diff --git a/java/src/main/java/ai/rapids/cudf/ColumnVector.java b/java/src/main/java/ai/rapids/cudf/ColumnVector.java index c83fe6adca1..d1c3777f2c4 100644 --- a/java/src/main/java/ai/rapids/cudf/ColumnVector.java +++ b/java/src/main/java/ai/rapids/cudf/ColumnVector.java @@ -1,6 +1,6 @@ /* * - * Copyright (c) 2019-2021, NVIDIA CORPORATION. + * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -498,6 +498,42 @@ public static ColumnVector sequence(Scalar initialValue, int rows) { } return new ColumnVector(sequence(initialValue.getScalarHandle(), 0, rows)); } + + /** + * Create a list column in which each row is a sequence of values starting from a `start` value, + * incrementing by one, and its cardinality is specified by a `size` value. The `start` and `size` + * values used to generate each list is taken from the corresponding row of the input start and + * size columns. + * @param start first values in the result sequences + * @param size numbers of values in the result sequences + * @return the new ColumnVector. + */ + public static ColumnVector sequence(ColumnView start, ColumnView size) { + assert start.getNullCount() == 0 || size.getNullCount() == 0 : "starts and sizes input " + + "columns must not have nulls."; + return new ColumnVector(sequences(start.getNativeView(), size.getNativeView(), 0)); + } + + /** + * Create a list column in which each row is a sequence of values starting from a `start` value, + * incrementing by a `step` value, and its cardinality is specified by a `size` value. + * The values `start`, `step`, and `size` used to generate each list is taken from the + * corresponding row of the input starts, steps, and sizes columns. + * @param start first values in the result sequences + * @param size numbers of values in the result sequences + * @param step increment values for the result sequences. + * @return the new ColumnVector. + */ + public static ColumnVector sequence(ColumnView start, ColumnView size, ColumnView step) { + assert start.getNullCount() == 0 || size.getNullCount() == 0 || step.getNullCount() == 0: + "start, size and step must not have nulls."; + assert step.getType() == start.getType() : "start and step input columns must" + + " have the same type."; + + return new ColumnVector(sequences(start.getNativeView(), size.getNativeView(), + step.getNativeView())); + } + /** * Create a new vector by concatenating multiple columns together. * Note that all columns must have the same type. @@ -789,6 +825,9 @@ public ColumnVector castTo(DType type) { private static native long sequence(long initialValue, long step, int rows); + private static native long sequences(long startHandle, long sizeHandle, long stepHandle) + throws CudfException; + private static native long fromArrow(int type, long col_length, long null_count, ByteBuffer data, ByteBuffer validity, ByteBuffer offsets) throws CudfException; diff --git a/java/src/main/native/src/ColumnVectorJni.cpp b/java/src/main/native/src/ColumnVectorJni.cpp index cfad89cb399..e61ab8444d1 100644 --- a/java/src/main/native/src/ColumnVectorJni.cpp +++ b/java/src/main/native/src/ColumnVectorJni.cpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2019-2021, NVIDIA CORPORATION. + * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -23,6 +23,7 @@ #include #include #include +#include #include #include #include @@ -54,6 +55,28 @@ JNIEXPORT jlong JNICALL Java_ai_rapids_cudf_ColumnVector_sequence(JNIEnv *env, j CATCH_STD(env, 0); } +JNIEXPORT jlong JNICALL Java_ai_rapids_cudf_ColumnVector_sequences(JNIEnv *env, jclass, + jlong j_start_handle, + jlong j_size_handle, + jlong j_step_handle) { + JNI_NULL_CHECK(env, j_start_handle, "start is null", 0); + JNI_NULL_CHECK(env, j_size_handle, "size is null", 0); + try { + cudf::jni::auto_set_device(env); + auto start = reinterpret_cast(j_start_handle); + auto size = reinterpret_cast(j_size_handle); + auto step = reinterpret_cast(j_step_handle); + std::unique_ptr col; + if (step) { + col = cudf::lists::sequences(*start, *step, *size); + } else { + col = cudf::lists::sequences(*start, *size); + } + return reinterpret_cast(col.release()); + } + CATCH_STD(env, 0); +} + JNIEXPORT jlong JNICALL Java_ai_rapids_cudf_ColumnVector_fromArrow( JNIEnv *env, jclass, jint j_type, jlong j_col_length, jlong j_null_count, jobject j_data_obj, jobject j_validity_obj, jobject j_offsets_obj) { diff --git a/java/src/test/java/ai/rapids/cudf/ColumnVectorTest.java b/java/src/test/java/ai/rapids/cudf/ColumnVectorTest.java index 0771de9492d..8d4bbff1542 100644 --- a/java/src/test/java/ai/rapids/cudf/ColumnVectorTest.java +++ b/java/src/test/java/ai/rapids/cudf/ColumnVectorTest.java @@ -1,6 +1,6 @@ /* * - * Copyright (c) 2019-2021, NVIDIA CORPORATION. + * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -1216,6 +1216,58 @@ void testSequenceOtherTypes() { }); } + @Test + void testSequencesInt() { + try (ColumnVector start = ColumnVector.fromBoxedInts(1, 2, 3, 4, 5); + ColumnVector size = ColumnVector.fromBoxedInts(2, 3, 2, 0, 1); + ColumnVector step = ColumnVector.fromBoxedInts(2, -1, 1, 1, 0); + ColumnVector cv = ColumnVector.sequence(start, size, step); + ColumnVector cv1 = ColumnVector.sequence(start, size); + ColumnVector expectCv = ColumnVector.fromLists( + new ListType(true, new BasicType(false, DType.INT32)), + Arrays.asList(1, 3), + Arrays.asList(2, 1, 0), + Arrays.asList(3, 4), + Arrays.asList(), + Arrays.asList(5)); + ColumnVector expectCv1 = ColumnVector.fromLists( + new ListType(true, new BasicType(false, DType.INT32)), + Arrays.asList(1, 2), + Arrays.asList(2, 3, 4), + Arrays.asList(3, 4), + Arrays.asList(), + Arrays.asList(5))) { + assertColumnsAreEqual(expectCv, cv); + assertColumnsAreEqual(expectCv1, cv1); + } + } + + @Test + void testSequencesDouble() { + try (ColumnVector start = ColumnVector.fromBoxedDoubles(1.2, 2.2, 3.2, 4.2, 5.2); + ColumnVector size = ColumnVector.fromBoxedInts(2, 3, 2, 0, 1); + ColumnVector step = ColumnVector.fromBoxedDoubles(2.1, -1.1, 1.1, 1.1, 0.1); + ColumnVector cv = ColumnVector.sequence(start, size, step); + ColumnVector cv1 = ColumnVector.sequence(start, size); + ColumnVector expectCv = ColumnVector.fromLists( + new ListType(true, new BasicType(false, DType.FLOAT64)), + Arrays.asList(1.2, 3.3), + Arrays.asList(2.2, 1.1, 0.0), + Arrays.asList(3.2, 4.3), + Arrays.asList(), + Arrays.asList(5.2)); + ColumnVector expectCv1 = ColumnVector.fromLists( + new ListType(true, new BasicType(false, DType.FLOAT64)), + Arrays.asList(1.2, 2.2), + Arrays.asList(2.2, 3.2, 4.2), + Arrays.asList(3.2, 4.2), + Arrays.asList(), + Arrays.asList(5.2))) { + assertColumnsAreEqual(expectCv, cv); + assertColumnsAreEqual(expectCv1, cv1); + } + } + @Test void testFromScalarZeroRows() { // magic number to invoke factory method specialized for decimal types