From a6853f4b3832b5338a4d0cd9d0b93c7bcd1ce884 Mon Sep 17 00:00:00 2001 From: Srinivas Yadav <43375352+srinivasyadav18@users.noreply.github.com> Date: Tue, 8 Oct 2024 23:03:03 -0500 Subject: [PATCH] Refactor `histogram` reduction using `cuco::static_set::insert_and_find` (#16485) Refactors `histogram` reduce and groupby aggregations using `cuco::static_set::insert_and_find`. Speed improvement results [here](https://github.com/rapidsai/cudf/pull/16485#issuecomment-2394855796) and [here](https://github.com/rapidsai/cudf/pull/16485#issuecomment-2394865692). Authors: - Srinivas Yadav (https://github.com/srinivasyadav18) - Muhammad Haseeb (https://github.com/mhaseeb123) Approvers: - Yunsong Wang (https://github.com/PointKernel) - Nghia Truong (https://github.com/ttnghia) URL: https://github.com/rapidsai/cudf/pull/16485 --- cpp/benchmarks/CMakeLists.txt | 10 +- cpp/benchmarks/groupby/group_histogram.cpp | 90 ++++++++++ cpp/benchmarks/reduction/histogram.cpp | 68 +++++++ .../cudf/detail/hash_reduce_by_row.cuh | 169 ------------------ cpp/src/reductions/histogram.cu | 164 +++++++---------- 5 files changed, 231 insertions(+), 270 deletions(-) create mode 100644 cpp/benchmarks/groupby/group_histogram.cpp create mode 100644 cpp/benchmarks/reduction/histogram.cpp delete mode 100644 cpp/include/cudf/detail/hash_reduce_by_row.cuh diff --git a/cpp/benchmarks/CMakeLists.txt b/cpp/benchmarks/CMakeLists.txt index b8a53cd8bd9..b0f75b25975 100644 --- a/cpp/benchmarks/CMakeLists.txt +++ b/cpp/benchmarks/CMakeLists.txt @@ -245,6 +245,7 @@ ConfigureNVBench( REDUCTION_NVBENCH reduction/anyall.cpp reduction/dictionary.cpp + reduction/histogram.cpp reduction/minmax.cpp reduction/rank.cpp reduction/reduce.cpp @@ -270,8 +271,13 @@ ConfigureBench( ) ConfigureNVBench( - GROUPBY_NVBENCH groupby/group_max.cpp groupby/group_max_multithreaded.cpp - groupby/group_nunique.cpp groupby/group_rank.cpp groupby/group_struct_keys.cpp + GROUPBY_NVBENCH + groupby/group_histogram.cpp + groupby/group_max.cpp + groupby/group_max_multithreaded.cpp + groupby/group_nunique.cpp + groupby/group_rank.cpp + groupby/group_struct_keys.cpp ) # ################################################################################################## diff --git a/cpp/benchmarks/groupby/group_histogram.cpp b/cpp/benchmarks/groupby/group_histogram.cpp new file mode 100644 index 00000000000..cd7f9f298af --- /dev/null +++ b/cpp/benchmarks/groupby/group_histogram.cpp @@ -0,0 +1,90 @@ +/* + * Copyright (c) 2022-2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include <benchmarks/common/generate_input.hpp> +#include <benchmarks/fixture/benchmark_fixture.hpp> + +#include <cudf/groupby.hpp> + +#include <nvbench/nvbench.cuh> + +template <typename Type> +void groupby_histogram_helper(nvbench::state& state, + cudf::size_type num_rows, + cudf::size_type cardinality, + double null_probability) +{ + auto const keys = [&] { + data_profile const profile = + data_profile_builder() + .cardinality(cardinality) + .no_validity() + .distribution(cudf::type_to_id<int32_t>(), distribution_id::UNIFORM, 0, num_rows); + return create_random_column(cudf::type_to_id<int32_t>(), row_count{num_rows}, profile); + }(); + + auto const values = [&] { + auto builder = data_profile_builder().cardinality(0).distribution( + cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, num_rows); + if (null_probability > 0) { + builder.null_probability(null_probability); + } else { + builder.no_validity(); + } + return create_random_column( + cudf::type_to_id<Type>(), row_count{num_rows}, data_profile{builder}); + }(); + + // Vector of 1 request + std::vector<cudf::groupby::aggregation_request> requests(1); + requests.back().values = values->view(); + requests.back().aggregations.push_back( + cudf::make_histogram_aggregation<cudf::groupby_aggregation>()); + + auto const mem_stats_logger = cudf::memory_stats_logger(); + state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); + state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { + auto gb_obj = cudf::groupby::groupby(cudf::table_view({keys->view()})); + auto const result = gb_obj.aggregate(requests); + }); + + auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value"); + state.add_element_count(static_cast<double>(num_rows) / elapsed_time, "rows/s"); + state.add_buffer_size( + mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage"); +} + +template <typename Type> +void bench_groupby_histogram(nvbench::state& state, nvbench::type_list<Type>) +{ + auto const cardinality = static_cast<cudf::size_type>(state.get_int64("cardinality")); + auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); + auto