diff --git a/benchmarks/cugraph-dgl/notebooks/get_node_storage.ipynb b/benchmarks/cugraph-dgl/notebooks/get_node_storage.ipynb index 95b456c7812..4681c8ec825 100644 --- a/benchmarks/cugraph-dgl/notebooks/get_node_storage.ipynb +++ b/benchmarks/cugraph-dgl/notebooks/get_node_storage.ipynb @@ -18,7 +18,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/datasets/vjawa/miniconda3/envs/all_cuda-115_arch-x86_64/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + "/datasets/vjawa/miniforge/envs/all_cuda-115_arch-x86_64/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } diff --git a/benchmarks/cugraph-dgl/notebooks/heterogeneous_dataloader_benchmark.ipynb b/benchmarks/cugraph-dgl/notebooks/heterogeneous_dataloader_benchmark.ipynb index d3b054bb0ee..2c4a934827a 100644 --- a/benchmarks/cugraph-dgl/notebooks/heterogeneous_dataloader_benchmark.ipynb +++ b/benchmarks/cugraph-dgl/notebooks/heterogeneous_dataloader_benchmark.ipynb @@ -176,7 +176,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/datasets/vjawa/miniconda3/envs/all_cuda-115_arch-x86_64/lib/python3.9/site-packages/dgl/dataloading/dataloader.py:859: DGLWarning: Dataloader CPU affinity opt is not enabled, consider switching it on (see enable_cpu_affinity() or CPU best practices for DGL [https://docs.dgl.ai/tutorials/cpu/cpu_best_practises.html])\n", + "/datasets/vjawa/miniforge/envs/all_cuda-115_arch-x86_64/lib/python3.9/site-packages/dgl/dataloading/dataloader.py:859: DGLWarning: Dataloader CPU affinity opt is not enabled, consider switching it on (see enable_cpu_affinity() or CPU best practices for DGL [https://docs.dgl.ai/tutorials/cpu/cpu_best_practises.html])\n", " dgl_warning(f'Dataloader CPU affinity opt is not enabled, consider switching it on '\n" ] }, diff --git a/benchmarks/cugraph-dgl/notebooks/homogenous_dataloader_benchmark.ipynb b/benchmarks/cugraph-dgl/notebooks/homogenous_dataloader_benchmark.ipynb index ea1e9b34965..ecd111dabdf 100644 --- a/benchmarks/cugraph-dgl/notebooks/homogenous_dataloader_benchmark.ipynb +++ b/benchmarks/cugraph-dgl/notebooks/homogenous_dataloader_benchmark.ipynb @@ -26,7 +26,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/datasets/vjawa/miniconda3/envs/all_cuda-115_arch-x86_64/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + "/datasets/vjawa/miniforge/envs/all_cuda-115_arch-x86_64/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } @@ -190,7 +190,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/datasets/vjawa/miniconda3/envs/all_cuda-115_arch-x86_64/lib/python3.9/site-packages/dgl/dataloading/dataloader.py:859: DGLWarning: Dataloader CPU affinity opt is not enabled, consider switching it on (see enable_cpu_affinity() or CPU best practices for DGL [https://docs.dgl.ai/tutorials/cpu/cpu_best_practises.html])\n", + "/datasets/vjawa/miniforge/envs/all_cuda-115_arch-x86_64/lib/python3.9/site-packages/dgl/dataloading/dataloader.py:859: DGLWarning: Dataloader CPU affinity opt is not enabled, consider switching it on (see enable_cpu_affinity() or CPU best practices for DGL [https://docs.dgl.ai/tutorials/cpu/cpu_best_practises.html])\n", " dgl_warning(f'Dataloader CPU affinity opt is not enabled, consider switching it on '\n" ] }, @@ -278,7 +278,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/datasets/vjawa/miniconda3/envs/all_cuda-115_arch-x86_64/lib/python3.9/site-packages/distributed/worker.py:2988: UserWarning: Large object of size 1.42 MiB detected in task graph: \n", + "/datasets/vjawa/miniforge/envs/all_cuda-115_arch-x86_64/lib/python3.9/site-packages/distributed/worker.py:2988: UserWarning: Large object of size 1.42 MiB detected in task graph: \n", " [b'\\xad\\xd1\\xe3\\x9c\\x96\\x83O\\xb3\\xba1\\x86\\x94\\xb6\\ ... =int32), False]\n", "Consider scattering large objects ahead of time\n", "with client.scatter to reduce scheduler burden and \n", diff --git a/benchmarks/cugraph/notebooks/feature_storage.ipynb b/benchmarks/cugraph/notebooks/feature_storage.ipynb index 7413ac00cde..440d76fbdb4 100644 --- a/benchmarks/cugraph/notebooks/feature_storage.ipynb +++ b/benchmarks/cugraph/notebooks/feature_storage.ipynb @@ -18,7 +18,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/datasets/vjawa/miniconda3/envs/all_cuda-115_arch-x86_64/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + "/datasets/vjawa/miniforge/envs/all_cuda-115_arch-x86_64/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } diff --git a/docs/cugraph/source/installation/getting_cugraph.md b/docs/cugraph/source/installation/getting_cugraph.md index 41ec9a67e1f..01bc9e379c9 100644 --- a/docs/cugraph/source/installation/getting_cugraph.md +++ b/docs/cugraph/source/installation/getting_cugraph.md @@ -21,7 +21,7 @@ The RAPIDS Docker containers contain all RAPIDS packages, including all from cuG ## Conda -It is easy to install cuGraph using conda. You can get a minimal conda installation with [Miniconda](https://conda.io/miniconda.html) or get the full installation with [Anaconda](https://www.anaconda.com/download). +It is easy to install cuGraph using conda. You can get a minimal conda installation with [miniforge](https://github.com/conda-forge/miniforge). cuGraph Conda packages * cugraph - this will also import: diff --git a/docs/cugraph/source/wholegraph/installation/getting_wholegraph.md b/docs/cugraph/source/wholegraph/installation/getting_wholegraph.md index 57314dcd426..80c666d6593 100644 --- a/docs/cugraph/source/wholegraph/installation/getting_wholegraph.md +++ b/docs/cugraph/source/wholegraph/installation/getting_wholegraph.md @@ -21,7 +21,7 @@ The RAPIDS Docker containers (as of Release 23.10) contain all RAPIDS packages, ## Conda -It is easy to install WholeGraph using conda. You can get a minimal conda installation with [Miniconda](https://conda.io/miniconda.html) or get the full installation with [Anaconda](https://www.anaconda.com/download). +It is easy to install WholeGraph using conda. You can get a minimal conda installation with [miniforge](https://github.com/conda-forge/miniforge). WholeGraph conda packages * libwholegraph diff --git a/notebooks/demo/mg_pagerank.ipynb b/notebooks/demo/mg_pagerank.ipynb index bb333048450..e3314f80b3c 100644 --- a/notebooks/demo/mg_pagerank.ipynb +++ b/notebooks/demo/mg_pagerank.ipynb @@ -219,250 +219,250 @@ "text": [ "2023-05-12 09:25:01,974 - distributed.sizeof - WARNING - Sizeof calculation failed. Defaulting to 0.95 MiB\n", "Traceback (most recent call last):\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/sizeof.py\", line 17, in safe_sizeof\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/sizeof.py\", line 17, in safe_sizeof\n", " return sizeof(obj)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/dask/utils.py\", line 642, in __call__\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/dask/utils.py\", line 642, in __call__\n", " return meth(arg, *args, **kwargs)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/dask_cudf/backends.py\", line 430, in sizeof_cudf_dataframe\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/dask_cudf/backends.py\", line 430, in sizeof_cudf_dataframe\n", " + df._index.memory_usage()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 1594, in memory_usage\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 1594, in memory_usage\n", " if self.levels:\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 605, in levels\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 605, in levels\n", " self._compute_levels_and_codes()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 748, in _compute_levels_and_codes\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 748, in _compute_levels_and_codes\n", " code, cats = cudf.Series._from_data({None: col}).factorize()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/single_column_frame.py\", line 311, in factorize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/single_column_frame.py\", line 311, in factorize\n", " return cudf.core.algorithms.factorize(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/algorithms.py\", line 138, in factorize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/algorithms.py\", line 138, in factorize\n", " labels = values._column._label_encoding(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1385, in _label_encoding\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1385, in _label_encoding\n", " order = order.take(left_gather_map, check_bounds=False).argsort()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1101, in argsort\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1101, in argsort\n", " return self.as_frame()._get_sorted_inds(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py\", line 1572, in _get_sorted_inds\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py\", line 1572, in _get_sorted_inds\n", " return libcudf.sort.order_by(to_sort, ascending, na_position)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", " File \"sort.pyx\", line 141, in cudf._lib.sort.order_by\n", - "MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /home/dacosta/miniconda3/envs/cugraph_0411/include/rmm/mr/device/cuda_memory_resource.hpp\n", + "MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /home/dacosta/miniforge/envs/cugraph_0411/include/rmm/mr/device/cuda_memory_resource.hpp\n", "2023-05-12 09:25:01,976 - distributed.sizeof - WARNING - Sizeof calculation failed. Defaulting to 0.95 MiB\n", "Traceback (most recent call last):\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/sizeof.py\", line 17, in safe_sizeof\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/sizeof.py\", line 17, in safe_sizeof\n", " return sizeof(obj)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/dask/utils.py\", line 642, in __call__\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/dask/utils.py\", line 642, in __call__\n", " return meth(arg, *args, **kwargs)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/dask_cudf/backends.py\", line 430, in sizeof_cudf_dataframe\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/dask_cudf/backends.py\", line 430, in sizeof_cudf_dataframe\n", " + df._index.memory_usage()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 1594, in memory_usage\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 1594, in memory_usage\n", " if self.levels:\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 605, in levels\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 605, in levels\n", " self._compute_levels_and_codes()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 748, in _compute_levels_and_codes\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 748, in _compute_levels_and_codes\n", " code, cats = cudf.Series._from_data({None: