diff --git a/cpp/benchmarks/CMakeLists.txt b/cpp/benchmarks/CMakeLists.txt index 04dcf51dd40..cb4ead20d00 100644 --- a/cpp/benchmarks/CMakeLists.txt +++ b/cpp/benchmarks/CMakeLists.txt @@ -198,13 +198,13 @@ ConfigureBench( groupby/group_sum.cu groupby/group_nth.cu groupby/group_shift.cu - groupby/group_struct.cu + groupby/group_struct_values.cpp groupby/group_no_requests.cu groupby/group_scan.cu groupby/group_rank_benchmark.cu ) -ConfigureNVBench(GROUPBY_NVBENCH groupby/group_rank_benchmark.cu) +ConfigureNVBench(GROUPBY_NVBENCH groupby/group_rank_benchmark.cu groupby/group_struct_keys.cpp) # ################################################################################################## # * hashing benchmark ----------------------------------------------------------------------------- diff --git a/cpp/benchmarks/groupby/group_struct_keys.cpp b/cpp/benchmarks/groupby/group_struct_keys.cpp new file mode 100644 index 00000000000..8398125db21 --- /dev/null +++ b/cpp/benchmarks/groupby/group_struct_keys.cpp @@ -0,0 +1,101 @@ +/* + * Copyright (c) 2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include + +#include + +#include +#include + +#include + +#include + +void bench_groupby_struct_keys(nvbench::state& state) +{ + cudf::rmm_pool_raii pool_raii; + + using Type = int; + using column_wrapper = cudf::test::fixed_width_column_wrapper; + std::default_random_engine generator; + std::uniform_int_distribution distribution(0, 100); + + const cudf::size_type n_rows{static_cast(state.get_int64("NumRows"))}; + const cudf::size_type n_cols{1}; + const cudf::size_type depth{static_cast(state.get_int64("Depth"))}; + const bool nulls{static_cast(state.get_int64("Nulls"))}; + + // Create columns with values in the range [0,100) + std::vector columns; + columns.reserve(n_cols); + std::generate_n(std::back_inserter(columns), n_cols, [&]() { + auto const elements = cudf::detail::make_counting_transform_iterator( + 0, [&](auto row) { return distribution(generator); }); + if (!nulls) return column_wrapper(elements, elements + n_rows); + auto valids = + cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i % 10 != 0; }); + return column_wrapper(elements, elements + n_rows, valids); + }); + + std::vector> cols; + std::transform(columns.begin(), columns.end(), std::back_inserter(cols), [](column_wrapper& col) { + return col.release(); + }); + + std::vector> child_cols = std::move(cols); + // Add some layers + for (int i = 0; i < depth; i++) { + std::vector struct_validity; + std::uniform_int_distribution bool_distribution(0, 100 * (i + 1)); + std::generate_n( + std::back_inserter(struct_validity), n_rows, [&]() { return bool_distribution(generator); }); + cudf::test::structs_column_wrapper struct_col(std::move(child_cols), struct_validity); + child_cols = std::vector>{}; + child_cols.push_back(struct_col.release()); + } + + data_profile profile; + profile.set_null_frequency(std::nullopt); + profile.set_cardinality(0); + profile.set_distribution_params( + cudf::type_to_id(), distribution_id::UNIFORM, 0, 100); + + auto const keys_table = cudf::table(std::move(child_cols)); + auto const vals_table = + create_random_table({cudf::type_to_id()}, row_count{n_rows}, profile); + + cudf::groupby::groupby gb_obj(keys_table.view()); + + std::vector requests; + requests.emplace_back(cudf::groupby::aggregation_request()); + requests[0].values = vals_table->get_column(0).view(); + requests[0].aggregations.push_back(cudf::make_min_aggregation()); + + // Set up nvbench default stream + auto