diff --git a/java/src/main/native/src/ColumnVectorJni.cpp b/java/src/main/native/src/ColumnVectorJni.cpp index a09de5c61e3..2953a6221e8 100644 --- a/java/src/main/native/src/ColumnVectorJni.cpp +++ b/java/src/main/native/src/ColumnVectorJni.cpp @@ -220,49 +220,14 @@ JNIEXPORT jlong JNICALL Java_ai_rapids_cudf_ColumnVector_makeList(JNIEnv *env, j JNIEXPORT jlong JNICALL Java_ai_rapids_cudf_ColumnVector_fromScalar(JNIEnv *env, jclass, jlong j_scalar, jint row_count) { - using ScalarType = cudf::scalar_type_t; JNI_NULL_CHECK(env, j_scalar, "scalar is null", 0); try { cudf::jni::auto_set_device(env); auto scalar_val = reinterpret_cast(j_scalar); - auto dtype = scalar_val->type(); - cudf::mask_state mask_state = - scalar_val->is_valid() ? cudf::mask_state::UNALLOCATED : cudf::mask_state::ALL_NULL; std::unique_ptr col; - if (dtype.id() == cudf::type_id::LIST) { - // Neither 'cudf::make_empty_column' nor 'cudf::make_column_from_scalar' supports - // LIST type for now (https://github.com/rapidsai/cudf/issues/8088), so the list - // precedes the others and takes care of the empty column itself. - auto s_list = reinterpret_cast(scalar_val); - cudf::column_view s_val = s_list->view(); - - // Offsets: [0, list_size, list_size*2, ..., list_szie*row_count] - auto zero = cudf::make_numeric_scalar(cudf::data_type(cudf::type_id::INT32)); - auto step = cudf::make_numeric_scalar(cudf::data_type(cudf::type_id::INT32)); - zero->set_valid(true); - step->set_valid(true); - static_cast(zero.get())->set_value(0); - static_cast(step.get())->set_value(s_val.size()); - std::unique_ptr offsets = cudf::sequence(row_count + 1, *zero, *step); - // Data: - // Builds the data column by leveraging `cudf::concatenate` to repeat the 's_val' - // 'row_count' times, because 'cudf::make_column_from_scalar' does not support list - // type. - // (Assumes the `row_count` is not big, otherwise there would be a performance issue.) - // Checks the `row_count` because `cudf::concatenate` does not support no rows. - auto data_col = row_count > 0 - ? cudf::concatenate(std::vector(row_count, s_val)) - : cudf::empty_like(s_val); - col = cudf::make_lists_column(row_count, std::move(offsets), std::move(data_col), - cudf::state_null_count(mask_state, row_count), - cudf::create_null_mask(row_count, mask_state)); - } else if (row_count == 0) { - col = cudf::make_empty_column(dtype); - } else if (cudf::is_fixed_width(dtype)) { - col = cudf::make_fixed_width_column(dtype, row_count, mask_state); - auto mut_view = col->mutable_view(); - cudf::fill_in_place(mut_view, 0, row_count, *scalar_val); - } else if (dtype.id() == cudf::type_id::STRING) { + if (scalar_val->type().id() == cudf::type_id::STRING) { + // Tests fail when using the cudf implementation, complaining no child for string column. + // So here take care of the String type itself. // create a string column of all empty strings to fill (cheapest string column to create) auto offsets = cudf::make_numeric_column(cudf::data_type{cudf::type_id::INT32}, row_count + 1, cudf::mask_state::UNALLOCATED); @@ -273,7 +238,7 @@ JNIEXPORT jlong JNICALL Java_ai_rapids_cudf_ColumnVector_fromScalar(JNIEnv *env, col = cudf::fill(str_col->view(), 0, row_count, *scalar_val); } else { - JNI_THROW_NEW(env, "java/lang/IllegalArgumentException", "Invalid data type", 0); + col = cudf::make_column_from_scalar(*scalar_val, row_count); } return reinterpret_cast(col.release()); }