col}).factorize()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/single_column_frame.py\", line 311, in factorize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/single_column_frame.py\", line 311, in factorize\n", " return cudf.core.algorithms.factorize(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/algorithms.py\", line 138, in factorize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/algorithms.py\", line 138, in factorize\n", " labels = values._column._label_encoding(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1385, in _label_encoding\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1385, in _label_encoding\n", " order = order.take(left_gather_map, check_bounds=False).argsort()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1101, in argsort\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1101, in argsort\n", " return self.as_frame()._get_sorted_inds(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py\", line 1572, in _get_sorted_inds\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py\", line 1572, in _get_sorted_inds\n", " return libcudf.sort.order_by(to_sort, ascending, na_position)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", " File \"sort.pyx\", line 141, in cudf._lib.sort.order_by\n", - "MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /home/dacosta/miniconda3/envs/cugraph_0411/include/rmm/mr/device/cuda_memory_resource.hpp\n", + "MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /home/dacosta/miniforge/envs/cugraph_0411/include/rmm/mr/device/cuda_memory_resource.hpp\n", "2023-05-12 09:25:03,767 - distributed.sizeof - WARNING - Sizeof calculation failed. Defaulting to 0.95 MiB\n", "Traceback (most recent call last):\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/sizeof.py\", line 17, in safe_sizeof\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/sizeof.py\", line 17, in safe_sizeof\n", " return sizeof(obj)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/dask/utils.py\", line 642, in __call__\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/dask/utils.py\", line 642, in __call__\n", " return meth(arg, *args, **kwargs)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/dask_cudf/backends.py\", line 430, in sizeof_cudf_dataframe\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/dask_cudf/backends.py\", line 430, in sizeof_cudf_dataframe\n", " + df._index.memory_usage()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 1594, in memory_usage\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 1594, in memory_usage\n", " if self.levels:\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 605, in levels\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 605, in levels\n", " self._compute_levels_and_codes()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 748, in _compute_levels_and_codes\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 748, in _compute_levels_and_codes\n", " code, cats = cudf.Series._from_data({None: col}).factorize()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/single_column_frame.py\", line 311, in factorize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/single_column_frame.py\", line 311, in factorize\n", " return cudf.core.algorithms.factorize(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/algorithms.py\", line 138, in factorize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/algorithms.py\", line 138, in factorize\n", " labels = values._column._label_encoding(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1385, in _label_encoding\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1385, in _label_encoding\n", " order = order.take(left_gather_map, check_bounds=False).argsort()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1101, in argsort\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1101, in argsort\n", " return self.as_frame()._get_sorted_inds(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py\", line 1572, in _get_sorted_inds\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py\", line 1572, in _get_sorted_inds\n", " return libcudf.sort.order_by(to_sort, ascending, na_position)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", " File \"sort.pyx\", line 141, in cudf._lib.sort.order_by\n", - "MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /home/dacosta/miniconda3/envs/cugraph_0411/include/rmm/mr/device/cuda_memory_resource.hpp\n", + "MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /home/dacosta/miniforge/envs/cugraph_0411/include/rmm/mr/device/cuda_memory_resource.hpp\n", "2023-05-12 09:25:03,768 - distributed.sizeof - WARNING - Sizeof calculation failed. Defaulting to 0.95 MiB\n", "Traceback (most recent call last):\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/sizeof.py\", line 17, in safe_sizeof\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/sizeof.py\", line 17, in safe_sizeof\n", " return sizeof(obj)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/dask/utils.py\", line 642, in __call__\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/dask/utils.py\", line 642, in __call__\n", " return meth(arg, *args, **kwargs)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/dask_cudf/backends.py\", line 430, in sizeof_cudf_dataframe\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/dask_cudf/backends.py\", line 430, in sizeof_cudf_dataframe\n", " + df._index.memory_usage()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 1594, in memory_usage\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 1594, in memory_usage\n", " if self.levels:\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 605, in levels\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 605, in levels\n", " self._compute_levels_and_codes()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 748, in _compute_levels_and_codes\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/multiindex.py\", line 748, in _compute_levels_and_codes\n", " code, cats = cudf.Series._from_data({None: col}).factorize()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/single_column_frame.py\", line 311, in factorize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/single_column_frame.py\", line 311, in factorize\n", " return cudf.core.algorithms.factorize(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/algorithms.py\", line 138, in factorize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/algorithms.py\", line 138, in factorize\n", " labels = values._column._label_encoding(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1385, in _label_encoding\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1385, in _label_encoding\n", " order = order.take(left_gather_map, check_bounds=False).argsort()\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1101, in argsort\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1101, in argsort\n", " return self.as_frame()._get_sorted_inds(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py\", line 1572, in _get_sorted_inds\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py\", line 1572, in _get_sorted_inds\n", " return libcudf.sort.order_by(to_sort, ascending, na_position)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", " File \"sort.pyx\", line 141, in cudf._lib.sort.order_by\n", - "MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /home/dacosta/miniconda3/envs/cugraph_0411/include/rmm/mr/device/cuda_memory_resource.hpp\n", + "MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /home/dacosta/miniforge/envs/cugraph_0411/include/rmm/mr/device/cuda_memory_resource.hpp\n", "2023-05-12 09:25:03,820 - distributed.worker - ERROR - Could not deserialize task ('len-chunk-319fe46af5510615b2fae86c6e732896-841a12bf4568ebb80eb2030cc4d9651d', 1)\n", "Traceback (most recent call last):\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2923, in loads_function\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2923, in loads_function\n", " result = cache_loads[bytes_object]\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/collections.py\", line 24, in __getitem__\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/collections.py\", line 24, in __getitem__\n", " value = super().__getitem__(key)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/collections/__init__.py\", line 1106, in __getitem__\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/collections/__init__.py\", line 1106, in __getitem__\n", " raise KeyError(key)\n", "KeyError: b'\\x80\\x05\\x95>\\x0b\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x11dask.optimization\\x94\\x8c\\x10SubgraphCallable\\x94\\x93\\x94(}\\x94(\\x8cKlen-chunk-319fe46af5510615b2fae86c6e732896-841a12bf4568ebb80eb2030cc4d9651d\\x94\\x8cZassign-getitem-len-chunk-319fe46af5510615b2fae86c6e732896-841a12bf4568ebb80eb2030cc4d9651d\\x94\\x8c*rename-01db283bd79fee66f232920c8dc6b55e_.0\\x94\\x8c;getitem-to_frame-rename-01db283bd79fee66f232920c8dc6b55e_.0\\x94\\x8c+getitem-3499fd71ac25ebbc1a06991edea6067c_.0\\x94\\x8c\\t_operator\\x94\\x8c\\x07getitem\\x94\\x93\\x94\\x8c/reset_index-f4c18304ca92859ccd09f44cf89b4b43_.0\\x94\\x8c\\x13__dask_blockwise__1\\x94\\x87\\x94h\\x0c(\\x8c\\ndask.utils\\x94\\x8c\\x05apply\\x94\\x93\\x94h\\x0f\\x8c\\x0cmethodcaller\\x94\\x93\\x94\\x8c\\x0breset_index\\x94\\x85\\x94R\\x94]\\x94\\x8c\\x13__dask_blockwise__5\\x94a\\x8c\\x08builtins\\x94\\x8c\\x04dict\\x94\\x93\\x94]\\x94]\\x94(\\x8c\\x04drop\\x94\\x89ea\\x86\\x94t\\x94h\\x07(h\\x11\\x8c\\x13dask.dataframe.core\\x94\\x8c\\x11apply_and_enforce\\x94\\x93\\x94]\\x94((h\\x11h#]\\x94h\\x0bh\\x0c\\x8c\\x13__dask_blockwise__0\\x94\\x87\\x94ah\\x1b]\\x94(]\\x94(\\x8c\\x05_func\\x94h\\x13\\x8c\\x08to_frame\\x94\\x85\\x94R\\x94e]\\x94(\\x8c\\x05_meta\\x94\\x8c\\x08builtins\\x94\\x8c\\x07getattr\\x94\\x93\\x94\\x8c\\x13cudf.core.dataframe\\x94\\x8c\\tDataFrame\\x94\\x93\\x94\\x8c\\x10host_deserialize\\x94\\x86\\x94R\\x94}\\x94(\\x8c\\x0ftype-serialized\\x94C0\\x80\\x04\\x95%\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x13cudf.core.dataframe\\x94\\x8c\\tDataFrame\\x94\\x93\\x94.\\x94\\x8c\\x0ccolumn_names\\x94C\\x14\\x80\\x04\\x95\\t\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x03src\\x94\\x85\\x94.\\x94\\x8c\\x07columns\\x94}\\x94(\\x8c\\x0ftype-serialized\\x94C=\\x80\\x04\\x952\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x1acudf.core.column.numerical\\x94\\x8c\\x0fNumericalColumn\\x94\\x93\\x94.\\x94\\x8c\\x05dtype\\x94CB\\x80\\x04\\x957\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x05numpy\\x94\\x8c\\x05dtype\\x94\\x93\\x94\\x8c\\x02i4\\x94\\x89\\x88\\x87\\x94R\\x94(K\\x03\\x8c\\x01<\\x94NNNJ\\xff\\xff\\xff\\xffJ\\xff\\xff\\xff\\xffK\\x00t\\x94b.