stream = rmm::cuda_stream_default; + state.set_cuda_stream(nvbench::make_cuda_stream_view(stream.value())); + + state.exec(nvbench::exec_tag::sync, + [&](nvbench::launch& launch) { auto const result = gb_obj.aggregate(requests); }); +} + +NVBENCH_BENCH(bench_groupby_struct_keys) + .set_name("groupby_struct_keys") + .add_int64_power_of_two_axis("NumRows", {10, 16, 20}) + .add_int64_axis("Depth", {0, 1, 8}) + .add_int64_axis("Nulls", {0, 1}); diff --git a/cpp/benchmarks/groupby/group_struct.cu b/cpp/benchmarks/groupby/group_struct_values.cpp similarity index 100% rename from cpp/benchmarks/groupby/group_struct.cu rename to cpp/benchmarks/groupby/group_struct_values.cpp diff --git a/cpp/include/cudf/detail/groupby.hpp b/cpp/include/cudf/detail/groupby.hpp index 36a76c7b6de..0037a01b496 100644 --- a/cpp/include/cudf/detail/groupby.hpp +++ b/cpp/include/cudf/detail/groupby.hpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2019-2021, NVIDIA CORPORATION. + * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -31,13 +31,12 @@ namespace hash { * @brief Indicates if a set of aggregation requests can be satisfied with a * hash-based groupby implementation. * - * @param keys The table of keys * @param requests The set of columns to aggregate and the aggregations to * perform * @return true A hash-based groupby can be used * @return false A hash-based groupby cannot be used */ -bool can_use_hash_groupby(table_view const& keys, host_span requests); +bool can_use_hash_groupby(host_span requests); // Hash-based groupby std::pair, std::vector> groupby( diff --git a/cpp/src/groupby/groupby.cu b/cpp/src/groupby/groupby.cu index a002b0bb744..e25512f80c5 100644 --- a/cpp/src/groupby/groupby.cu +++ b/cpp/src/groupby/groupby.cu @@ -65,8 +65,6 @@ std::pair, std::vector> groupby::disp rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { - using namespace cudf::structs::detail; - // If sort groupby has been called once on this groupby object, then // always use sort groupby from now on. Because once keys are sorted, // all the aggs that can be done by hash groupby are efficiently done by @@ -74,16 +72,8 @@ std::pair, std::vector> groupby::disp // Only use hash groupby if the keys aren't sorted and all requests can be // satisfied with a hash implementation if (_keys_are_sorted == sorted::NO and not _helper and - detail::hash::can_use_hash_groupby(_keys, requests)) { - // Optionally flatten nested key columns. - auto flattened = flatten_nested_columns(_keys, {}, {}, column_nullability::FORCE); - auto flattened_keys = flattened.flattened_columns(); - auto is_supported_key_type = [](auto col) { return cudf::is_equality_comparable(col.type()); }; - CUDF_EXPECTS(std::all_of(flattened_keys.begin(), flattened_keys.end(), is_supported_key_type), - "Unsupported groupby key type does not support equality comparison"); - auto [grouped_keys, results] = - detail::hash::groupby(flattened_keys, requests, _include_null_keys, stream, mr); - return std::pair(unflatten_nested_columns(std::move(grouped_keys), _keys), std::move(results)); + detail::hash::can_use_hash_groupby(requests)) { + return detail::hash::groupby(_keys, requests, _include_null_keys, stream, mr); } else { return sort_aggregate(requests, stream, mr); } diff --git a/cpp/src/groupby/hash/groupby.cu b/cpp/src/groupby/hash/groupby.cu index e22b3a4f3a4..ab8d0089347 100644 --- a/cpp/src/groupby/hash/groupby.cu +++ b/cpp/src/groupby/hash/groupby.cu @@ -37,7 +37,7 @@ #include #include #include -#include +#include #include #include #include @@ -65,6 +65,15 @@ namespace detail { namespace hash { namespace { +// TODO: replace it with `cuco::static_map` +// https://github.com/rapidsai/cudf/issues/10401 +using map_type = concurrent_unordered_map< + cudf::size_type, + cudf::size_type, + cudf::experimental::row::hash::device_row_hasher, + cudf::experimental::row::equality::device_row_comparator>; + /** * @brief List of aggregation operations that can be computed with a hash-based * implementation. @@ -179,14 +188,13 @@ class groupby_simple_aggregations_collector final } }; -template class hash_compound_agg_finalizer final : public cudf::detail::aggregation_finalizer { column_view col; data_type result_type; cudf::detail::result_cache* sparse_results; cudf::detail::result_cache* dense_results; device_span gather_map; - Map const& map; + map_type const& map; bitmask_type const* __restrict__ row_bitmask; rmm::cuda_stream_view stream; rmm::mr::device_memory_resource* mr; @@ -198,7 +206,7 @@ class hash_compound_agg_finalizer final : public cudf::detail::aggregation_final cudf::detail::result_cache* sparse_results, cudf::detail::result_cache* dense_results, device_span gather_map, - Map const& map, + map_type const& map, bitmask_type const* row_bitmask, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) @@ -327,7 +335,7 @@ class hash_compound_agg_finalizer final : public cudf::detail::aggregation_final rmm::exec_policy(stream), thrust::make_counting_iterator(0), col.size(), - ::cudf::detail::var_hash_functor{ + ::cudf::detail::var_hash_functor{ map, row_bitmask, *var_result_view, *values_view, *sum_view, *count_view, agg._ddof}); sparse_results->add_result(col, agg, std::move(var_result)); dense_results->add_result(col, agg, to_dense_agg_result(agg)); @@ -385,14 +393,12 @@ flatten_single_pass_aggs(host_span requests) * * @see groupby_null_templated() */ -template void sparse_to_dense_results(table_view const& keys, host_span requests, cudf::detail::result_cache* sparse_results, cudf::detail::result_cache* dense_results, device_span gather_map, - // size_type map_size, - Map const& map, + map_type const& map, bool keys_have_nulls, null_policy include_null_keys, rmm::cuda_stream_view stream, @@ -409,7 +415,7 @@ void sparse_to_dense_results(table_view const& keys, // Given an aggregation, this will get the result from sparse_results and // convert and return dense, compacted result - auto finalizer = hash_compound_agg_finalizer( + auto finalizer = hash_compound_agg_finalizer( col, sparse_results, dense_results, gather_map, map, row_bitmask_ptr, stream, mr); for (auto&& agg : agg_v) { agg->finalize(finalizer); @@ -417,43 +423,6 @@ void sparse_to_dense_results(table_view const& keys, } } -/** - * @brief Construct hash map that uses row comparator and row hasher on - * `d_keys` table and stores indices - */ -auto create_hash_map(table_device_view const& d_keys, - bool keys_have_nulls, - null_policy include_null_keys, - rmm::cuda_stream_view stream) -{ - size_type constexpr unused_key{std::numeric_limits::max()}; - size_type constexpr unused_value{std::numeric_limits::max()}; - - using map_type = - concurrent_unordered_map, - row_equality_comparator>; - - using allocator_type = typename map_type::allocator_type; - - auto const null_keys_are_equal = - include_null_keys == null_policy::INCLUDE ? null_equality::EQUAL : null_equality::UNEQUAL; - - row_hasher hasher{nullate::DYNAMIC{keys_have_nulls}, - d_keys}; - row_equality_comparator rows_equal{ - nullate::DYNAMIC{keys_have_nulls}, d_keys, d_keys, null_keys_are_equal}; - - return