diff --git a/python/cudf/cudf/_lib/groupby.pyx b/python/cudf/cudf/_lib/groupby.pyx index b3778e45cde..f332fead8d1 100644 --- a/python/cudf/cudf/_lib/groupby.pyx +++ b/python/cudf/cudf/_lib/groupby.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2020-2023, NVIDIA CORPORATION. +# Copyright (c) 2020-2024, NVIDIA CORPORATION. from pandas.core.groupby.groupby import DataError @@ -104,7 +104,7 @@ cdef class GroupBy: cdef unique_ptr[libcudf_groupby.groupby] c_obj cdef dict __dict__ - def __cinit__(self, list keys, bool dropna=True, *args, **kwargs): + def __cinit__(self, list keys, bool dropna=True): cdef libcudf_types.null_policy c_null_handling cdef table_view keys_view diff --git a/python/cudf/cudf/_lib/string_casting.pyx b/python/cudf/cudf/_lib/string_casting.pyx index 4b44ac83a70..3826e71f850 100644 --- a/python/cudf/cudf/_lib/string_casting.pyx +++ b/python/cudf/cudf/_lib/string_casting.pyx @@ -1,4 +1,4 @@ -# Copyright (c) 2020-2023, NVIDIA CORPORATION. +# Copyright (c) 2020-2024, NVIDIA CORPORATION. from cudf._lib.column cimport Column @@ -95,7 +95,7 @@ def dtos(Column input_col): return floating_to_string(input_col) -def stod(Column input_col, **kwargs): +def stod(Column input_col): """ Converting/Casting input column of type string to double @@ -127,7 +127,7 @@ def ftos(Column input_col): return floating_to_string(input_col) -def stof(Column input_col, **kwargs): +def stof(Column input_col): """ Converting/Casting input column of type string to float @@ -188,7 +188,7 @@ def i8tos(Column input_col): return integer_to_string(input_col) -def stoi8(Column input_col, **kwargs): +def stoi8(Column input_col): """ Converting/Casting input column of type string to int8 @@ -284,7 +284,7 @@ def ltos(Column input_col): return integer_to_string(input_col) -def stol(Column input_col, **kwargs): +def stol(Column input_col): """ Converting/Casting input column of type string to int64 @@ -316,7 +316,7 @@ def ui8tos(Column input_col): return integer_to_string(input_col) -def stoui8(Column input_col, **kwargs): +def stoui8(Column input_col): """ Converting/Casting input column of type string to uint8 @@ -348,7 +348,7 @@ def ui16tos(Column input_col): return integer_to_string(input_col) -def stoui16(Column input_col, **kwargs): +def stoui16(Column input_col): """ Converting/Casting input column of type string to uint16 @@ -380,7 +380,7 @@ def uitos(Column input_col): return integer_to_string(input_col) -def stoui(Column input_col, **kwargs): +def stoui(Column input_col): """ Converting/Casting input column of type string to uint32 @@ -412,7 +412,7 @@ def ultos(Column input_col): return integer_to_string(input_col) -def stoul(Column input_col, **kwargs): +def stoul(Column input_col): """ Converting/Casting input column of type string to uint64 @@ -456,7 +456,7 @@ def _to_booleans(Column input_col, object string_true="True"): return Column.from_unique_ptr(move(c_result)) -def to_booleans(Column input_col, **kwargs): +def to_booleans(Column input_col): return _to_booleans(input_col) @@ -631,9 +631,7 @@ def timedelta2int(Column input_col, dtype, format): return Column.from_unique_ptr(move(c_result)) -def int2timedelta( - Column input_col, - **kwargs): +def int2timedelta(Column input_col, str format): """ Converting/Casting input Timedelta column to string column with specified format @@ -649,8 +647,7 @@ def int2timedelta( """ cdef column_view input_column_view = input_col.view() - cdef string c_duration_format = kwargs.get( - 'format', "%D days %H:%M:%S").encode('UTF-8') + cdef string c_duration_format = format.encode('UTF-8') cdef unique_ptr[column] c_result with nogil: c_result = move( @@ -661,7 +658,7 @@ def int2timedelta( return