\\x94\\x8c\\x18dtype-is-cudf-serialized\\x94\\x89\\x8c\\x04data\\x94}\\x94(\\x8c\\x0ftype-serialized\\x94CI\\x80\\x04\\x95>\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c!cudf.core.buffer.spillable_buffer\\x94\\x8c\\x14SpillableBufferSlice\\x94\\x93\\x94.\\x94\\x8c\\x0bframe_count\\x94K\\x01u\\x8c\\x04mask\\x94}\\x94(hGCD\\x80\\x04\\x959\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c!cudf.core.buffer.spillable_buffer\\x94\\x8c\\x0fSpillableBuffer\\x94\\x93\\x94.\\x94hIK\\x01u\\x8c\\x04size\\x94K\\x00hIK\\x02u\\x85\\x94\\x8c\\x05index\\x94}\\x94(\\x8c\\x0cindex_column\\x94}\\x94(\\x8c\\x05start\\x94K\\x00\\x8c\\x04stop\\x94K\\x00\\x8c\\x04step\\x94K\\x01u\\x8c\\x04name\\x94C\\x04\\x80\\x04N.\\x94hBCB\\x80\\x04\\x957\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x05numpy\\x94\\x8c\\x05dtype\\x94\\x93\\x94\\x8c\\x02i8\\x94\\x89\\x88\\x87\\x94R\\x94(K\\x03\\x8c\\x01<\\x94NNNJ\\xff\\xff\\xff\\xffJ\\xff\\xff\\xff\\xffK\\x00t\\x94b.\\x94\\x8c\\x0ftype-serialized\\x94C-\\x80\\x04\\x95\"\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x0fcudf.core.index\\x94\\x8c\\nRangeIndex\\x94\\x93\\x94.\\x94hIK\\x00u\\x8c\\x11index_frame_count\\x94K\\x00\\x8c\\x07is-cuda\\x94]\\x94(\\x88\\x88e\\x8c\\x07lengths\\x94]\\x94(K\\x00K\\x00e\\x8c\\twriteable\\x94NN\\x86\\x94u]\\x94(\\x8c\\x12numpy.core.numeric\\x94\\x8c\\x0b_frombuffer\\x94\\x93\\x94(C\\x00\\x94\\x8c\\x05numpy\\x94hB\\x93\\x94\\x8c\\x02u1\\x94\\x89\\x88\\x87\\x94R\\x94(K\\x03\\x8c\\x01|\\x94NNNJ\\xff\\xff\\xff\\xffJ\\xff\\xff\\xff\\xffK\\x00t\\x94bK\\x00\\x85\\x94\\x8c\\x01C\\x94t\\x94R\\x94he(C\\x00\\x94hkK\\x00\\x85\\x94hot\\x94R\\x94e\\x86\\x94R\\x94ee\\x86\\x94t\\x94\\x8c\\x13__dask_blockwise__2\\x94eh\\x1b]\\x94(]\\x94(h*h\\x13\\x8c\\x06rename\\x94\\x85\\x94R\\x94e]\\x94(h/h2h5h6\\x86\\x94R\\x94}\\x94(h:C0\\x80\\x04\\x95%\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x13cudf.core.dataframe\\x94\\x8c\\tDataFrame\\x94\\x93\\x94.\\x94h}\\x94(h@C=\\x80\\x04\\x952\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x1acudf.core.column.numerical\\x94\\x8c\\x0fNumericalColumn\\x94\\x93\\x94.\\x94hBCB\\x80\\x04\\x957\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x05numpy\\x94\\x8c\\x05dtype\\x94\\x93\\x94\\x8c\\x02i4\\x94\\x89\\x88\\x87\\x94R\\x94(K\\x03\\x8c\\x01<\\x94NNNJ\\xff\\xff\\xff\\xffJ\\xff\\xff\\xff\\xffK\\x00t\\x94b.\\x94hD\\x89hE}\\x94(hGCI\\x80\\x04\\x95>\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c!cudf.core.buffer.spillable_buffer\\x94\\x8c\\x14SpillableBufferSlice\\x94\\x93\\x94.\\x94hIK\\x01uhMK\\x00hIK\\x01u\\x85\\x94hO}\\x94(hQ}\\x94(hSK\\x00hTK\\x00hUK\\x01uhVC\\x04\\x80\\x04N.\\x94hBCB\\x80\\x04\\x957\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x05numpy\\x94\\x8c\\x05dtype\\x94\\x93\\x94\\x8c\\x02i8\\x94\\x89\\x88\\x87\\x94R\\x94(K\\x03\\x8c\\x01<\\x94NNNJ\\xff\\xff\\xff\\xffJ\\xff\\xff\\xff\\xffK\\x00t\\x94b.\\x94hYC-\\x80\\x04\\x95\"\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x0fcudf.core.index\\x94\\x8c\\nRangeIndex\\x94\\x93\\x94.\\x94hIK\\x00uh[K\\x00h\\\\]\\x94\\x88ah^]\\x94K\\x00ah`N\\x85\\x94u]\\x94he(C\\x00\\x94hkK\\x00\\x85\\x94hot\\x94R\\x94a\\x86\\x94R\\x94e]\\x94(h>h\\x1b]\\x94]\\x94(\\x8c\\x03src\\x94h\\x9eea\\x86\\x94ee\\x86\\x94t\\x94h\\x05(h\\x11h!\\x8c\\x10_reduction_chunk\\x94\\x93\\x94]\\x94h\\x0b(\\x8c\\x16dask.dataframe.methods\\x94\\x8c\\x06assign\\x94\\x93\\x94h\\x06h\\rh\\x08t\\x94h&\\x87\\x94ah\\x1b]\\x94]\\x94(\\x8c\\taca_chunk\\x94h0\\x8c\\x03len\\x94\\x93\\x94ea\\x86\\x94t\\x94\\x8c\\x13__dask_blockwise__0\\x94h\\x9e\\x8c\\x13__dask_blockwise__1\\x94\\x8c\\x03dst\\x94\\x8c\\x13__dask_blockwise__2\\x94N\\x8c\\x13__dask_blockwise__3\\x94\\x8c)to_frame-804980ae30b71d28f0a6bd3d5b7610f9\\x94\\x8c\\x13__dask_blockwise__4\\x94\\x8c(getitem-15414b72be12e28054238b44933937ab\\x94\\x8c\\x13__dask_blockwise__6\\x94\\x8c3cudf-aggregate-agg-c50c2d97de169ca4f41e43a92a042630\\x94uh\\x04\\x8c\\x13__dask_blockwise__5\\x94\\x85\\x94\\x8c6subgraph_callable-b4ca530e-8895-432e-b553-40a7b5892ab2\\x94t\\x94R\\x94.'\n", "\n", "During handling of the above exception, another exception occurred:\n", "\n", "Traceback (most recent call last):\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2244, in execute\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2244, in execute\n", " function, args, kwargs = await self._maybe_deserialize_task(ts)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2216, in _maybe_deserialize_task\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2216, in _maybe_deserialize_task\n", " function, args, kwargs = _deserialize(*ts.run_spec)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2937, in _deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2937, in _deserialize\n", " function = loads_function(function)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2925, in loads_function\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2925, in loads_function\n", " result = pickle.loads(bytes_object)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/protocol/pickle.py\", line 96, in loads\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/protocol/pickle.py\", line 96, in loads\n", " return pickle.loads(x)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/abc.py\", line 176, in host_deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/abc.py\", line 176, in host_deserialize\n", " obj = cls.device_deserialize(header, frames)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/abc.py\", line 130, in device_deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/abc.py\", line 130, in device_deserialize\n", " return typ.deserialize(header, frames)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/dataframe.py\", line 1019, in deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/dataframe.py\", line 1019, in deserialize\n", " obj = super().deserialize(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py\", line 106, in deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py\", line 106, in deserialize\n", " columns = deserialize_columns(header[\"columns\"], frames)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 2450, in deserialize_columns\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 2450, in deserialize_columns\n", " colobj = col_typ.deserialize(meta, frames[:col_frame_count])\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1216, in deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1216, in deserialize\n", " data, frames = unpack(header[\"data\"], frames)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1204, in unpack\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1204, in unpack\n", " obj = klass.deserialize(header, frames[:count])\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py\", line 574, in deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py\", line 574, in deserialize\n", " return SpillableBuffer.deserialize(header, frames)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/buffer.py\", line 335, in deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/buffer.py\", line 335, in deserialize\n", " return cls._from_device_memory(frame)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py\", line 235, in _from_device_memory\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py\", line 235, in _from_device_memory\n", " ret._finalize_init(ptr_desc={\"type\": \"gpu\"}, exposed=exposed)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py\", line 206, in _finalize_init\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py\", line 206, in _finalize_init\n", " raise ValueError(\n", "ValueError: cannot create without a global spill manager\n", "2023-05-12 09:25:03,817 - distributed.worker - ERROR - Could not deserialize task ('len-chunk-319fe46af5510615b2fae86c6e732896-841a12bf4568ebb80eb2030cc4d9651d', 0)\n", "Traceback (most recent call last):\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2923, in loads_function\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2923, in loads_function\n", " result = cache_loads[bytes_object]\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/collections.py\", line 24, in __getitem__\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/collections.py\", line 24, in __getitem__\n", " value = super().__getitem__(key)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/collections/__init__.py\", line 1106, in __getitem__\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/collections/__init__.py\", line 1106, in __getitem__\n", " raise KeyError(key)\n", "KeyError: b'\\x80\\x05\\x95>\\x0b\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x11dask.optimization\\x94\\x8c\\x10SubgraphCallable\\x94\\x93\\x94(}\\x94(\\x8cKlen-chunk-319fe46af5510615b2fae86c6e732896-841a12bf4568ebb80eb2030cc4d9651d\\x94\\x8cZassign-getitem-len-chunk-319fe46af5510615b2fae86c6e732896-841a12bf4568ebb80eb2030cc4d9651d\\x94\\x8c*rename-01db283bd79fee66f232920c8dc6b55e_.0\\x94\\x8c;getitem-to_frame-rename-01db283bd79fee66f232920c8dc6b55e_.0\\x94\\x8c+getitem-3499fd71ac25ebbc1a06991edea6067c_.0\\x94\\x8c\\t_operator\\x94\\x8c\\x07getitem\\x94\\x93\\x94\\x8c/reset_index-f4c18304ca92859ccd09f44cf89b4b43_.0\\x94\\x8c\\x13__dask_blockwise__1\\x94\\x87\\x94h\\x0c(\\x8c\\ndask.utils\\x94\\x8c\\x05apply\\x94\\x93\\x94h\\x0f\\x8c\\x0cmethodcaller\\x94\\x93\\x94\\x8c\\x0breset_index\\x94\\x85\\x94R\\x94]\\x94\\x8c\\x13__dask_blockwise__5\\x94a\\x8c\\x08builtins\\x94\\x8c\\x04dict\\x94\\x93\\x94]\\x94]\\x94(\\x8c\\x04drop\\x94\\x89ea\\x86\\x94t\\x94h\\x07(h\\x11\\x8c\\x13dask.dataframe.core\\x94\\x8c\\x11apply_and_enforce\\x94\\x93\\x94]\\x94((h\\x11h#]\\x94h\\x0bh\\x0c\\x8c\\x13__dask_blockwise__0\\x94\\x87\\x94ah\\x1b]\\x94(]\\x94(\\x8c\\x05_func\\x94h\\x13\\x8c\\x08to_frame\\x94\\x85\\x94R\\x94e]\\x94(\\x8c\\x05_meta\\x94\\x8c\\x08builtins\\x94\\x8c\\x07getattr\\x94\\x93\\x94\\x8c\\x13cudf.core.dataframe\\x94\\x8c\\tDataFrame\\x94\\x93\\x94\\x8c\\x10host_deserialize\\x94\\x86\\x94R\\x94}\\x94(\\x8c\\x0ftype-serialized\\x94C0\\x80\\x04\\x95%\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x13cudf.core.dataframe\\x94\\x8c\\tDataFrame\\x94\\x93\\x94.\\x94\\x8c\\x0ccolumn_names\\x94C\\x14\\x80\\x04\\x95\\t\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x03src\\x94\\x85\\x94.\\x94\\x8c\\x07columns\\x94}\\x94(\\x8c\\x0ftype-serialized\\x94C=\\x80\\x04\\x952\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x1acudf.core.column.numerical\\x94\\x8c\\x0fNumericalColumn\\x94\\x93\\x94.\\x94\\x8c\\x05dtype\\x94CB\\x80\\x04\\x957\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x05numpy\\x94\\x8c\\x05dtype\\x94\\x93\\x94\\x8c\\x02i4\\x94\\x89\\x88\\x87\\x94R\\x94(K\\x03\\x8c\\x01<\\x94NNNJ\\xff\\xff\\xff\\xffJ\\xff\\xff\\xff\\xffK\\x00t\\x94b.