map_type::create(compute_hash_table_size(d_keys.num_rows()), - stream, - unused_key, - unused_value, - hasher, - rows_equal, - allocator_type()); -} - // make table that will hold sparse results auto create_sparse_results_table(table_view const& flattened_values, std::vector aggs, @@ -491,11 +460,10 @@ auto create_sparse_results_table(table_view const& flattened_values, * @brief Computes all aggregations from `requests` that require a single pass * over the data and stores the results in `sparse_results` */ -template void compute_single_pass_aggs(table_view const& keys, host_span requests, cudf::detail::result_cache* sparse_results, - Map& map, + map_type& map, bool keys_have_nulls, null_policy include_null_keys, rmm::cuda_stream_view stream) @@ -509,22 +477,22 @@ void compute_single_pass_aggs(table_view const& keys, auto d_sparse_table = mutable_table_device_view::create(sparse_table, stream); auto d_values = table_device_view::create(flattened_values, stream); auto const d_aggs = cudf::detail::make_device_uvector_async(agg_kinds, stream); - - bool skip_key_rows_with_nulls = keys_have_nulls and include_null_keys == null_policy::EXCLUDE; + auto const skip_key_rows_with_nulls = + keys_have_nulls and include_null_keys == null_policy::EXCLUDE; auto row_bitmask = skip_key_rows_with_nulls ? cudf::detail::bitmask_and(keys, stream).first : rmm::device_buffer{}; + thrust::for_each_n( rmm::exec_policy(stream), thrust::make_counting_iterator(0), keys.num_rows(), - hash::compute_single_pass_aggs_fn{map, - keys.num_rows(), - *d_values, - *d_sparse_table, - d_aggs.data(), - static_cast(row_bitmask.data()), - skip_key_rows_with_nulls}); + hash::compute_single_pass_aggs_fn{map, + *d_values, + *d_sparse_table, + d_aggs.data(), + static_cast(row_bitmask.data()), + skip_key_rows_with_nulls}); // Add results back to sparse_results cache auto sparse_result_cols = sparse_table.release(); for (size_t i = 0; i < aggs.size(); i++) { @@ -538,8 +506,7 @@ void compute_single_pass_aggs(table_view const& keys, * @brief Computes and returns a device vector containing all populated keys in * `map`. */ -template -rmm::device_uvector extract_populated_keys(Map map, +rmm::device_uvector extract_populated_keys(map_type const& map, size_type num_keys, rmm::cuda_stream_view stream) { @@ -589,13 +556,33 @@ rmm::device_uvector extract_populated_keys(Map map, std::unique_ptr groupby(table_view const& keys, host_span requests, cudf::detail::result_cache* cache, - bool keys_have_nulls, - null_policy include_null_keys, + bool const keys_have_nulls, + null_policy const include_null_keys, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { - auto d_keys_ptr = table_device_view::create(keys, stream); - auto map = create_hash_map(*d_keys_ptr, keys_have_nulls, include_null_keys, stream); + auto const num_keys = keys.num_rows(); + auto const null_keys_are_equal = null_equality::EQUAL; + auto const has_null = nullate::DYNAMIC{cudf::has_nested_nulls(keys)}; + + auto preprocessed_keys = cudf::experimental::row::hash::preprocessed_table::create(keys, stream); + auto const comparator = cudf::experimental::row::equality::self_comparator{preprocessed_keys}; + auto const row_hash = cudf::experimental::row::hash::row_hasher{std::move(preprocessed_keys)}; + auto const d_key_equal = comparator.device_comparator(has_null, null_keys_are_equal); + auto const d_row_hash = row_hash.device_hasher(has_null); + + size_type constexpr unused_key{std::numeric_limits::max()}; + size_type constexpr unused_value{std::numeric_limits::max()}; + + using allocator_type = typename map_type::allocator_type; + + auto map = map_type::create(compute_hash_table_size(num_keys), + stream, + unused_key, + unused_value, + d_row_hash, + d_key_equal, + allocator_type()); // Cache of sparse results where the location of aggregate value in each // column is indexed by the hash map @@ -635,13 +622,12 @@ std::unique_ptr