Column.from_unique_ptr(move(c_result)) -def int2ip(Column input_col, **kwargs): +def int2ip(Column input_col): """ Converting/Casting integer column to string column in ipv4 format @@ -684,7 +681,7 @@ def int2ip(Column input_col, **kwargs): return Column.from_unique_ptr(move(c_result)) -def ip2int(Column input_col, **kwargs): +def ip2int(Column input_col): """ Converting string ipv4 column to integer column @@ -732,7 +729,6 @@ def htoi(Column input_col, **kwargs): Parameters ---------- input_col : input column of type string - out_type : The type of integer column expected Returns ------- @@ -742,9 +738,7 @@ def htoi(Column input_col, **kwargs): cdef column_view input_column_view = input_col.view() cdef type_id tid = ( ( - SUPPORTED_NUMPY_TO_LIBCUDF_TYPES[ - kwargs.get('dtype', cudf.dtype("int64")) - ] + SUPPORTED_NUMPY_TO_LIBCUDF_TYPES[cudf.dtype("int64")] ) ) cdef data_type c_out_type = data_type(tid) diff --git a/python/cudf/cudf/core/column/categorical.py b/python/cudf/cudf/core/column/categorical.py index 59fd4631067..71143fa7a95 100644 --- a/python/cudf/cudf/core/column/categorical.py +++ b/python/cudf/cudf/core/column/categorical.py @@ -1310,22 +1310,28 @@ def as_categorical_column(self, dtype: Dtype) -> CategoricalColumn: new_categories=dtype.categories, ordered=bool(dtype.ordered) ) - def as_numerical_column(self, dtype: Dtype, **kwargs) -> NumericalColumn: + def as_numerical_column(self, dtype: Dtype) -> NumericalColumn: return self._get_decategorized_column().as_numerical_column(dtype) - def as_string_column(self, dtype, format=None, **kwargs) -> StringColumn: + def as_string_column( + self, dtype, format: str | None = None + ) -> StringColumn: return self._get_decategorized_column().as_string_column( dtype, format=format ) - def as_datetime_column(self, dtype, **kwargs) -> DatetimeColumn: + def as_datetime_column( + self, dtype, format: str | None = None + ) -> DatetimeColumn: return self._get_decategorized_column().as_datetime_column( - dtype, **kwargs + dtype, format ) - def as_timedelta_column(self, dtype, **kwargs) -> TimeDeltaColumn: + def as_timedelta_column( + self, dtype, format: str | None = None + ) -> TimeDeltaColumn: return self._get_decategorized_column().as_timedelta_column( - dtype, **kwargs + dtype, format ) def _get_decategorized_column(self) -> ColumnBase: diff --git a/python/cudf/cudf/core/column/column.py b/python/cudf/cudf/core/column/column.py index 5b638b1f4ad..4cb84aec13d 100644 --- a/python/cudf/cudf/core/column/column.py +++ b/python/cudf/cudf/core/column/column.py @@ -978,11 +978,17 @@ def distinct_count(self, dropna: bool = True) -> int: def can_cast_safely(self, to_dtype: Dtype) -> bool: raise NotImplementedError() - def astype(self, dtype: Dtype, **kwargs) -> ColumnBase: + def astype( + self, dtype: Dtype, copy: bool = False, format: str | None = None + ) -> ColumnBase: + if copy: + col = self.copy() + else: + col = self if self.dtype == dtype: - return self + return col if is_categorical_dtype(dtype): - return self.as_categorical_column(dtype) + return col.as_categorical_column(dtype) if ( isinstance(dtype, str) @@ -999,9 +1005,9 @@ def astype(self, dtype: Dtype, **kwargs) -> ColumnBase: else: dtype = pandas_dtypes_to_np_dtypes.get(dtype, dtype) if _is_non_decimal_numeric_dtype(dtype): - return self.as_numerical_column(dtype, **kwargs) + return col.as_numerical_column(dtype) elif is_categorical_dtype(dtype): - return self.as_categorical_column(dtype) + return col.as_categorical_column(dtype) elif cudf.dtype(dtype).type in { np.str_, np.object_, @@ -1014,23 +1020,23 @@ def astype(self, dtype: Dtype, **kwargs) -> ColumnBase: f"Casting to {dtype} is not supported, use " "`.astype('str')` instead." ) - return