\\x94\\x8c\\x18dtype-is-cudf-serialized\\x94\\x89\\x8c\\x04data\\x94}\\x94(\\x8c\\x0ftype-serialized\\x94CI\\x80\\x04\\x95>\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c!cudf.core.buffer.spillable_buffer\\x94\\x8c\\x14SpillableBufferSlice\\x94\\x93\\x94.\\x94\\x8c\\x0bframe_count\\x94K\\x01u\\x8c\\x04mask\\x94}\\x94(hGCD\\x80\\x04\\x959\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c!cudf.core.buffer.spillable_buffer\\x94\\x8c\\x0fSpillableBuffer\\x94\\x93\\x94.\\x94hIK\\x01u\\x8c\\x04size\\x94K\\x00hIK\\x02u\\x85\\x94\\x8c\\x05index\\x94}\\x94(\\x8c\\x0cindex_column\\x94}\\x94(\\x8c\\x05start\\x94K\\x00\\x8c\\x04stop\\x94K\\x00\\x8c\\x04step\\x94K\\x01u\\x8c\\x04name\\x94C\\x04\\x80\\x04N.\\x94hBCB\\x80\\x04\\x957\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x05numpy\\x94\\x8c\\x05dtype\\x94\\x93\\x94\\x8c\\x02i8\\x94\\x89\\x88\\x87\\x94R\\x94(K\\x03\\x8c\\x01<\\x94NNNJ\\xff\\xff\\xff\\xffJ\\xff\\xff\\xff\\xffK\\x00t\\x94b.\\x94\\x8c\\x0ftype-serialized\\x94C-\\x80\\x04\\x95\"\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x0fcudf.core.index\\x94\\x8c\\nRangeIndex\\x94\\x93\\x94.\\x94hIK\\x00u\\x8c\\x11index_frame_count\\x94K\\x00\\x8c\\x07is-cuda\\x94]\\x94(\\x88\\x88e\\x8c\\x07lengths\\x94]\\x94(K\\x00K\\x00e\\x8c\\twriteable\\x94NN\\x86\\x94u]\\x94(\\x8c\\x12numpy.core.numeric\\x94\\x8c\\x0b_frombuffer\\x94\\x93\\x94(C\\x00\\x94\\x8c\\x05numpy\\x94hB\\x93\\x94\\x8c\\x02u1\\x94\\x89\\x88\\x87\\x94R\\x94(K\\x03\\x8c\\x01|\\x94NNNJ\\xff\\xff\\xff\\xffJ\\xff\\xff\\xff\\xffK\\x00t\\x94bK\\x00\\x85\\x94\\x8c\\x01C\\x94t\\x94R\\x94he(C\\x00\\x94hkK\\x00\\x85\\x94hot\\x94R\\x94e\\x86\\x94R\\x94ee\\x86\\x94t\\x94\\x8c\\x13__dask_blockwise__2\\x94eh\\x1b]\\x94(]\\x94(h*h\\x13\\x8c\\x06rename\\x94\\x85\\x94R\\x94e]\\x94(h/h2h5h6\\x86\\x94R\\x94}\\x94(h:C0\\x80\\x04\\x95%\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x13cudf.core.dataframe\\x94\\x8c\\tDataFrame\\x94\\x93\\x94.\\x94h}\\x94(h@C=\\x80\\x04\\x952\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x1acudf.core.column.numerical\\x94\\x8c\\x0fNumericalColumn\\x94\\x93\\x94.\\x94hBCB\\x80\\x04\\x957\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x05numpy\\x94\\x8c\\x05dtype\\x94\\x93\\x94\\x8c\\x02i4\\x94\\x89\\x88\\x87\\x94R\\x94(K\\x03\\x8c\\x01<\\x94NNNJ\\xff\\xff\\xff\\xffJ\\xff\\xff\\xff\\xffK\\x00t\\x94b.\\x94hD\\x89hE}\\x94(hGCI\\x80\\x04\\x95>\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c!cudf.core.buffer.spillable_buffer\\x94\\x8c\\x14SpillableBufferSlice\\x94\\x93\\x94.\\x94hIK\\x01uhMK\\x00hIK\\x01u\\x85\\x94hO}\\x94(hQ}\\x94(hSK\\x00hTK\\x00hUK\\x01uhVC\\x04\\x80\\x04N.\\x94hBCB\\x80\\x04\\x957\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x05numpy\\x94\\x8c\\x05dtype\\x94\\x93\\x94\\x8c\\x02i8\\x94\\x89\\x88\\x87\\x94R\\x94(K\\x03\\x8c\\x01<\\x94NNNJ\\xff\\xff\\xff\\xffJ\\xff\\xff\\xff\\xffK\\x00t\\x94b.\\x94hYC-\\x80\\x04\\x95\"\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x8c\\x0fcudf.core.index\\x94\\x8c\\nRangeIndex\\x94\\x93\\x94.\\x94hIK\\x00uh[K\\x00h\\\\]\\x94\\x88ah^]\\x94K\\x00ah`N\\x85\\x94u]\\x94he(C\\x00\\x94hkK\\x00\\x85\\x94hot\\x94R\\x94a\\x86\\x94R\\x94e]\\x94(h>h\\x1b]\\x94]\\x94(\\x8c\\x03src\\x94h\\x9eea\\x86\\x94ee\\x86\\x94t\\x94h\\x05(h\\x11h!\\x8c\\x10_reduction_chunk\\x94\\x93\\x94]\\x94h\\x0b(\\x8c\\x16dask.dataframe.methods\\x94\\x8c\\x06assign\\x94\\x93\\x94h\\x06h\\rh\\x08t\\x94h&\\x87\\x94ah\\x1b]\\x94]\\x94(\\x8c\\taca_chunk\\x94h0\\x8c\\x03len\\x94\\x93\\x94ea\\x86\\x94t\\x94\\x8c\\x13__dask_blockwise__0\\x94h\\x9e\\x8c\\x13__dask_blockwise__1\\x94\\x8c\\x03dst\\x94\\x8c\\x13__dask_blockwise__2\\x94N\\x8c\\x13__dask_blockwise__3\\x94\\x8c)to_frame-804980ae30b71d28f0a6bd3d5b7610f9\\x94\\x8c\\x13__dask_blockwise__4\\x94\\x8c(getitem-15414b72be12e28054238b44933937ab\\x94\\x8c\\x13__dask_blockwise__6\\x94\\x8c3cudf-aggregate-agg-c50c2d97de169ca4f41e43a92a042630\\x94uh\\x04\\x8c\\x13__dask_blockwise__5\\x94\\x85\\x94\\x8c6subgraph_callable-b4ca530e-8895-432e-b553-40a7b5892ab2\\x94t\\x94R\\x94.'\n", "\n", "During handling of the above exception, another exception occurred:\n", "\n", "Traceback (most recent call last):\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2244, in execute\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2244, in execute\n", " function, args, kwargs = await self._maybe_deserialize_task(ts)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2216, in _maybe_deserialize_task\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2216, in _maybe_deserialize_task\n", " function, args, kwargs = _deserialize(*ts.run_spec)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py\", line 79, in inner\n", " return func(*args, **kwds)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2937, in _deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2937, in _deserialize\n", " function = loads_function(function)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2925, in loads_function\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py\", line 2925, in loads_function\n", " result = pickle.loads(bytes_object)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/protocol/pickle.py\", line 96, in loads\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/protocol/pickle.py\", line 96, in loads\n", " return pickle.loads(x)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/abc.py\", line 176, in host_deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/abc.py\", line 176, in host_deserialize\n", " obj = cls.device_deserialize(header, frames)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/abc.py\", line 130, in device_deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/abc.py\", line 130, in device_deserialize\n", " return typ.deserialize(header, frames)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/dataframe.py\", line 1019, in deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/dataframe.py\", line 1019, in deserialize\n", " obj = super().deserialize(\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py\", line 106, in deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py\", line 106, in deserialize\n", " columns = deserialize_columns(header[\"columns\"], frames)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 2450, in deserialize_columns\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 2450, in deserialize_columns\n", " colobj = col_typ.deserialize(meta, frames[:col_frame_count])\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1216, in deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1216, in deserialize\n", " data, frames = unpack(header[\"data\"], frames)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1204, in unpack\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py\", line 1204, in unpack\n", " obj = klass.deserialize(header, frames[:count])\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py\", line 574, in deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py\", line 574, in deserialize\n", " return SpillableBuffer.deserialize(header, frames)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/buffer.py\", line 335, in deserialize\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/buffer.py\", line 335, in deserialize\n", " return cls._from_device_memory(frame)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py\", line 235, in _from_device_memory\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py\", line 235, in _from_device_memory\n", " ret._finalize_init(ptr_desc={\"type\": \"gpu\"}, exposed=exposed)\n", - " File \"/home/dacosta/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py\", line 206, in _finalize_init\n", + " File \"/home/dacosta/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py\", line 206, in _finalize_init\n", " raise ValueError(\n", "ValueError: cannot create without a global spill manager\n" ] @@ -475,34 +475,34 @@ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[6], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39m# Create a directed graph using the source (src) and destination (dst) vertex pairs from the Dataframe \u001b[39;00m\n\u001b[1;32m 2\u001b[0m G \u001b[39m=\u001b[39m cugraph\u001b[39m.\u001b[39mGraph(directed\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[0;32m----> 3\u001b[0m G\u001b[39m.\u001b[39;49mfrom_dask_cudf_edgelist(e_list, source\u001b[39m=\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39msrc\u001b[39;49m\u001b[39m'\u001b[39;49m, destination\u001b[39m=\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39mdst\u001b[39;49m\u001b[39m'\u001b[39;49m)\n\u001b[1;32m 5\u001b[0m \u001b[39m# Print time\u001b[39;00m\n\u001b[1;32m 6\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39m\"\u001b[39m\u001b[39mRead, load and renumber: \u001b[39m\u001b[39m\"\u001b[39m, time\u001b[39m.\u001b[39mtime()\u001b[39m-\u001b[39mt_start, \u001b[39m\"\u001b[39m\u001b[39ms\u001b[39m\u001b[39m\"\u001b[39m)\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cugraph/structure/graph_classes.py:309\u001b[0m, in \u001b[0;36mGraph.from_dask_cudf_edgelist\u001b[0;34m(self, input_ddf, source, destination, edge_attr, renumber, store_transposed, legacy_renum_only)\u001b[0m\n\u001b[1;32m 307\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_Impl\u001b[39m.\u001b[39medgelist \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 308\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mRuntimeError\u001b[39;00m(\u001b[39m\"\u001b[39m\u001b[39mGraph already has values\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m--> 309\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_Impl\u001b[39m.\u001b[39;49m_simpleDistributedGraphImpl__from_edgelist(\n\u001b[1;32m 310\u001b[0m input_ddf,\n\u001b[1;32m 311\u001b[0m source,\n\u001b[1;32m 312\u001b[0m destination,\n\u001b[1;32m 313\u001b[0m edge_attr,\n\u001b[1;32m 314\u001b[0m renumber,\n\u001b[1;32m 315\u001b[0m store_transposed,\n\u001b[1;32m 316\u001b[0m legacy_renum_only,\n\u001b[1;32m 317\u001b[0m )\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cugraph/structure/graph_implementation/simpleDistributedGraph.py:272\u001b[0m, in \u001b[0;36msimpleDistributedGraphImpl.__from_edgelist\u001b[0;34m(self, input_ddf, source, destination, edge_attr, renumber, store_transposed, legacy_renum_only)\u001b[0m\n\u001b[1;32m 268\u001b[0m dst_col_name \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mrenumber_map\u001b[39m.\u001b[39mrenumbered_dst_col_name\n\u001b[1;32m 270\u001b[0m ddf \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39medgelist\u001b[39m.