_shortest_path |
++---------------------------------------+
+| single_source_shortest_path_length |
++---------------------------------------+
+| single_target_shortest_path |
++---------------------------------------+
+| single_target_shortest_path_length |
++---------------------------------------+
+| all_pairs_bellman_ford_path |
++---------------------------------------+
+| all_pairs_bellman_ford_path_length |
++---------------------------------------+
+| all_pairs_dijkstra |
++---------------------------------------+
+| all_pairs_dijkstra_path |
++---------------------------------------+
+| all_pairs_dijkstra_path_length |
++---------------------------------------+
+| bellman_ford_path |
++---------------------------------------+
+| bellman_ford_path_length |
++---------------------------------------+
+| dijkstra_path |
++---------------------------------------+
+| dijkstra_path_length |
++---------------------------------------+
+| single_source_bellman_ford |
++---------------------------------------+
+| single_source_bellman_ford_path |
++---------------------------------------+
+| single_source_bellman_ford_path_length|
++---------------------------------------+
+| single_source_dijkstra |
++---------------------------------------+
+| single_source_dijkstra_path |
++---------------------------------------+
+| single_source_dijkstra_path_length |
++---------------------------------------+
+
++---------------------------+
+| **Traversal** |
++===========================+
+| bfs_edges |
++---------------------------+
+| bfs_layers |
++---------------------------+
+| bfs_predecessors |
++---------------------------+
+| bfs_successors |
++---------------------------+
+| bfs_tree |
++---------------------------+
+| descendants_at_distance |
++---------------------------+
+| generic_bfs_edges |
++---------------------------+
+
++---------------------+
+| **Tree** |
++=====================+
+| is_arborescence |
++---------------------+
+| is_branching |
++---------------------+
+| is_forest |
++---------------------+
+| is_tree |
++---------------------+
+
+Generators
+------------
+
++-------------------------------+
+| **Classic** |
++===============================+
+| barbell_graph |
++-------------------------------+
+| circular_ladder_graph |
++-------------------------------+
+| complete_graph |
++-------------------------------+
+| complete_multipartite_graph |
++-------------------------------+
+| cycle_graph |
++-------------------------------+
+| empty_graph |
++-------------------------------+
+| ladder_graph |
++-------------------------------+
+| lollipop_graph |
++-------------------------------+
+| null_graph |
++-------------------------------+
+| path_graph |
++-------------------------------+
+| star_graph |
++-------------------------------+
+| tadpole_graph |
++-------------------------------+
+| trivial_graph |
++-------------------------------+
+| turan_graph |
++-------------------------------+
+| wheel_graph |
++-------------------------------+
+
++-----------------+
+| **Classic** |
++=================+
+| caveman_graph |
++-----------------+
+
++------------+
+| **Ego** |
++============+
+| ego_graph |
++------------+
+
++------------------------------+
+| **small** |
++==============================+
+| bull_graph |
++------------------------------+
+| chvatal_graph |
++------------------------------+
+| cubical_graph |
++------------------------------+
+| desargues_graph |
++------------------------------+
+| diamond_graph |
++------------------------------+
+| dodecahedral_graph |
++------------------------------+
+| frucht_graph |
++------------------------------+
+| heawood_graph |
++------------------------------+
+| house_graph |
++------------------------------+
+| house_x_graph |
++------------------------------+
+| icosahedral_graph |
++------------------------------+
+| krackhardt_kite_graph |
++------------------------------+
+| moebius_kantor_graph |
++------------------------------+
+| octahedral_graph |
++------------------------------+
+| pappus_graph |
++------------------------------+
+| petersen_graph |
++------------------------------+
+| sedgewick_maze_graph |
++------------------------------+
+| tetrahedral_graph |
++------------------------------+
+| truncated_cube_graph |
++------------------------------+
+| truncated_tetrahedron_graph |
++------------------------------+
+| tutte_graph |
++------------------------------+
+
++-------------------------------+
+| **Social** |
++===============================+
+| davis_southern_women_graph |
++-------------------------------+
+| florentine_families_graph |
++-------------------------------+
+| karate_club_graph |
++-------------------------------+
+| les_miserables_graph |
++-------------------------------+
+
+Other
+-------
+
++-------------------------+
+| **Classes** |
++=========================+
+| is_negatively_weighted |
++-------------------------+
+
++----------------------+
+| **Convert** |
++======================+
+| from_dict_of_lists |
++----------------------+
+| to_dict_of_lists |
++----------------------+
+
++--------------------------+
+| **Convert Matrix** |
++==========================+
+| from_pandas_edgelist |
++--------------------------+
+| from_scipy_sparse_array |
++--------------------------+
+
++-----------------------------------+
+| **Relabel** |
++===================================+
+| convert_node_labels_to_integers |
++-----------------------------------+
+| relabel_nodes |
++-----------------------------------+
+
+
+To request nx-cugraph backend support for a NetworkX API that is not listed
+above, visit the `cuGraph GitHub repo `_.
diff --git a/python/nx-cugraph/_nx_cugraph/__init__.py b/python/nx-cugraph/_nx_cugraph/__init__.py
index 428d266dd2e..a5e45979fe2 100644
--- a/python/nx-cugraph/_nx_cugraph/__init__.py
+++ b/python/nx-cugraph/_nx_cugraph/__init__.py
@@ -36,7 +36,7 @@
"backend_name": "cugraph",
"project": "nx-cugraph",
"package": "nx_cugraph",
- "url": f"https://github.com/rapidsai/cugraph/tree/branch-{_version_major:0>2}.{_version_minor:0>2}/python/nx-cugraph",
+ "url": f"https://rapids.ai/nx-cugraph",
"short_summary": "GPU-accelerated backend.",
# "description": "TODO",
"functions": {