self.as_string_column(dtype, **kwargs) + return col.as_string_column(dtype, format=format) elif isinstance(dtype, (ListDtype, StructDtype)): - if not self.dtype == dtype: + if not col.dtype == dtype: raise NotImplementedError( f"Casting {self.dtype} columns not currently supported" ) - return self + return col elif isinstance(dtype, IntervalDtype): - return self.as_interval_column(dtype, **kwargs) + return col.as_interval_column(dtype) elif isinstance(dtype, cudf.core.dtypes.DecimalDtype): - return self.as_decimal_column(dtype, **kwargs) + return col.as_decimal_column(dtype) elif np.issubdtype(cast(Any, dtype), np.datetime64): - return self.as_datetime_column(dtype, **kwargs) + return col.as_datetime_column(dtype, format=format) elif np.issubdtype(cast(Any, dtype), np.timedelta64): - return self.as_timedelta_column(dtype, **kwargs) + return col.as_timedelta_column(dtype, format=format) else: - return self.as_numerical_column(dtype, **kwargs) + return col.as_numerical_column(dtype) def as_categorical_column(self, dtype) -> ColumnBase: if isinstance(dtype, (cudf.CategoricalDtype, pd.CategoricalDtype)): @@ -1076,50 +1082,35 @@ def as_categorical_column(self, dtype) -> ColumnBase: ) def as_numerical_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype ) -> "cudf.core.column.NumericalColumn": raise NotImplementedError def as_datetime_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.DatetimeColumn": raise NotImplementedError def as_interval_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype ) -> "cudf.core.column.IntervalColumn": raise NotImplementedError def as_timedelta_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.TimeDeltaColumn": raise NotImplementedError def as_string_column( - self, dtype: Dtype, format=None, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.StringColumn": raise NotImplementedError def as_decimal_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype ) -> Union["cudf.core.column.decimal.DecimalBaseColumn"]: raise NotImplementedError - def as_decimal128_column( - self, dtype: Dtype, **kwargs - ) -> "cudf.core.column.Decimal128Column": - raise NotImplementedError - - def as_decimal64_column( - self, dtype: Dtype, **kwargs - ) -> "cudf.core.column.Decimal64Column": - raise NotImplementedError - - def as_decimal32_column( - self, dtype: Dtype, **kwargs - ) -> "cudf.core.column.Decimal32Column": - raise NotImplementedError - def apply_boolean_mask(self, mask) -> ColumnBase: mask = as_column(mask) if not is_bool_dtype(mask.dtype): diff --git a/python/cudf/cudf/core/column/datetime.py b/python/cudf/cudf/core/column/datetime.py index 2b44b46bb9e..2ab2dd46c53 100644 --- a/python/cudf/cudf/core/column/datetime.py +++ b/python/cudf/cudf/core/column/datetime.py @@ -422,21 +422,23 @@ def __cuda_array_interface__(self) -> Mapping[str, Any]: ) return output - def as_datetime_column(self, dtype: Dtype, **kwargs) -> DatetimeColumn: + def as_datetime_column( + self, dtype: Dtype, format: str | None = None + ) -> DatetimeColumn: dtype = cudf.dtype(dtype) if dtype == self.dtype: return self return libcudf.unary.cast(self, dtype=dtype) def as_timedelta_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.TimeDeltaColumn": raise TypeError( f"cannot astype a datetimelike from {self.dtype} to {dtype}" ) def as_numerical_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype ) -> "cudf.core.column.NumericalColumn": col = column.build_column( data=self.base_data, @@ -448,7 +450,7 @@ def as_numerical_column( return cast("cudf.core.column.NumericalColumn", col.astype(dtype)) def as_string_column( - self, dtype: Dtype, format=None, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.StringColumn": if