const null_probability = state.get_float64("null_probability"); + + if (cardinality > num_rows) { + state.skip("cardinality > num_rows"); + return; + } + + groupby_histogram_helper<Type>(state, num_rows, cardinality, null_probability); +} + +NVBENCH_BENCH_TYPES(bench_groupby_histogram, + NVBENCH_TYPE_AXES(nvbench::type_list<int32_t, int64_t, float, double>)) + .set_name("groupby_histogram") + .add_float64_axis("null_probability", {0, 0.1, 0.9}) + .add_int64_axis("cardinality", {100, 1'000, 10'000, 100'000, 1'000'000, 10'000'000}) + .add_int64_axis("num_rows", {100, 1'000, 10'000, 100'000, 1'000'000, 10'000'000}); diff --git a/cpp/benchmarks/reduction/histogram.cpp b/cpp/benchmarks/reduction/histogram.cpp new file mode 100644 index 00000000000..d0925de5c87 --- /dev/null +++ b/cpp/benchmarks/reduction/histogram.cpp @@ -0,0 +1,68 @@ +/* + * Copyright (c) 2022-2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "cudf/aggregation.hpp" +#include "cudf/detail/aggregation/aggregation.hpp" + +#include <benchmarks/common/generate_input.hpp> +#include <benchmarks/common/nvbench_utilities.hpp> +#include <benchmarks/common/table_utilities.hpp> + +#include <cudf/column/column_view.hpp> +#include <cudf/detail/aggregation/aggregation.hpp> +#include <cudf/reduction.hpp> +#include <cudf/reduction/detail/histogram.hpp> +#include <cudf/types.hpp> + +#include <nvbench/nvbench.cuh> + +template <typename type> +static void nvbench_reduction_histogram(nvbench::state& state, nvbench::type_list<type>) +{ + auto const dtype = cudf::type_to_id<type>(); + + auto const cardinality = static_cast<cudf::size_type>(state.get_int64("cardinality")); + auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows")); + auto const null_probability = state.get_float64("null_probability"); + + if (cardinality > num_rows) { + state.skip("cardinality > num_rows"); + return; + } + + data_profile const profile = data_profile_builder() + .null_probability(null_probability) + .cardinality(cardinality) + .distribution(dtype, distribution_id::UNIFORM, 0, num_rows); + + auto const input = create_random_column(dtype, row_count{num_rows}, profile); + auto agg = cudf::make_histogram_aggregation<cudf::reduce_aggregation>(); + state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { + rmm::cuda_stream_view stream_view{launch.get_stream()}; + auto result = cudf::reduce(*input, *agg, input->type(), stream_view); + }); + + state.add_element_count(input->size()); +} + +using data_type = nvbench::type_list<int32_t, int64_t>; + +NVBENCH_BENCH_TYPES(nvbench_reduction_histogram, NVBENCH_TYPE_AXES(data_type)) + .set_name("histogram") + .add_float64_axis("null_probability", {0.1}) + .add_int64_axis("cardinality", + {0, 100, 1'000, 10'000, 100'000, 1'000'000, 10'000'000, 50'000'000}) + .add_int64_axis("num_rows", {10'000, 100'000, 1'000'000, 10'000'000, 100'000'000}); diff --git a/cpp/include/cudf/detail/hash_reduce_by_row.cuh b/cpp/include/cudf/detail/hash_reduce_by_row.cuh deleted file mode 100644 index 7de79b31bc7..00000000000 --- a/cpp/include/cudf/detail/hash_reduce_by_row.cuh +++ /dev/null @@ -1,169 +0,0 @@ -/* - * Copyright (c) 2022-2024, NVIDIA CORPORATION. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include <cudf/detail/cuco_helpers.hpp> -#include <cudf/hashing/detail/helper_functions.cuh> -#include <cudf/table/experimental/row_operators.cuh> -#include <cudf/types.hpp> -#include <cudf/utilities/memory_resource.hpp> - -#include <rmm/cuda_stream_view.hpp> -#include <rmm/device_uvector.hpp> -#include <rmm/exec_policy.hpp> - -#include <cuco/static_map.cuh> -#include <thrust/for_each.h> -#include <thrust/iterator/counting_iterator.h> -#include <thrust/uninitialized_fill.h> - -namespace cudf::detail { - -using hash_map_type = cuco::legacy:: - static_map<size_type, size_type, cuda::thread_scope_device, cudf::detail::cuco_allocator<char>>; - -/** - * @brief The base struct for customized reduction functor to perform reduce-by-key with keys are - * rows that compared equal. - * - * TODO: We need to switch to use `static_reduction_map` when it is ready - * (https://github.com/NVIDIA/cuCollections/pull/98). - */ -template <typename MapView, typename KeyHasher, typename KeyEqual, typename OutputType> -struct reduce_by_row_fn_base { - protected: - MapView const d_map; - KeyHasher const d_hasher; - KeyEqual const d_equal; - OutputType* const d_output; - - reduce_by_row_fn_base(MapView const& d_map, - KeyHasher const& d_hasher, - KeyEqual const& d_equal, - OutputType* const d_output) - : d_map{d_map}, d_hasher{d_hasher}, d_equal{d_equal}, d_output{d_output} - { - } - - /** - * @brief Return a pointer to the output array at