\u001b[39medgelist_df\n\u001b[0;32m--> 272\u001b[0m num_edges \u001b[39m=\u001b[39m \u001b[39mlen\u001b[39;49m(ddf)\n\u001b[1;32m 273\u001b[0m edge_data \u001b[39m=\u001b[39m get_distributed_data(ddf)\n\u001b[1;32m 275\u001b[0m graph_props \u001b[39m=\u001b[39m GraphProperties(\n\u001b[1;32m 276\u001b[0m is_multigraph\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mproperties\u001b[39m.\u001b[39mmulti_edge,\n\u001b[1;32m 277\u001b[0m is_symmetric\u001b[39m=\u001b[39m\u001b[39mnot\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mproperties\u001b[39m.\u001b[39mdirected,\n\u001b[1;32m 278\u001b[0m )\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/dask/dataframe/core.py:4775\u001b[0m, in \u001b[0;36mDataFrame.__len__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 4773\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39msuper\u001b[39m()\u001b[39m.\u001b[39m\u001b[39m__len__\u001b[39m()\n\u001b[1;32m 4774\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m-> 4775\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mlen\u001b[39;49m(s)\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/dask/dataframe/core.py:843\u001b[0m, in \u001b[0;36m_Frame.__len__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 840\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__len__\u001b[39m(\u001b[39mself\u001b[39m):\n\u001b[1;32m 841\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mreduction(\n\u001b[1;32m 842\u001b[0m \u001b[39mlen\u001b[39;49m, np\u001b[39m.\u001b[39;49msum, token\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mlen\u001b[39;49m\u001b[39m\"\u001b[39;49m, meta\u001b[39m=\u001b[39;49m\u001b[39mint\u001b[39;49m, split_every\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m\n\u001b[0;32m--> 843\u001b[0m )\u001b[39m.\u001b[39;49mcompute()\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/dask/base.py:314\u001b[0m, in \u001b[0;36mDaskMethodsMixin.compute\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 290\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mcompute\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m 291\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"Compute this dask collection\u001b[39;00m\n\u001b[1;32m 292\u001b[0m \n\u001b[1;32m 293\u001b[0m \u001b[39m This turns a lazy Dask collection into its in-memory equivalent.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 312\u001b[0m \u001b[39m dask.base.compute\u001b[39;00m\n\u001b[1;32m 313\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 314\u001b[0m (result,) \u001b[39m=\u001b[39m compute(\u001b[39mself\u001b[39;49m, traverse\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 315\u001b[0m \u001b[39mreturn\u001b[39;00m result\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/dask/base.py:599\u001b[0m, in \u001b[0;36mcompute\u001b[0;34m(traverse, optimize_graph, scheduler, get, *args, **kwargs)\u001b[0m\n\u001b[1;32m 596\u001b[0m keys\u001b[39m.\u001b[39mappend(x\u001b[39m.\u001b[39m__dask_keys__())\n\u001b[1;32m 597\u001b[0m postcomputes\u001b[39m.\u001b[39mappend(x\u001b[39m.\u001b[39m__dask_postcompute__())\n\u001b[0;32m--> 599\u001b[0m results \u001b[39m=\u001b[39m schedule(dsk, keys, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 600\u001b[0m \u001b[39mreturn\u001b[39;00m repack([f(r, \u001b[39m*\u001b[39ma) \u001b[39mfor\u001b[39;00m r, (f, a) \u001b[39min\u001b[39;00m \u001b[39mzip\u001b[39m(results, postcomputes)])\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/client.py:3186\u001b[0m, in \u001b[0;36mClient.get\u001b[0;34m(self, dsk, keys, workers, allow_other_workers, resources, sync, asynchronous, direct, retries, priority, fifo_timeout, actors, **kwargs)\u001b[0m\n\u001b[1;32m 3184\u001b[0m should_rejoin \u001b[39m=\u001b[39m \u001b[39mFalse\u001b[39;00m\n\u001b[1;32m 3185\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m-> 3186\u001b[0m results \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mgather(packed, asynchronous\u001b[39m=\u001b[39;49masynchronous, direct\u001b[39m=\u001b[39;49mdirect)\n\u001b[1;32m 3187\u001b[0m \u001b[39mfinally\u001b[39;00m:\n\u001b[1;32m 3188\u001b[0m \u001b[39mfor\u001b[39;00m f \u001b[39min\u001b[39;00m futures\u001b[39m.\u001b[39mvalues():\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/client.py:2345\u001b[0m, in \u001b[0;36mClient.gather\u001b[0;34m(self, futures, errors, direct, asynchronous)\u001b[0m\n\u001b[1;32m 2343\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 2344\u001b[0m local_worker \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m-> 2345\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49msync(\n\u001b[1;32m 2346\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_gather,\n\u001b[1;32m 2347\u001b[0m futures,\n\u001b[1;32m 2348\u001b[0m errors\u001b[39m=\u001b[39;49merrors,\n\u001b[1;32m 2349\u001b[0m direct\u001b[39m=\u001b[39;49mdirect,\n\u001b[1;32m 2350\u001b[0m local_worker\u001b[39m=\u001b[39;49mlocal_worker,\n\u001b[1;32m 2351\u001b[0m asynchronous\u001b[39m=\u001b[39;49masynchronous,\n\u001b[1;32m 2352\u001b[0m )\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/utils.py:349\u001b[0m, in \u001b[0;36mSyncMethodMixin.sync\u001b[0;34m(self, func, asynchronous, callback_timeout, *args, **kwargs)\u001b[0m\n\u001b[1;32m 347\u001b[0m \u001b[39mreturn\u001b[39;00m future\n\u001b[1;32m 348\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 349\u001b[0m \u001b[39mreturn\u001b[39;00m sync(\n\u001b[1;32m 350\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mloop, func, \u001b[39m*\u001b[39;49margs, callback_timeout\u001b[39m=\u001b[39;49mcallback_timeout, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs\n\u001b[1;32m 351\u001b[0m )\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/utils.py:416\u001b[0m, in \u001b[0;36msync\u001b[0;34m(loop, func, callback_timeout, *args, **kwargs)\u001b[0m\n\u001b[1;32m 414\u001b[0m \u001b[39mif\u001b[39;00m error:\n\u001b[1;32m 415\u001b[0m typ, exc, tb \u001b[39m=\u001b[39m error\n\u001b[0;32m--> 416\u001b[0m \u001b[39mraise\u001b[39;00m exc\u001b[39m.\u001b[39mwith_traceback(tb)\n\u001b[1;32m 417\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 418\u001b[0m \u001b[39mreturn\u001b[39;00m result\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/utils.py:389\u001b[0m, in \u001b[0;36msync..f\u001b[0;34m()\u001b[0m\n\u001b[1;32m 387\u001b[0m future \u001b[39m=\u001b[39m wait_for(future, callback_timeout)\n\u001b[1;32m 388\u001b[0m future \u001b[39m=\u001b[39m asyncio\u001b[39m.\u001b[39mensure_future(future)\n\u001b[0;32m--> 389\u001b[0m result \u001b[39m=\u001b[39m \u001b[39myield\u001b[39;00m future\n\u001b[1;32m 390\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m:\n\u001b[1;32m 391\u001b[0m error \u001b[39m=\u001b[39m sys\u001b[39m.\u001b[39mexc_info()\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/tornado/gen.py:769\u001b[0m, in \u001b[0;36mRunner.run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 766\u001b[0m exc_info \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[1;32m 768\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 769\u001b[0m value \u001b[39m=\u001b[39m future\u001b[39m.\u001b[39;49mresult()\n\u001b[1;32m 770\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m:\n\u001b[1;32m 771\u001b[0m exc_info \u001b[39m=\u001b[39m sys\u001b[39m.\u001b[39mexc_info()\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/client.py:2208\u001b[0m, in \u001b[0;36mClient._gather\u001b[0;34m(self, futures, errors, direct, local_worker)\u001b[0m\n\u001b[1;32m 2206\u001b[0m exc \u001b[39m=\u001b[39m CancelledError(key)\n\u001b[1;32m 2207\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m-> 2208\u001b[0m \u001b[39mraise\u001b[39;00m exception\u001b[39m.\u001b[39mwith_traceback(traceback)\n\u001b[1;32m 2209\u001b[0m \u001b[39mraise\u001b[39;00m exc\n\u001b[1;32m 2210\u001b[0m \u001b[39mif\u001b[39;00m errors \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mskip\u001b[39m\u001b[39m\"\u001b[39m:\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/contextlib.py:79\u001b[0m, in \u001b[0;36minner\u001b[0;34m()\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[39m@wraps\u001b[39m(func)\n\u001b[1;32m 77\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minner\u001b[39m(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwds):\n\u001b[1;32m 78\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_recreate_cm():\n\u001b[0;32m---> 79\u001b[0m \u001b[39mreturn\u001b[39;00m func(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwds)\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py:2937\u001b[0m, in \u001b[0;36m_deserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2934\u001b[0m \u001b[39m# Some objects require threadlocal state during deserialization, e.g. to\u001b[39;00m\n\u001b[1;32m 2935\u001b[0m \u001b[39m# detect the current worker\u001b[39;00m\n\u001b[1;32m 2936\u001b[0m \u001b[39mif\u001b[39;00m function \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m-> 2937\u001b[0m function \u001b[39m=\u001b[39m loads_function(function)\n\u001b[1;32m 2938\u001b[0m \u001b[39mif\u001b[39;00m args \u001b[39mand\u001b[39;00m \u001b[39misinstance\u001b[39m(args, \u001b[39mbytes\u001b[39m):\n\u001b[1;32m 2939\u001b[0m args \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(args)\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py:2925\u001b[0m, in \u001b[0;36mloads_function\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2923\u001b[0m result \u001b[39m=\u001b[39m cache_loads[bytes_object]\n\u001b[1;32m 2924\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mKeyError\u001b[39;00m:\n\u001b[0;32m-> 2925\u001b[0m result \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(bytes_object)\n\u001b[1;32m 2926\u001b[0m cache_loads[bytes_object] \u001b[39m=\u001b[39m result\n\u001b[1;32m 2927\u001b[0m \u001b[39mreturn\u001b[39;00m result\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/distributed/protocol/pickle.py:96\u001b[0m, in \u001b[0;36mloads\u001b[0;34m()\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[39mreturn\u001b[39;00m pickle\u001b[39m.\u001b[39mloads(x, buffers\u001b[39m=\u001b[39mbuffers)\n\u001b[1;32m 95\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m---> 96\u001b[0m \u001b[39mreturn\u001b[39;00m pickle\u001b[39m.\u001b[39mloads(x)\n\u001b[1;32m 97\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m:\n\u001b[1;32m 98\u001b[0m logger\u001b[39m.\u001b[39minfo(\u001b[39m\"\u001b[39m\u001b[39mFailed to deserialize \u001b[39m\u001b[39m%s\u001b[39;00m\u001b[39m\"\u001b[39m, x[:\u001b[39m10000\u001b[39m], exc_info\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/abc.py:176\u001b[0m, in \u001b[0;36mhost_deserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 154\u001b[0m \u001b[39m\u001b[39m\u001b[39m\"\"\"Perform device-side deserialization tasks.