format is None: format = _dtype_to_format_conversion.get( @@ -725,9 +727,9 @@ def _local_time(self): return utc_to_local(self, str(self.dtype.tz)) def as_string_column( - self, dtype: Dtype, format=None, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.StringColumn": - return self._local_time.as_string_column(dtype, format, **kwargs) + return self._local_time.as_string_column(dtype, format) def get_dt_field(self, field: str) -> ColumnBase: return libcudf.datetime.extract_datetime_component( diff --git a/python/cudf/cudf/core/column/decimal.py b/python/cudf/cudf/core/column/decimal.py index 299875f0091..0e90b522f2c 100644 --- a/python/cudf/cudf/core/column/decimal.py +++ b/python/cudf/cudf/core/column/decimal.py @@ -1,5 +1,7 @@ # Copyright (c) 2021-2024, NVIDIA CORPORATION. +from __future__ import annotations + import warnings from decimal import Decimal from typing import Any, Optional, Sequence, Union, cast @@ -37,7 +39,8 @@ class DecimalBaseColumn(NumericalBaseColumn): _VALID_BINARY_OPERATIONS = BinaryOperand._SUPPORTED_BINARY_OPERATIONS def as_decimal_column( - self, dtype: Dtype, **kwargs + self, + dtype: Dtype, ) -> Union["DecimalBaseColumn"]: if ( isinstance(dtype, cudf.core.dtypes.DecimalDtype) @@ -53,7 +56,7 @@ def as_decimal_column( return libcudf.unary.cast(self, dtype) def as_string_column( - self, dtype: Dtype, format=None, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.StringColumn": if len(self) > 0: return cpp_from_decimal(self) @@ -201,7 +204,7 @@ def _decimal_quantile( return result._with_type_metadata(self.dtype) def as_numerical_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype ) -> "cudf.core.column.NumericalColumn": return libcudf.unary.cast(self, dtype) diff --git a/python/cudf/cudf/core/column/interval.py b/python/cudf/cudf/core/column/interval.py index eed7bba3628..81059717b20 100644 --- a/python/cudf/cudf/core/column/interval.py +++ b/python/cudf/cudf/core/column/interval.py @@ -1,4 +1,4 @@ -# Copyright (c) 2018-2023, NVIDIA CORPORATION. +# Copyright (c) 2018-2024, NVIDIA CORPORATION. from typing import Optional import pandas as pd @@ -99,7 +99,7 @@ def copy(self, deep=True): closed=closed, ) - def as_interval_column(self, dtype, **kwargs): + def as_interval_column(self, dtype): if isinstance(dtype, IntervalDtype): if isinstance(self.dtype, CategoricalDtype): new_struct = self._get_decategorized_column() diff --git a/python/cudf/cudf/core/column/lists.py b/python/cudf/cudf/core/column/lists.py index a5653e66513..0cccec6f28a 100644 --- a/python/cudf/cudf/core/column/lists.py +++ b/python/cudf/cudf/core/column/lists.py @@ -1,4 +1,6 @@ -# Copyright (c) 2020-2023, NVIDIA CORPORATION. +# Copyright (c) 2020-2024, NVIDIA CORPORATION. + +from __future__ import annotations from functools import cached_property from typing import List, Optional, Sequence, Tuple, Union @@ -243,7 +245,7 @@ def from_sequences( return res def as_string_column( - self, dtype: Dtype, format=None, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.StringColumn": """ Create a strings column from a list column diff --git a/python/cudf/cudf/core/column/numerical.py b/python/cudf/cudf/core/column/numerical.py index 148fa252fad..5461d1b13b5 100644 --- a/python/cudf/cudf/core/column/numerical.py +++ b/python/cudf/cudf/core/column/numerical.py @@ -340,7 +340,7 @@ def int2ip(self) -> "cudf.core.column.StringColumn": return libcudf.string_casting.int2ip(self) def as_string_column( - self, dtype: Dtype, format=None, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.StringColumn": if len(self) > 0: return string._numeric_to_str_typecast_functions[ @@ -353,7 +353,7 @@ def as_string_column( ) def