groupby(table_view const& keys, * @brief Indicates if a set of aggregation requests can be satisfied with a * hash-based groupby implementation. * - * @param keys The table of keys * @param requests The set of columns to aggregate and the aggregations to * perform * @return true A hash-based groupby should be used * @return false A hash-based groupby should not be used */ -bool can_use_hash_groupby(table_view const& keys, host_span requests) +bool can_use_hash_groupby(host_span requests) { return std::all_of(requests.begin(), requests.end(), [](aggregation_request const& r) { // Currently, structs are not supported in any of hash-based aggregations. @@ -667,10 +653,18 @@ std::pair, std::vector> groupby( rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { + auto const has_nested_column = + std::any_of(keys.begin(), keys.end(), [](cudf::column_view const& col) { + return cudf::is_nested(col.type()); + }); + if (has_nested_column and include_null_keys == cudf::null_policy::EXCLUDE) { + CUDF_FAIL("Null keys of nested type cannot be excluded."); + } + cudf::detail::result_cache cache(requests.size()); std::unique_ptr
unique_keys = - groupby(keys, requests, &cache, has_nulls(keys), include_null_keys, stream, mr); + groupby(keys, requests, &cache, cudf::has_nulls(keys), include_null_keys, stream, mr); return std::pair(std::move(unique_keys), extract_results(requests, cache, stream, mr)); } diff --git a/cpp/src/groupby/hash/groupby_kernels.cuh b/cpp/src/groupby/hash/groupby_kernels.cuh index 79286fb3839..eedb07200a5 100644 --- a/cpp/src/groupby/hash/groupby_kernels.cuh +++ b/cpp/src/groupby/hash/groupby_kernels.cuh @@ -65,7 +65,6 @@ namespace hash { template struct compute_single_pass_aggs_fn { Map map; - size_type num_keys; table_device_view input_values; mutable_table_device_view output_values; aggregation::Kind const* __restrict__ aggs; @@ -76,7 +75,6 @@ struct compute_single_pass_aggs_fn { * @brief Construct a new compute_single_pass_aggs_fn functor object * * @param map Hash map object to insert key,value pairs into. - * @param num_keys The number of rows in input keys table * @param input_values The table whose rows will be aggregated in the values * of the hash map * @param output_values Table that stores the results of aggregating rows of @@ -90,14 +88,12 @@ struct compute_single_pass_aggs_fn { * bitmask where bit `i` indicates the presence of a null value in row `i`. */ compute_single_pass_aggs_fn(Map map, - size_type num_keys, table_device_view input_values, mutable_table_device_view output_values, aggregation::Kind const* aggs, bitmask_type const* row_bitmask, bool skip_rows_with_nulls) : map(map), - num_keys(num_keys), input_values(input_values), output_values(output_values), aggs(aggs), diff --git a/cpp/tests/CMakeLists.txt b/cpp/tests/CMakeLists.txt index eadcd985de3..c85b10b4eb8 100644 --- a/cpp/tests/CMakeLists.txt +++ b/cpp/tests/CMakeLists.txt @@ -83,7 +83,7 @@ ConfigureTest( groupby/covariance_tests.cpp groupby/groups_tests.cpp groupby/keys_tests.cpp - groupby/lists_tests.cpp + groupby/lists_tests.cu groupby/m2_tests.cpp groupby/min_tests.cpp groupby/max_scan_tests.cpp