\u001b[39;00m\n\u001b[1;32m 155\u001b[0m \n\u001b[1;32m 156\u001b[0m \u001b[39mParameters\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 170\u001b[0m \u001b[39m:meta private:\u001b[39;00m\n\u001b[1;32m 171\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 172\u001b[0m frames \u001b[39m=\u001b[39m [\n\u001b[1;32m 173\u001b[0m cudf\u001b[39m.\u001b[39mcore\u001b[39m.\u001b[39mbuffer\u001b[39m.\u001b[39mas_buffer(f) \u001b[39mif\u001b[39;00m c \u001b[39melse\u001b[39;00m f\n\u001b[1;32m 174\u001b[0m \u001b[39mfor\u001b[39;00m c, f \u001b[39min\u001b[39;00m \u001b[39mzip\u001b[39m(header[\u001b[39m\"\u001b[39m\u001b[39mis-cuda\u001b[39m\u001b[39m\"\u001b[39m], \u001b[39mmap\u001b[39m(\u001b[39mmemoryview\u001b[39m, frames))\n\u001b[1;32m 175\u001b[0m ]\n\u001b[0;32m--> 176\u001b[0m obj \u001b[39m=\u001b[39m \u001b[39mcls\u001b[39m\u001b[39m.\u001b[39mdevice_deserialize(header, frames)\n\u001b[1;32m 177\u001b[0m \u001b[39mreturn\u001b[39;00m obj\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/abc.py:130\u001b[0m, in \u001b[0;36mdevice_deserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 125\u001b[0m typ \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(header[\u001b[39m\"\u001b[39m\u001b[39mtype-serialized\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m 126\u001b[0m frames \u001b[39m=\u001b[39m [\n\u001b[1;32m 127\u001b[0m cudf\u001b[39m.\u001b[39mcore\u001b[39m.\u001b[39mbuffer\u001b[39m.\u001b[39mas_buffer(f) \u001b[39mif\u001b[39;00m c \u001b[39melse\u001b[39;00m \u001b[39mmemoryview\u001b[39m(f)\n\u001b[1;32m 128\u001b[0m \u001b[39mfor\u001b[39;00m c, f \u001b[39min\u001b[39;00m \u001b[39mzip\u001b[39m(header[\u001b[39m\"\u001b[39m\u001b[39mis-cuda\u001b[39m\u001b[39m\"\u001b[39m], frames)\n\u001b[1;32m 129\u001b[0m ]\n\u001b[0;32m--> 130\u001b[0m \u001b[39mreturn\u001b[39;00m typ\u001b[39m.\u001b[39mdeserialize(header, frames)\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/dataframe.py:1019\u001b[0m, in \u001b[0;36mdeserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1016\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[1;32m 1017\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mdeserialize\u001b[39m(\u001b[39mcls\u001b[39m, header, frames):\n\u001b[1;32m 1018\u001b[0m index_nframes \u001b[39m=\u001b[39m header[\u001b[39m\"\u001b[39m\u001b[39mindex_frame_count\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[0;32m-> 1019\u001b[0m obj \u001b[39m=\u001b[39m \u001b[39msuper\u001b[39m()\u001b[39m.\u001b[39mdeserialize(\n\u001b[1;32m 1020\u001b[0m header, frames[header[\u001b[39m\"\u001b[39m\u001b[39mindex_frame_count\u001b[39m\u001b[39m\"\u001b[39m] :]\n\u001b[1;32m 1021\u001b[0m )\n\u001b[1;32m 1023\u001b[0m idx_typ \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(header[\u001b[39m\"\u001b[39m\u001b[39mindex\u001b[39m\u001b[39m\"\u001b[39m][\u001b[39m\"\u001b[39m\u001b[39mtype-serialized\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m 1024\u001b[0m index \u001b[39m=\u001b[39m idx_typ\u001b[39m.\u001b[39mdeserialize(header[\u001b[39m\"\u001b[39m\u001b[39mindex\u001b[39m\u001b[39m\"\u001b[39m], frames[:index_nframes])\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py:106\u001b[0m, in \u001b[0;36mdeserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 104\u001b[0m cls_deserialize \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(header[\u001b[39m\"\u001b[39m\u001b[39mtype-serialized\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m 105\u001b[0m column_names \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(header[\u001b[39m\"\u001b[39m\u001b[39mcolumn_names\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[0;32m--> 106\u001b[0m columns \u001b[39m=\u001b[39m deserialize_columns(header[\u001b[39m\"\u001b[39m\u001b[39mcolumns\u001b[39m\u001b[39m\"\u001b[39m], frames)\n\u001b[1;32m 107\u001b[0m \u001b[39mreturn\u001b[39;00m cls_deserialize\u001b[39m.\u001b[39m_from_data(\u001b[39mdict\u001b[39m(\u001b[39mzip\u001b[39m(column_names, columns)))\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py:2450\u001b[0m, in \u001b[0;36mdeserialize_columns\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2448\u001b[0m col_frame_count \u001b[39m=\u001b[39m meta[\u001b[39m\"\u001b[39m\u001b[39mframe_count\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[1;32m 2449\u001b[0m col_typ \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(meta[\u001b[39m\"\u001b[39m\u001b[39mtype-serialized\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[0;32m-> 2450\u001b[0m colobj \u001b[39m=\u001b[39m col_typ\u001b[39m.\u001b[39mdeserialize(meta, frames[:col_frame_count])\n\u001b[1;32m 2451\u001b[0m columns\u001b[39m.\u001b[39mappend(colobj)\n\u001b[1;32m 2452\u001b[0m \u001b[39m# Advance frames\u001b[39;00m\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py:1216\u001b[0m, in \u001b[0;36mdeserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1214\u001b[0m dtype \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(header[\u001b[39m\"\u001b[39m\u001b[39mdtype\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m 1215\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39m\"\u001b[39m\u001b[39mdata\u001b[39m\u001b[39m\"\u001b[39m \u001b[39min\u001b[39;00m header:\n\u001b[0;32m-> 1216\u001b[0m data, frames \u001b[39m=\u001b[39m unpack(header[\u001b[39m\"\u001b[39m\u001b[39mdata\u001b[39m\u001b[39m\"\u001b[39m], frames)\n\u001b[1;32m 1217\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 1218\u001b[0m data \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py:1204\u001b[0m, in \u001b[0;36munpack\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1202\u001b[0m count \u001b[39m=\u001b[39m header[\u001b[39m\"\u001b[39m\u001b[39mframe_count\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[1;32m 1203\u001b[0m klass \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(header[\u001b[39m\"\u001b[39m\u001b[39mtype-serialized\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[0;32m-> 1204\u001b[0m obj \u001b[39m=\u001b[39m klass\u001b[39m.\u001b[39mdeserialize(header, frames[:count])\n\u001b[1;32m 1205\u001b[0m \u001b[39mreturn\u001b[39;00m obj, frames[count:]\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py:574\u001b[0m, in \u001b[0;36mdeserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 567\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[1;32m 568\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mdeserialize\u001b[39m(\u001b[39mcls\u001b[39m, header: \u001b[39mdict\u001b[39m, frames: \u001b[39mlist\u001b[39m):\n\u001b[1;32m 569\u001b[0m \u001b[39m# TODO: because of the hack in `SpillableBuffer.serialize()` where\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 572\u001b[0m \u001b[39m# deserialize into `SpillableBufferSlice` when the frames hasn't been\u001b[39;00m\n\u001b[1;32m 573\u001b[0m \u001b[39m# copied.\u001b[39;00m\n\u001b[0;32m--> 574\u001b[0m \u001b[39mreturn\u001b[39;00m SpillableBuffer\u001b[39m.\u001b[39mdeserialize(header, frames)\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/buffer.py:335\u001b[0m, in \u001b[0;36mdeserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 332\u001b[0m \u001b[39mreturn\u001b[39;00m frame \u001b[39m# The frame is already deserialized\u001b[39;00m\n\u001b[1;32m 334\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mhasattr\u001b[39m(frame, \u001b[39m\"\u001b[39m\u001b[39m__cuda_array_interface__\u001b[39m\u001b[39m\"\u001b[39m):\n\u001b[0;32m--> 335\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mcls\u001b[39m\u001b[39m.\u001b[39m_from_device_memory(frame)\n\u001b[1;32m 336\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mcls\u001b[39m\u001b[39m.\u001b[39m_from_host_memory(frame)\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py:235\u001b[0m, in \u001b[0;36m_from_device_memory\u001b[0;34m()\u001b[0m\n\u001b[1;32m 218\u001b[0m \u001b[39m\u001b[39m\u001b[39m\"\"\"Create a spillabe buffer from device memory.\u001b[39;00m\n\u001b[1;32m 219\u001b[0m \n\u001b[1;32m 220\u001b[0m \u001b[39mNo data is being copied.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[39m Buffer representing the same device memory as `data`\u001b[39;00m\n\u001b[1;32m 233\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 234\u001b[0m ret \u001b[39m=\u001b[39m \u001b[39msuper\u001b[39m()\u001b[39m.\u001b[39m_from_device_memory(data)\n\u001b[0;32m--> 235\u001b[0m ret\u001b[39m.\u001b[39m_finalize_init(ptr_desc\u001b[39m=\u001b[39m{\u001b[39m\"\u001b[39m\u001b[39mtype\u001b[39m\u001b[39m\"\u001b[39m: \u001b[39m\"\u001b[39m\u001b[39mgpu\u001b[39m\u001b[39m\"\u001b[39m}, exposed\u001b[39m=\u001b[39mexposed)\n\u001b[1;32m 236\u001b[0m \u001b[39mreturn\u001b[39;00m ret\n", - "File \u001b[0;32m~/miniconda3/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py:206\u001b[0m, in \u001b[0;36m_finalize_init\u001b[0;34m()\u001b[0m\n\u001b[1;32m 204\u001b[0m manager \u001b[39m=\u001b[39m get_global_manager()\n\u001b[1;32m 205\u001b[0m \u001b[39mif\u001b[39;00m manager \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m--> 206\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 207\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mcannot create \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__class__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m without \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 208\u001b[0m \u001b[39m\"\u001b[39m\u001b[39ma global spill manager\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 209\u001b[0m )\n\u001b[1;32m 211\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_manager \u001b[39m=\u001b[39m manager\n\u001b[1;32m 212\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_manager\u001b[39m.\u001b[39madd(\u001b[39mself\u001b[39m)\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cugraph/structure/graph_classes.py:309\u001b[0m, in \u001b[0;36mGraph.from_dask_cudf_edgelist\u001b[0;34m(self, input_ddf, source, destination, edge_attr, renumber, store_transposed, legacy_renum_only)\u001b[0m\n\u001b[1;32m 307\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_Impl\u001b[39m.\u001b[39medgelist \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 308\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mRuntimeError\u001b[39;00m(\u001b[39m\"\u001b[39m\u001b[39mGraph already has values\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m--> 309\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_Impl\u001b[39m.\u001b[39;49m_simpleDistributedGraphImpl__from_edgelist(\n\u001b[1;32m 310\u001b[0m input_ddf,\n\u001b[1;32m 311\u001b[0m source,\n\u001b[1;32m 312\u001b[0m destination,\n\u001b[1;32m 313\u001b[0m edge_attr,\n\u001b[1;32m 314\u001b[0m renumber,\n\u001b[1;32m 315\u001b[0m store_transposed,\n\u001b[1;32m 316\u001b[0m legacy_renum_only,\n\u001b[1;32m 317\u001b[0m )\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cugraph/structure/graph_implementation/simpleDistributedGraph.py:272\u001b[0m, in \u001b[0;36msimpleDistributedGraphImpl.