diff --git a/python/cudf/cudf/_lib/datetime.pyx b/python/cudf/cudf/_lib/datetime.pyx index 2c7a585f4b1..7e8f29dac93 100644 --- a/python/cudf/cudf/_lib/datetime.pyx +++ b/python/cudf/cudf/_lib/datetime.pyx @@ -4,13 +4,7 @@ import warnings from cudf.core.buffer import acquire_spill_lock -from libcpp.memory cimport unique_ptr -from libcpp.utility cimport move - cimport pylibcudf.libcudf.datetime as libcudf_datetime -from pylibcudf.libcudf.column.column cimport column -from pylibcudf.libcudf.filling cimport calendrical_month_sequence -from pylibcudf.libcudf.scalar.scalar cimport scalar from pylibcudf.libcudf.types cimport size_type from pylibcudf.datetime import DatetimeComponent, RoundingFrequency @@ -143,20 +137,17 @@ def is_leap_year(Column col): @acquire_spill_lock() def date_range(DeviceScalar start, size_type n, offset): - cdef unique_ptr[column] c_result cdef size_type months = ( offset.kwds.get("years", 0) * 12 + offset.kwds.get("months", 0) ) - - cdef const scalar* c_start = start.get_raw_ptr() - with nogil: - c_result = move(calendrical_month_sequence( + return Column.from_pylibcudf( + plc.filling.calendrical_month_sequence( n, - c_start[0], - months - )) - return Column.from_unique_ptr(move(c_result)) + start.c_value, + months, + ) + ) @acquire_spill_lock() diff --git a/python/pylibcudf/pylibcudf/filling.pxd b/python/pylibcudf/pylibcudf/filling.pxd index b9345f8cd42..56aef086e1b 100644 --- a/python/pylibcudf/pylibcudf/filling.pxd +++ b/python/pylibcudf/pylibcudf/filling.pxd @@ -33,3 +33,9 @@ cpdef Table repeat( Table input_table, ColumnOrSize count ) + +cpdef Column calendrical_month_sequence( + size_type n, + Scalar init, + size_type months, +) diff --git a/python/pylibcudf/pylibcudf/filling.pyx b/python/pylibcudf/pylibcudf/filling.pyx index a47004a1e42..313605ead16 100644 --- a/python/pylibcudf/pylibcudf/filling.pyx +++ b/python/pylibcudf/pylibcudf/filling.pyx @@ -9,6 +9,7 @@ from pylibcudf.libcudf.filling cimport ( fill_in_place as cpp_fill_in_place, repeat as cpp_repeat, sequence as cpp_sequence, + calendrical_month_sequence as cpp_calendrical_month_sequence ) from pylibcudf.libcudf.table.table cimport table from pylibcudf.libcudf.types cimport size_type @@ -164,3 +165,39 @@ cpdef Table repeat( count ) return Table.from_libcudf(move(result)) + + +cpdef Column calendrical_month_sequence( + size_type n, + Scalar init, + size_type months, +): + + """Fill destination column from begin to end with value. + + For details, see :cpp:func:`calendrical_month_sequence`. + + Parameters + ---------- + n : size_type + Number of timestamps to generate + init : Scalar + The initial timestamp + months : size_type + Months to increment + + Returns + ------- + pylibcudf.Column + Timestamps column with sequences of months + """ + + cdef unique_ptr[column] c_result + + with nogil: + c_result = cpp_calendrical_month_sequence( + n, + dereference(init.c_obj), + months + ) + return Column.from_libcudf(move(c_result)) diff --git a/python/pylibcudf/pylibcudf/tests/test_filling.py b/python/pylibcudf/pylibcudf/tests/test_filling.py new file mode 100644 index 00000000000..91c7e42a0a0 --- /dev/null +++ b/python/pylibcudf/pylibcudf/tests/test_filling.py @@ -0,0 +1,91 @@ +# Copyright (c) 2024, NVIDIA CORPORATION. + +from datetime import datetime + +import pyarrow as pa +import pytest +from utils import assert_column_eq, assert_table_eq + +import pylibcudf as plc + + +@pytest.fixture +def pa_col(): + return pa.array([2, 3, 5, 7, 11]) + + +@pytest.fixture +def pa_table(): + pa_col = pa.array([1, 2, 3]) + return pa.table([pa_col], names=["a"]) + + +def test_fill(pa_col): + result = plc.filling.fill( + plc.interop.from_arrow(pa_col), + 1, + 3, + plc.interop.from_arrow(pa.scalar(5)), + ) + expect = pa.array([2, 5, 5, 7, 11]) + assert_column_eq(result, expect) + + +def test_fill_in_place(pa_col): + result = plc.interop.from_arrow(pa_col) + plc.filling.fill_in_place( + result, + 1, + 3, + plc.interop.from_arrow(pa.scalar(5)), + ) + expect = pa.array([2, 5, 5, 7, 11]) + assert_column_eq(result, expect) + + +def test_sequence(): + size = 5 + init_scalar = plc.interop.from_arrow(pa.scalar(10)) + step_scalar = plc.interop.from_arrow(pa.scalar(2)) + result = plc.filling.sequence( + size, + init_scalar, + step_scalar, + ) + expect = pa.array([10, 12, 14, 16, 18]) + assert_column_eq(result, expect) + + +def test_repeat_with_count_int(pa_table): + input_table = plc.interop.from_arrow(pa_table) + count = 2 + result = plc.filling.repeat(input_table, count) + expect = pa.table([[1, 1, 2, 2, 3, 3]], names=["a"]) + assert_table_eq(expect, result) + + +def test_repeat_with_count_column(pa_table): + input_table = plc.interop.from_arrow(pa_table) + count = plc.interop.from_arrow(pa.array([1, 2, 3])) + result = plc.filling.repeat(input_table, count) + expect = pa.table([[1] + [2] * 2 + [3] * 3], names=["a"]) + assert_table_eq(expect, result) + + +def test_calendrical_month_sequence(): + n = 5 + init_date = datetime(2020, 1, 31) + init = plc.interop.from_arrow( + pa.scalar(init_date, type=pa.timestamp("ms")) + ) + months = 1 + result = plc.filling.calendrical_month_sequence(n, init, months) + expected_dates = [ + datetime(2020, 1, 31), + datetime(2020, 2, 29), + datetime(2020, 3, 31), + datetime(2020, 4, 30), + datetime(2020, 5, 31), + ] + expect = pa.array(expected_dates, type=pa.timestamp("ms")) + assert_column_eq(result, expect)