diff --git a/cpp/tests/groupby/keys_tests.cpp b/cpp/tests/groupby/keys_tests.cpp index 94c26f3fe8f..19e82c4ffd1 100644 --- a/cpp/tests/groupby/keys_tests.cpp +++ b/cpp/tests/groupby/keys_tests.cpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2019-2020, NVIDIA CORPORATION. + * Copyright (c) 2019-2022, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -242,6 +242,82 @@ TYPED_TEST(groupby_keys_test, mismatch_num_rows) "Size mismatch between request values and groupby keys."); } +template +using FWCW = cudf::test::fixed_width_column_wrapper; + +TYPED_TEST(groupby_keys_test, structs) +{ + using V = TypeParam; + + using R = cudf::detail::target_type_t; + using STRINGS = cudf::test::strings_column_wrapper; + using STRUCTS = cudf::test::structs_column_wrapper; + + if (std::is_same_v) return; + + /* + `@` indicates null + keys: values: + /+----------------+ + |s1{s2{a,b}, c}| + +-----------------+ + 0 | { { 1, 1}, "a"}| 1 + 1 | { { 1, 2}, "b"}| 2 + 2 | {@{ 2, 1}, "c"}| 3 + 3 | {@{ 2, 1}, "c"}| 4 + 4 | @{ { 2, 2}, "d"}| 5 + 5 | @{ { 2, 2}, "d"}| 6 + 6 | { { 1, 1}, "a"}| 7 + 7 | {@{ 2, 1}, "c"}| 8 + 8 | { {@1, 1}, "a"}| 9 + +-----------------+ + */ + + // clang-format off + auto col_a = FWCW{{ 1, 1, 2, 2, 2, 2, 1, 2, 1 }, null_at(8)}; + auto col_b = FWCW { 1, 2, 1, 1, 2, 2, 1, 1, 1 }; + auto col_c = STRINGS {"a", "b", "c", "c", "d", "d", "a", "c", "a"}; + // clang-format on + auto s2 = STRUCTS{{col_a, col_b}, nulls_at({2, 3, 7})}; + + auto keys = STRUCTS{{s2, col_c}, nulls_at({4, 5})}; + auto vals = FWCW{1, 2, 3, 4, 5, 6, 7, 8, 9}; + + // clang-format off + auto expected_col_a = FWCW{{1, 1, 1, 2 }, null_at(2)}; + auto expected_col_b = FWCW{ 1, 2, 1, 1 }; + auto expected_col_c = STRINGS{"a", "b", "a", "c"}; + // clang-format on + auto expected_s2 = STRUCTS{{expected_col_a, expected_col_b}, null_at(3)}; + + auto expect_keys = STRUCTS{{expected_s2, expected_col_c}, no_nulls()}; + auto expect_vals = FWCW{6, 1, 8, 7}; + + auto agg = cudf::make_argmax_aggregation(); + EXPECT_THROW(test_single_agg(keys, vals, expect_keys, expect_vals, std::move(agg)), + cudf::logic_error); +} + +template +using LCW = cudf::test::lists_column_wrapper; + +TYPED_TEST(groupby_keys_test, lists) +{ + using R = cudf::detail::target_type_t; + + // clang-format off + auto keys = LCW { {1,1}, {2,2}, {3,3}, {1,1}, {2,2} }; + auto values = FWCW { 0, 1, 2, 3, 4 }; + + auto expected_keys = LCW { {1,1}, {2,2}, {3,3} }; + auto expected_values = FWCW { 3, 5, 2 }; + // clang-format on + + auto agg = cudf::make_sum_aggregation(); + EXPECT_THROW(test_single_agg(keys, values, expected_keys, expected_values, std::move(agg)), + cudf::logic_error); +} + struct groupby_string_keys_test : public cudf::test::BaseFixture { }; diff --git a/cpp/tests/groupby/lists_tests.cpp b/cpp/tests/groupby/lists_tests.cpp deleted file mode 100644 index 11b8ffa92b9..00000000000 --- a/cpp/tests/groupby/lists_tests.cpp +++ /dev/null @@ -1,69 +0,0 @@ -/* - * Copyright (c) 2021, NVIDIA CORPORATION. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include - -#include -#include -#include -#include - -#include - -namespace cudf { -namespace test { - -template -struct groupby_lists_test : public cudf::test::BaseFixture { -}; - -TYPED_TEST_SUITE(groupby_lists_test, cudf::test::FixedWidthTypes); - -namespace { -// Checking with a single aggregation, and aggregation column. -// This test is orthogonal to the aggregation type; it focuses on testing the grouping -// with LISTS keys. -auto sum_agg() { return cudf::make_sum_aggregation(); } - -void