as_datetime_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.DatetimeColumn": return cast( "cudf.core.column.DatetimeColumn", @@ -367,7 +367,7 @@ def as_datetime_column( ) def as_timedelta_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.TimeDeltaColumn": return cast( "cudf.core.column.TimeDeltaColumn", @@ -381,11 +381,11 @@ def as_timedelta_column( ) def as_decimal_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype ) -> "cudf.core.column.DecimalBaseColumn": return libcudf.unary.cast(self, dtype) - def as_numerical_column(self, dtype: Dtype, **kwargs) -> NumericalColumn: + def as_numerical_column(self, dtype: Dtype) -> NumericalColumn: dtype = cudf.dtype(dtype) if dtype == self.dtype: return self diff --git a/python/cudf/cudf/core/column/string.py b/python/cudf/cudf/core/column/string.py index 06b5ac31ca6..84333fc205a 100644 --- a/python/cudf/cudf/core/column/string.py +++ b/python/cudf/cudf/core/column/string.py @@ -5633,7 +5633,7 @@ def __contains__(self, item: ScalarLike) -> bool: ) def as_numerical_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype ) -> "cudf.core.column.NumericalColumn": out_dtype = cudf.api.types.dtype(dtype) string_col = self @@ -5696,14 +5696,13 @@ def _as_datetime_or_timedelta_column(self, dtype, format): return result_col def as_datetime_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.DatetimeColumn": out_dtype = cudf.api.types.dtype(dtype) # infer on host from the first not na element # or return all null column if all values # are null in current column - format = kwargs.get("format", None) if format is None: if self.null_count == len(self): return cast( @@ -5720,19 +5719,20 @@ def as_datetime_column( return self._as_datetime_or_timedelta_column(out_dtype, format) def as_timedelta_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.TimeDeltaColumn": out_dtype = cudf.api.types.dtype(dtype) - format = "%D days %H:%M:%S" + if format is None: + format = "%D days %H:%M:%S" return self._as_datetime_or_timedelta_column(out_dtype, format) def as_decimal_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype ) -> "cudf.core.column.DecimalBaseColumn": return libstrings.to_decimal(self, dtype) def as_string_column( - self, dtype: Dtype, format=None, **kwargs + self, dtype: Dtype, format: str | None = None ) -> StringColumn: return self diff --git a/python/cudf/cudf/core/column/timedelta.py b/python/cudf/cudf/core/column/timedelta.py index 2f842130f48..6038a1a1e97 100644 --- a/python/cudf/cudf/core/column/timedelta.py +++ b/python/cudf/cudf/core/column/timedelta.py @@ -288,7 +288,7 @@ def fillna( return super().fillna(fill_value, method) def as_numerical_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype ) -> "cudf.core.column.NumericalColumn": col = column.build_column( data=self.base_data, @@ -300,14 +300,14 @@ def as_numerical_column( return cast("cudf.core.column.NumericalColumn", col.astype(dtype)) def as_datetime_column( - self, dtype: Dtype, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.DatetimeColumn": raise TypeError( f"cannot astype a timedelta from {self.dtype} to {dtype}" ) def as_string_column( - self, dtype: Dtype, format=None, **kwargs + self, dtype: Dtype, format: str | None = None ) -> "cudf.core.column.StringColumn": if format is None: format = _dtype_to_format_conversion.get( @@ -323,7 +323,9 @@ def as_string_column( column.column_empty(0, dtype="object", masked=False), ) - def as_timedelta_column(self, dtype: Dtype, **kwargs) -> TimeDeltaColumn: + def as_timedelta_column( + self, dtype: Dtype, format: str | None = None + ) -> TimeDeltaColumn: dtype = cudf.dtype(dtype) if dtype == self.dtype: return self diff --git a/python/cudf/cudf/core/dataframe.py b/python/cudf/cudf/core/dataframe.py