__from_edgelist\u001b[0;34m(self, input_ddf, source, destination, edge_attr, renumber, store_transposed, legacy_renum_only)\u001b[0m\n\u001b[1;32m 268\u001b[0m dst_col_name \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mrenumber_map\u001b[39m.\u001b[39mrenumbered_dst_col_name\n\u001b[1;32m 270\u001b[0m ddf \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39medgelist\u001b[39m.\u001b[39medgelist_df\n\u001b[0;32m--> 272\u001b[0m num_edges \u001b[39m=\u001b[39m \u001b[39mlen\u001b[39;49m(ddf)\n\u001b[1;32m 273\u001b[0m edge_data \u001b[39m=\u001b[39m get_distributed_data(ddf)\n\u001b[1;32m 275\u001b[0m graph_props \u001b[39m=\u001b[39m GraphProperties(\n\u001b[1;32m 276\u001b[0m is_multigraph\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mproperties\u001b[39m.\u001b[39mmulti_edge,\n\u001b[1;32m 277\u001b[0m is_symmetric\u001b[39m=\u001b[39m\u001b[39mnot\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mproperties\u001b[39m.\u001b[39mdirected,\n\u001b[1;32m 278\u001b[0m )\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/dask/dataframe/core.py:4775\u001b[0m, in \u001b[0;36mDataFrame.__len__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 4773\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39msuper\u001b[39m()\u001b[39m.\u001b[39m\u001b[39m__len__\u001b[39m()\n\u001b[1;32m 4774\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m-> 4775\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mlen\u001b[39;49m(s)\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/dask/dataframe/core.py:843\u001b[0m, in \u001b[0;36m_Frame.__len__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 840\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__len__\u001b[39m(\u001b[39mself\u001b[39m):\n\u001b[1;32m 841\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mreduction(\n\u001b[1;32m 842\u001b[0m \u001b[39mlen\u001b[39;49m, np\u001b[39m.\u001b[39;49msum, token\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mlen\u001b[39;49m\u001b[39m\"\u001b[39;49m, meta\u001b[39m=\u001b[39;49m\u001b[39mint\u001b[39;49m, split_every\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m\n\u001b[0;32m--> 843\u001b[0m )\u001b[39m.\u001b[39;49mcompute()\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/dask/base.py:314\u001b[0m, in \u001b[0;36mDaskMethodsMixin.compute\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 290\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mcompute\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m 291\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"Compute this dask collection\u001b[39;00m\n\u001b[1;32m 292\u001b[0m \n\u001b[1;32m 293\u001b[0m \u001b[39m This turns a lazy Dask collection into its in-memory equivalent.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 312\u001b[0m \u001b[39m dask.base.compute\u001b[39;00m\n\u001b[1;32m 313\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 314\u001b[0m (result,) \u001b[39m=\u001b[39m compute(\u001b[39mself\u001b[39;49m, traverse\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 315\u001b[0m \u001b[39mreturn\u001b[39;00m result\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/dask/base.py:599\u001b[0m, in \u001b[0;36mcompute\u001b[0;34m(traverse, optimize_graph, scheduler, get, *args, **kwargs)\u001b[0m\n\u001b[1;32m 596\u001b[0m keys\u001b[39m.\u001b[39mappend(x\u001b[39m.\u001b[39m__dask_keys__())\n\u001b[1;32m 597\u001b[0m postcomputes\u001b[39m.\u001b[39mappend(x\u001b[39m.\u001b[39m__dask_postcompute__())\n\u001b[0;32m--> 599\u001b[0m results \u001b[39m=\u001b[39m schedule(dsk, keys, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m 600\u001b[0m \u001b[39mreturn\u001b[39;00m repack([f(r, \u001b[39m*\u001b[39ma) \u001b[39mfor\u001b[39;00m r, (f, a) \u001b[39min\u001b[39;00m \u001b[39mzip\u001b[39m(results, postcomputes)])\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/client.py:3186\u001b[0m, in \u001b[0;36mClient.get\u001b[0;34m(self, dsk, keys, workers, allow_other_workers, resources, sync, asynchronous, direct, retries, priority, fifo_timeout, actors, **kwargs)\u001b[0m\n\u001b[1;32m 3184\u001b[0m should_rejoin \u001b[39m=\u001b[39m \u001b[39mFalse\u001b[39;00m\n\u001b[1;32m 3185\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m-> 3186\u001b[0m results \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mgather(packed, asynchronous\u001b[39m=\u001b[39;49masynchronous, direct\u001b[39m=\u001b[39;49mdirect)\n\u001b[1;32m 3187\u001b[0m \u001b[39mfinally\u001b[39;00m:\n\u001b[1;32m 3188\u001b[0m \u001b[39mfor\u001b[39;00m f \u001b[39min\u001b[39;00m futures\u001b[39m.\u001b[39mvalues():\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/client.py:2345\u001b[0m, in \u001b[0;36mClient.gather\u001b[0;34m(self, futures, errors, direct, asynchronous)\u001b[0m\n\u001b[1;32m 2343\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 2344\u001b[0m local_worker \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m-> 2345\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49msync(\n\u001b[1;32m 2346\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_gather,\n\u001b[1;32m 2347\u001b[0m futures,\n\u001b[1;32m 2348\u001b[0m errors\u001b[39m=\u001b[39;49merrors,\n\u001b[1;32m 2349\u001b[0m direct\u001b[39m=\u001b[39;49mdirect,\n\u001b[1;32m 2350\u001b[0m local_worker\u001b[39m=\u001b[39;49mlocal_worker,\n\u001b[1;32m 2351\u001b[0m asynchronous\u001b[39m=\u001b[39;49masynchronous,\n\u001b[1;32m 2352\u001b[0m )\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/utils.py:349\u001b[0m, in \u001b[0;36mSyncMethodMixin.sync\u001b[0;34m(self, func, asynchronous, callback_timeout, *args, **kwargs)\u001b[0m\n\u001b[1;32m 347\u001b[0m \u001b[39mreturn\u001b[39;00m future\n\u001b[1;32m 348\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 349\u001b[0m \u001b[39mreturn\u001b[39;00m sync(\n\u001b[1;32m 350\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mloop, func, \u001b[39m*\u001b[39;49margs, callback_timeout\u001b[39m=\u001b[39;49mcallback_timeout, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs\n\u001b[1;32m 351\u001b[0m )\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/utils.py:416\u001b[0m, in \u001b[0;36msync\u001b[0;34m(loop, func, callback_timeout, *args, **kwargs)\u001b[0m\n\u001b[1;32m 414\u001b[0m \u001b[39mif\u001b[39;00m error:\n\u001b[1;32m 415\u001b[0m typ, exc, tb \u001b[39m=\u001b[39m error\n\u001b[0;32m--> 416\u001b[0m \u001b[39mraise\u001b[39;00m exc\u001b[39m.\u001b[39mwith_traceback(tb)\n\u001b[1;32m 417\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 418\u001b[0m \u001b[39mreturn\u001b[39;00m result\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/utils.py:389\u001b[0m, in \u001b[0;36msync..f\u001b[0;34m()\u001b[0m\n\u001b[1;32m 387\u001b[0m future \u001b[39m=\u001b[39m wait_for(future, callback_timeout)\n\u001b[1;32m 388\u001b[0m future \u001b[39m=\u001b[39m asyncio\u001b[39m.\u001b[39mensure_future(future)\n\u001b[0;32m--> 389\u001b[0m result \u001b[39m=\u001b[39m \u001b[39myield\u001b[39;00m future\n\u001b[1;32m 390\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m:\n\u001b[1;32m 391\u001b[0m error \u001b[39m=\u001b[39m sys\u001b[39m.\u001b[39mexc_info()\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/tornado/gen.py:769\u001b[0m, in \u001b[0;36mRunner.run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 766\u001b[0m exc_info \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[1;32m 768\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 769\u001b[0m value \u001b[39m=\u001b[39m future\u001b[39m.\u001b[39;49mresult()\n\u001b[1;32m 770\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m:\n\u001b[1;32m 771\u001b[0m exc_info \u001b[39m=\u001b[39m sys\u001b[39m.\u001b[39mexc_info()\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/client.py:2208\u001b[0m, in \u001b[0;36mClient._gather\u001b[0;34m(self, futures, errors, direct, local_worker)\u001b[0m\n\u001b[1;32m 2206\u001b[0m exc \u001b[39m=\u001b[39m CancelledError(key)\n\u001b[1;32m 2207\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m-> 2208\u001b[0m \u001b[39mraise\u001b[39;00m exception\u001b[39m.\u001b[39mwith_traceback(traceback)\n\u001b[1;32m 2209\u001b[0m \u001b[39mraise\u001b[39;00m exc\n\u001b[1;32m 2210\u001b[0m \u001b[39mif\u001b[39;00m errors \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mskip\u001b[39m\u001b[39m\"\u001b[39m:\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/contextlib.py:79\u001b[0m, in \u001b[0;36minner\u001b[0;34m()\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[39m@wraps\u001b[39m(func)\n\u001b[1;32m 77\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39minner\u001b[39m(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwds):\n\u001b[1;32m 78\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_recreate_cm():\n\u001b[0;32m---> 79\u001b[0m \u001b[39mreturn\u001b[39;00m func(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwds)\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py:2937\u001b[0m, in \u001b[0;36m_deserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2934\u001b[0m \u001b[39m# Some objects require threadlocal state during deserialization, e.g. to\u001b[39;00m\n\u001b[1;32m 2935\u001b[0m \u001b[39m# detect the current worker\u001b[39;00m\n\u001b[1;32m 2936\u001b[0m \u001b[39mif\u001b[39;00m function \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m-> 2937\u001b[0m function \u001b[39m=\u001b[39m loads_function(function)\n\u001b[1;32m 2938\u001b[0m \u001b[39mif\u001b[39;00m args \u001b[39mand\u001b[39;00m \u001b[39misinstance\u001b[39m(args, \u001b[39mbytes\u001b[39m):\n\u001b[1;32m 2939\u001b[0m args \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(args)\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/worker.py:2925\u001b[0m, in \u001b[0;36mloads_function\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2923\u001b[0m result \u001b[39m=\u001b[39m cache_loads[bytes_object]\n\u001b[1;32m 2924\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mKeyError\u001b[39;00m:\n\u001b[0;32m-> 2925\u001b[0m result \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(bytes_object)\n\u001b[1;32m 2926\u001b[0m cache_loads[bytes_object] \u001b[39m=\u001b[39m result\n\u001b[1;32m 2927\u001b[0m \u001b[39mreturn\u001b[39;00m result\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/distributed/protocol/pickle.py:96\u001b[0m, in \u001b[0;36mloads\u001b[0;34m()\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[39mreturn\u001b[39;00m pickle\u001b[39m.