test_sort_based_sum_agg(column_view const& keys, column_view const& values) -{ - test_single_agg( - keys, values, keys, values, sum_agg(), force_use_sort_impl::YES, null_policy::INCLUDE); -} - -void test_hash_based_sum_agg(column_view const& keys, column_view const& values) -{ - test_single_agg( - keys, values, keys, values, sum_agg(), force_use_sort_impl::NO, null_policy::INCLUDE); -} - -} // namespace - -TYPED_TEST(groupby_lists_test, top_level_lists_are_unsupported) -{ - // Test that grouping on LISTS columns fails visibly. - - // clang-format off - auto keys = lists_column_wrapper { {1,1}, {2,2}, {3,3}, {1,1}, {2,2} }; - auto values = fixed_width_column_wrapper { 0, 1, 2, 3, 4 }; - // clang-format on - - EXPECT_THROW(test_sort_based_sum_agg(keys, values), cudf::logic_error); - EXPECT_THROW(test_hash_based_sum_agg(keys, values), cudf::logic_error); -} - -} // namespace test -} // namespace cudf diff --git a/cpp/tests/groupby/lists_tests.cu b/cpp/tests/groupby/lists_tests.cu new file mode 100644 index 00000000000..7c145271662 --- /dev/null +++ b/cpp/tests/groupby/lists_tests.cu @@ -0,0 +1,214 @@ +/* + * Copyright (c) 2021-2022, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "groupby_test_util.hpp" + +#include +#include +#include +#include + +#include +#include +#include +#include +#include + +#include + +#include +#include + +#include + +namespace cudf { +namespace test { + +template +struct groupby_lists_test : public cudf::test::BaseFixture { +}; + +TYPED_TEST_SUITE(groupby_lists_test, cudf::test::FixedWidthTypes); + +using namespace cudf::test::iterators; + +using R = cudf::detail::target_type_t; // Type of aggregation result. +using strings = strings_column_wrapper; +using structs = structs_column_wrapper; + +template +using fwcw = cudf::test::fixed_width_column_wrapper; + +template +using lcw = cudf::test::lists_column_wrapper; + +namespace { +static constexpr auto null = -1; + +// Checking with a single aggregation, and aggregation column. +// This test is orthogonal to the aggregation type; it focuses on testing the grouping +// with LISTS keys. +auto sum_agg() { return cudf::make_sum_aggregation(); } + +// TODO: this is a naive way to compare expected key/value against resulting key/value. To be +// replaced once list lex comparator is supported (https://github.com/rapidsai/cudf/issues/5890) +template +struct match_expected_fn { + match_expected_fn(cudf::size_type const num_rows, Equal equal) + : _num_rows{num_rows}, _equal{equal} + { + } + + __device__ bool operator()(cudf::size_type const idx) + { + for (auto i = _num_rows; i < 2 * _num_rows; i++) { + if (_equal(idx, i)) { return true; } + } + return false; + } + + cudf::size_type const _num_rows; + Equal _equal; +}; + +inline void test_hash_based_sum_agg(column_view const& keys, + column_view const& values, + column_view const& expect_keys, + column_view const& expect_vals) +{ + auto const include_null_keys = null_policy::INCLUDE; + auto const keys_are_sorted = sorted::NO; + + std::vector requests; + auto& request = requests.emplace_back(groupby::aggregation_request()); + request.values = values; + request.aggregations.push_back(std::move(cudf::make_sum_aggregation())); + + groupby::groupby gb_obj(cudf::table_view({keys}), include_null_keys, keys_are_sorted); + + auto result = gb_obj.aggregate(requests); + + cudf::table_view result_kv{ + {result.first->get_column(0).view(), result.second[0].results[0]->view()}}; + cudf::table_view expected_kv{{expect_keys, expect_vals}}; + + auto