index 813ecc32069..51b661593fc 100644 --- a/python/cudf/cudf/core/dataframe.py +++ b/python/cudf/cudf/core/dataframe.py @@ -24,6 +24,7 @@ Set, Tuple, Union, + cast, ) import cupy @@ -1986,8 +1987,6 @@ def _make_operands_and_index_for_binop( fill_value: Any = None, reflect: bool = False, can_reindex: bool = False, - *args, - **kwargs, ) -> Tuple[ Union[ Dict[Optional[str], Tuple[ColumnBase, Any, bool, Any]], @@ -2338,7 +2337,7 @@ def to_dict( @_cudf_nvtx_annotate def scatter_by_map( - self, map_index, map_size=None, keep_index=True, **kwargs + self, map_index, map_size=None, keep_index=True, debug: bool = False ): """Scatter to a list of dataframes. @@ -2379,7 +2378,11 @@ def scatter_by_map( # Convert string or categorical to integer if isinstance(map_index, cudf.core.column.StringColumn): - map_index = map_index.as_categorical_column("category").codes + cat_index = cast( + cudf.core.column.CategoricalColumn, + map_index.as_categorical_column("category"), + ) + map_index = cat_index.codes warnings.warn( "Using StringColumn for map_index in scatter_by_map. " "Use an integer array/column for better performance." @@ -2391,7 +2394,7 @@ def scatter_by_map( "Use an integer array/column for better performance." ) - if kwargs.get("debug", False) == 1 and map_size is not None: + if debug and map_size is not None: count = map_index.distinct_count() if map_size < count: raise ValueError( @@ -2406,7 +2409,7 @@ def scatter_by_map( partitioned = self._from_columns_like_self( partitioned_columns, column_names=self._column_names, - index_names=self._index_names if keep_index else None, + index_names=list(self._index_names) if keep_index else None, ) # due to the split limitation mentioned @@ -2537,7 +2540,7 @@ def items(self): yield (k, self[k]) @_cudf_nvtx_annotate - def equals(self, other, **kwargs): + def equals(self, other): ret = super().equals(other) # If all other checks matched, validate names. if ret: diff --git a/python/cudf/cudf/core/indexed_frame.py b/python/cudf/cudf/core/indexed_frame.py index ab089ceb103..5955e21fea0 100644 --- a/python/cudf/cudf/core/indexed_frame.py +++ b/python/cudf/cudf/core/indexed_frame.py @@ -1,4 +1,4 @@ -# Copyright (c) 2021-2023, NVIDIA CORPORATION. +# Copyright (c) 2021-2024, NVIDIA CORPORATION. """Base class for Frame types that have an index.""" from __future__ import annotations @@ -3612,8 +3612,6 @@ def _make_operands_and_index_for_binop( fill_value: Any = None, reflect: bool = False, can_reindex: bool = False, - *args, - **kwargs, ) -> Tuple[ Union[ Dict[Optional[str], Tuple[ColumnBase, Any, bool, Any]], diff --git a/python/cudf/cudf/core/series.py b/python/cudf/cudf/core/series.py index 8739a61dd8b..df5a62b384e 100644 --- a/python/cudf/cudf/core/series.py +++ b/python/cudf/cudf/core/series.py @@ -1578,8 +1578,6 @@ def _make_operands_and_index_for_binop( fill_value: Any = None, reflect: bool = False, can_reindex: bool = False, - *args, - **kwargs, ) -> Tuple[ Union[ Dict[Optional[str], Tuple[ColumnBase, Any, bool, Any]], diff --git a/python/cudf/cudf/core/single_column_frame.py b/python/cudf/cudf/core/single_column_frame.py index 911e7ac905c..b73f756d7dc 100644 --- a/python/cudf/cudf/core/single_column_frame.py +++ b/python/cudf/cudf/core/single_column_frame.py @@ -1,4 +1,4 @@ -# Copyright (c) 2021-2023, NVIDIA CORPORATION. +# Copyright (c) 2021-2024, NVIDIA CORPORATION. """Base class for Frame types that only have a single column.""" from __future__ import annotations @@ -310,8 +310,6 @@ def _make_operands_for_binop( other: Any, fill_value: Any = None, reflect: bool = False, - *args, - **kwargs, ) -> Union[ Dict[Optional[str], Tuple[ColumnBase, Any, bool, Any]], NotImplementedType,