\u001b[39mloads(x, buffers\u001b[39m=\u001b[39mbuffers)\n\u001b[1;32m 95\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m---> 96\u001b[0m \u001b[39mreturn\u001b[39;00m pickle\u001b[39m.\u001b[39mloads(x)\n\u001b[1;32m 97\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m:\n\u001b[1;32m 98\u001b[0m logger\u001b[39m.\u001b[39minfo(\u001b[39m\"\u001b[39m\u001b[39mFailed to deserialize \u001b[39m\u001b[39m%s\u001b[39;00m\u001b[39m\"\u001b[39m, x[:\u001b[39m10000\u001b[39m], exc_info\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/abc.py:176\u001b[0m, in \u001b[0;36mhost_deserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 154\u001b[0m \u001b[39m\u001b[39m\u001b[39m\"\"\"Perform device-side deserialization tasks.\u001b[39;00m\n\u001b[1;32m 155\u001b[0m \n\u001b[1;32m 156\u001b[0m \u001b[39mParameters\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 170\u001b[0m \u001b[39m:meta private:\u001b[39;00m\n\u001b[1;32m 171\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 172\u001b[0m frames \u001b[39m=\u001b[39m [\n\u001b[1;32m 173\u001b[0m cudf\u001b[39m.\u001b[39mcore\u001b[39m.\u001b[39mbuffer\u001b[39m.\u001b[39mas_buffer(f) \u001b[39mif\u001b[39;00m c \u001b[39melse\u001b[39;00m f\n\u001b[1;32m 174\u001b[0m \u001b[39mfor\u001b[39;00m c, f \u001b[39min\u001b[39;00m \u001b[39mzip\u001b[39m(header[\u001b[39m\"\u001b[39m\u001b[39mis-cuda\u001b[39m\u001b[39m\"\u001b[39m], \u001b[39mmap\u001b[39m(\u001b[39mmemoryview\u001b[39m, frames))\n\u001b[1;32m 175\u001b[0m ]\n\u001b[0;32m--> 176\u001b[0m obj \u001b[39m=\u001b[39m \u001b[39mcls\u001b[39m\u001b[39m.\u001b[39mdevice_deserialize(header, frames)\n\u001b[1;32m 177\u001b[0m \u001b[39mreturn\u001b[39;00m obj\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/abc.py:130\u001b[0m, in \u001b[0;36mdevice_deserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 125\u001b[0m typ \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(header[\u001b[39m\"\u001b[39m\u001b[39mtype-serialized\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m 126\u001b[0m frames \u001b[39m=\u001b[39m [\n\u001b[1;32m 127\u001b[0m cudf\u001b[39m.\u001b[39mcore\u001b[39m.\u001b[39mbuffer\u001b[39m.\u001b[39mas_buffer(f) \u001b[39mif\u001b[39;00m c \u001b[39melse\u001b[39;00m \u001b[39mmemoryview\u001b[39m(f)\n\u001b[1;32m 128\u001b[0m \u001b[39mfor\u001b[39;00m c, f \u001b[39min\u001b[39;00m \u001b[39mzip\u001b[39m(header[\u001b[39m\"\u001b[39m\u001b[39mis-cuda\u001b[39m\u001b[39m\"\u001b[39m], frames)\n\u001b[1;32m 129\u001b[0m ]\n\u001b[0;32m--> 130\u001b[0m \u001b[39mreturn\u001b[39;00m typ\u001b[39m.\u001b[39mdeserialize(header, frames)\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/dataframe.py:1019\u001b[0m, in \u001b[0;36mdeserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1016\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[1;32m 1017\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mdeserialize\u001b[39m(\u001b[39mcls\u001b[39m, header, frames):\n\u001b[1;32m 1018\u001b[0m index_nframes \u001b[39m=\u001b[39m header[\u001b[39m\"\u001b[39m\u001b[39mindex_frame_count\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[0;32m-> 1019\u001b[0m obj \u001b[39m=\u001b[39m \u001b[39msuper\u001b[39m()\u001b[39m.\u001b[39mdeserialize(\n\u001b[1;32m 1020\u001b[0m header, frames[header[\u001b[39m\"\u001b[39m\u001b[39mindex_frame_count\u001b[39m\u001b[39m\"\u001b[39m] :]\n\u001b[1;32m 1021\u001b[0m )\n\u001b[1;32m 1023\u001b[0m idx_typ \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(header[\u001b[39m\"\u001b[39m\u001b[39mindex\u001b[39m\u001b[39m\"\u001b[39m][\u001b[39m\"\u001b[39m\u001b[39mtype-serialized\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m 1024\u001b[0m index \u001b[39m=\u001b[39m idx_typ\u001b[39m.\u001b[39mdeserialize(header[\u001b[39m\"\u001b[39m\u001b[39mindex\u001b[39m\u001b[39m\"\u001b[39m], frames[:index_nframes])\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/frame.py:106\u001b[0m, in \u001b[0;36mdeserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 104\u001b[0m cls_deserialize \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(header[\u001b[39m\"\u001b[39m\u001b[39mtype-serialized\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m 105\u001b[0m column_names \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(header[\u001b[39m\"\u001b[39m\u001b[39mcolumn_names\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[0;32m--> 106\u001b[0m columns \u001b[39m=\u001b[39m deserialize_columns(header[\u001b[39m\"\u001b[39m\u001b[39mcolumns\u001b[39m\u001b[39m\"\u001b[39m], frames)\n\u001b[1;32m 107\u001b[0m \u001b[39mreturn\u001b[39;00m cls_deserialize\u001b[39m.\u001b[39m_from_data(\u001b[39mdict\u001b[39m(\u001b[39mzip\u001b[39m(column_names, columns)))\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py:2450\u001b[0m, in \u001b[0;36mdeserialize_columns\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2448\u001b[0m col_frame_count \u001b[39m=\u001b[39m meta[\u001b[39m\"\u001b[39m\u001b[39mframe_count\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[1;32m 2449\u001b[0m col_typ \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(meta[\u001b[39m\"\u001b[39m\u001b[39mtype-serialized\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[0;32m-> 2450\u001b[0m colobj \u001b[39m=\u001b[39m col_typ\u001b[39m.\u001b[39mdeserialize(meta, frames[:col_frame_count])\n\u001b[1;32m 2451\u001b[0m columns\u001b[39m.\u001b[39mappend(colobj)\n\u001b[1;32m 2452\u001b[0m \u001b[39m# Advance frames\u001b[39;00m\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py:1216\u001b[0m, in \u001b[0;36mdeserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1214\u001b[0m dtype \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(header[\u001b[39m\"\u001b[39m\u001b[39mdtype\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[1;32m 1215\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39m\"\u001b[39m\u001b[39mdata\u001b[39m\u001b[39m\"\u001b[39m \u001b[39min\u001b[39;00m header:\n\u001b[0;32m-> 1216\u001b[0m data, frames \u001b[39m=\u001b[39m unpack(header[\u001b[39m\"\u001b[39m\u001b[39mdata\u001b[39m\u001b[39m\"\u001b[39m], frames)\n\u001b[1;32m 1217\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 1218\u001b[0m data \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/column/column.py:1204\u001b[0m, in \u001b[0;36munpack\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1202\u001b[0m count \u001b[39m=\u001b[39m header[\u001b[39m\"\u001b[39m\u001b[39mframe_count\u001b[39m\u001b[39m\"\u001b[39m]\n\u001b[1;32m 1203\u001b[0m klass \u001b[39m=\u001b[39m pickle\u001b[39m.\u001b[39mloads(header[\u001b[39m\"\u001b[39m\u001b[39mtype-serialized\u001b[39m\u001b[39m\"\u001b[39m])\n\u001b[0;32m-> 1204\u001b[0m obj \u001b[39m=\u001b[39m klass\u001b[39m.\u001b[39mdeserialize(header, frames[:count])\n\u001b[1;32m 1205\u001b[0m \u001b[39mreturn\u001b[39;00m obj, frames[count:]\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py:574\u001b[0m, in \u001b[0;36mdeserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 567\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[1;32m 568\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mdeserialize\u001b[39m(\u001b[39mcls\u001b[39m, header: \u001b[39mdict\u001b[39m, frames: \u001b[39mlist\u001b[39m):\n\u001b[1;32m 569\u001b[0m \u001b[39m# TODO: because of the hack in `SpillableBuffer.serialize()` where\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 572\u001b[0m \u001b[39m# deserialize into `SpillableBufferSlice` when the frames hasn't been\u001b[39;00m\n\u001b[1;32m 573\u001b[0m \u001b[39m# copied.\u001b[39;00m\n\u001b[0;32m--> 574\u001b[0m \u001b[39mreturn\u001b[39;00m SpillableBuffer\u001b[39m.\u001b[39mdeserialize(header, frames)\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/buffer.py:335\u001b[0m, in \u001b[0;36mdeserialize\u001b[0;34m()\u001b[0m\n\u001b[1;32m 332\u001b[0m \u001b[39mreturn\u001b[39;00m frame \u001b[39m# The frame is already deserialized\u001b[39;00m\n\u001b[1;32m 334\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mhasattr\u001b[39m(frame, \u001b[39m\"\u001b[39m\u001b[39m__cuda_array_interface__\u001b[39m\u001b[39m\"\u001b[39m):\n\u001b[0;32m--> 335\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mcls\u001b[39m\u001b[39m.\u001b[39m_from_device_memory(frame)\n\u001b[1;32m 336\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mcls\u001b[39m\u001b[39m.\u001b[39m_from_host_memory(frame)\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py:235\u001b[0m, in \u001b[0;36m_from_device_memory\u001b[0;34m()\u001b[0m\n\u001b[1;32m 218\u001b[0m \u001b[39m\u001b[39m\u001b[39m\"\"\"Create a spillabe buffer from device memory.\u001b[39;00m\n\u001b[1;32m 219\u001b[0m \n\u001b[1;32m 220\u001b[0m \u001b[39mNo data is being copied.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[39m Buffer representing the same device memory as `data`\u001b[39;00m\n\u001b[1;32m 233\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 234\u001b[0m ret \u001b[39m=\u001b[39m \u001b[39msuper\u001b[39m()\u001b[39m.\u001b[39m_from_device_memory(data)\n\u001b[0;32m--> 235\u001b[0m ret\u001b[39m.\u001b[39m_finalize_init(ptr_desc\u001b[39m=\u001b[39m{\u001b[39m\"\u001b[39m\u001b[39mtype\u001b[39m\u001b[39m\"\u001b[39m: \u001b[39m\"\u001b[39m\u001b[39mgpu\u001b[39m\u001b[39m\"\u001b[39m}, exposed\u001b[39m=\u001b[39mexposed)\n\u001b[1;32m 236\u001b[0m \u001b[39mreturn\u001b[39;00m ret\n", + "File \u001b[0;32m~/miniforge/envs/cugraph_0411/lib/python3.10/site-packages/cudf/core/buffer/spillable_buffer.py:206\u001b[0m, in \u001b[0;36m_finalize_init\u001b[0;34m()\u001b[0m\n\u001b[1;32m 204\u001b[0m manager \u001b[39m=\u001b[39m get_global_manager()\n\u001b[1;32m 205\u001b[0m \u001b[39mif\u001b[39;00m manager \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m--> 206\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 207\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mcannot create \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m\u001b[39m__class__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m without \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 208\u001b[0m \u001b[39m\"\u001b[39m\u001b[39ma global spill manager\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 209\u001b[0m )\n\u001b[1;32m 211\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_manager \u001b[39m=\u001b[39m manager\n\u001b[1;32m 212\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_manager\u001b[39m.\u001b[39madd(\u001b[39mself\u001b[39m)\n", "\u001b[0;31mValueError\u001b[0m: cannot create without a global spill manager" ] }