const num_rows = result_kv.num_rows(); + EXPECT_EQ(num_rows, expected_kv.num_rows()); + + // Concatenate expected table and resulting table into one unique table `t`: + // expected table: `t [ 0, num_rows - 1]` + // resulting table: `t [num_rows, 2 * num_rows - 1]` + auto combined_table = cudf::concatenate(std::vector{expected_kv, result_kv}); + auto preprocessed_t = cudf::experimental::row::hash::preprocessed_table::create( + combined_table->view(), rmm::cuda_stream_default); + cudf::experimental::row::equality::self_comparator comparator(preprocessed_t); + + auto const null_keys_are_equal = + include_null_keys == null_policy::INCLUDE ? null_equality::EQUAL : null_equality::UNEQUAL; + auto row_equal = comparator.device_comparator(nullate::DYNAMIC{true}, null_keys_are_equal); + auto func = match_expected_fn{num_rows, row_equal}; + + // For each row in expected table `t[0, num_rows)`, there must be a match + // in the resulting table `t[num_rows, 2 * num_rows)` + EXPECT_TRUE(thrust::all_of(thrust::make_counting_iterator(0), + thrust::make_counting_iterator(num_rows), + func)); +} + +void test_sort_based_sum_agg(column_view const& keys, + column_view const& values, + column_view const& expect_keys, + column_view const& expect_vals) +{ + test_single_agg(keys, + values, + expect_keys, + expect_vals, + sum_agg(), + force_use_sort_impl::YES, + null_policy::INCLUDE); +} + +void test_sum_agg(column_view const& keys, + column_view const& values, + column_view const& expected_keys, + column_view const& expected_values) +{ + EXPECT_THROW(test_sort_based_sum_agg(keys, values, expected_keys, expected_values), + cudf::logic_error); + test_hash_based_sum_agg(keys, values, expected_keys, expected_values); +} +} // namespace + +TYPED_TEST(groupby_lists_test, basic) +{ + if (std::is_same_v) { return; } + + // clang-format off + auto keys = lcw { {1,1}, {2,2}, {3,3}, {1,1}, {2,2} }; + auto values = fwcw { 0, 1, 2, 3, 4 }; + + auto expected_keys = lcw { {1,1}, {2,2}, {3,3} }; + auto expected_values = fwcw { 3, 5, 2 }; + // clang-format on + + test_sum_agg(keys, values, expected_keys, expected_values); +} + +TYPED_TEST(groupby_lists_test, all_null_input) +{ + // clang-format off + auto keys = lcw { {{1,1}, {2,2}, {3,3}, {1,1}, {2,2}}, all_nulls()}; + auto values = fwcw { 0, 1, 2, 3, 4 }; + + auto expected_keys = lcw { {{null,null}}, all_nulls()}; + auto expected_values = fwcw { 10 }; + // clang-format on + + test_sum_agg(keys, values, expected_keys, expected_values); +} + +TYPED_TEST(groupby_lists_test, lists_with_nulls) +{ + // clang-format off + auto keys = lcw { {{1,1}, {2,2}, {3,3}, {1,1}, {2,2}}, nulls_at({1,2,4})}; + auto values = fwcw { 0, 1, 2, 3, 4 }; + + auto expected_keys = lcw { {{1,1}, {null,null}}, null_at(1)}; + auto expected_values = fwcw { 3, 7 }; + // clang-format on + + test_sum_agg(keys, values, expected_keys, expected_values); +} + +TYPED_TEST(groupby_lists_test, lists_with_null_elements) +{ + auto keys = + lcw{{lcw{{{1, 2, 3}, {}, {4, 5}, {}, {6, 0}}, nulls_at({1, 3})}, + lcw{{{1, 2, 3}, {}, {4, 5}, {}, {6, 0}}, nulls_at({1, 3})}, + lcw{{{1, 2, 3}, {}, {4, 5}, {}, {6, 0}}, nulls_at({1, 3})}, + lcw{{{1, 2, 3}, {}, {4, 5}, {}, {6, 0}}, nulls_at({1, 3})}}, + nulls_at({2, 3})}; + auto values = fwcw{1, 2, 4, 5}; + + auto expected_keys = lcw{ + {lcw{{{1, 2, 3}, {}, {4, 5}, {}, {6, 0}}, nulls_at({1, 3})}, {}}, null_at(1)}; + auto expected_values = fwcw{3, 9}; + + test_sum_agg(keys, values, expected_keys, expected_values); +} +} // namespace test +} // namespace cudf