the given index. - * - * @param idx The access index - * @return A pointer to the given index in the output array - */ - __device__ OutputType* get_output_ptr(size_type const idx) const - { - auto const iter = d_map.find(idx, d_hasher, d_equal); - - if (iter != d_map.end()) { - // Only one (undetermined) index value of the duplicate rows could be inserted into the map. - // As such, looking up for all indices of duplicate rows always returns the same value. - auto const inserted_idx = iter->second.load(cuda::std::memory_order_relaxed); - - // All duplicate rows will have concurrent access to this same output slot. - return &d_output[inserted_idx]; - } else { - // All input `idx` values have been inserted into the map before. - // Thus, searching for an `idx` key resulting in the `end()` iterator only happens if - // `d_equal(idx, idx) == false`. - // Such situations are due to comparing nulls or NaNs which are considered as always unequal. - // In those cases, all rows containing nulls or NaNs are distinct. Just return their direct - // output slot. - return &d_output[idx]; - } - } -}; - -/** - * @brief Perform a reduction on groups of rows that are compared equal. - * - * This is essentially a reduce-by-key operation with keys are non-contiguous rows and are compared - * equal. A hash table is used to find groups of equal rows. - * - * At the beginning of the operation, the entire output array is filled with a value given by - * the `init` parameter. Then, the reduction result for each row group is written into the output - * array at the index of an unspecified row in the group. - * - * @tparam ReduceFuncBuilder The builder class that must have a `build()` method returning a - * reduction functor derived from `reduce_by_row_fn_base` - * @tparam OutputType Type of the reduction results - * @param map The auxiliary map to perform reduction - * @param preprocessed_input The preprocessed of the input rows for computing row hashing and row - * comparisons - * @param num_rows The number of all input rows - * @param has_nulls Indicate whether the input rows has any nulls at any nested levels - * @param has_nested_columns Indicates whether the input table has any nested columns - * @param nulls_equal Flag to specify whether null elements should be considered as equal - * @param nans_equal Flag to specify whether NaN values in floating point column should be - * considered equal. - * @param init The initial value for reduction of each row group - * @param stream CUDA stream used for device memory operations and kernel launches - * @param mr Device memory resource used to allocate the returned vector - * @return A device_uvector containing the reduction results - */ -template <typename ReduceFuncBuilder, typename OutputType> -rmm::device_uvector<OutputType> hash_reduce_by_row( - hash_map_type const& map, - std::shared_ptr<cudf::experimental::row::equality::preprocessed_table> const preprocessed_input, - size_type num_rows, - cudf::nullate::DYNAMIC has_nulls, - bool has_nested_columns, - null_equality nulls_equal, - nan_equality nans_equal, - ReduceFuncBuilder func_builder, - OutputType init, - rmm::cuda_stream_view stream, - rmm::device_async_resource_ref mr) -{ - auto const map_dview = map.get_device_view(); - auto const row_hasher = cudf::experimental::row::hash::row_hasher(preprocessed_input); - auto const key_hasher = row_hasher.device_hasher(has_nulls); - auto const row_comp = cudf::experimental::row::equality::self_comparator(preprocessed_input); - - auto reduction_results = rmm::device_uvector<OutputType>(num_rows, stream, mr); - thrust::uninitialized_fill( - rmm::exec_policy(stream), reduction_results.begin(), reduction_results.end(), init); - - auto const reduce_by_row = [&](auto const value_comp) { - if (has_nested_columns) { - auto const key_equal = row_comp.equal_to<true>(has_nulls, nulls_equal, value_comp); - thrust::for_each( - rmm::exec_policy(stream), - thrust::make_counting_iterator(0), - thrust::make_counting_iterator(num_rows), - func_builder.build(map_dview, key_hasher, key_equal, reduction_results.begin())); - } else { - auto const key_equal = row_comp.equal_to<false>(has_nulls, nulls_equal, value_comp); - thrust::for_each( - rmm::exec_policy(stream), - thrust::make_counting_iterator(0), - thrust::make_counting_iterator(num_rows), - func_builder.build(map_dview, key_hasher, key_equal, reduction_results.begin())); - } - }; - - if (nans_equal == nan_equality::ALL_EQUAL) { - using nan_equal_comparator = - cudf::experimental::row::equality::nan_equal_physical_equality_comparator; - reduce_by_row(nan_equal_comparator{}); - } else { - using nan_unequal_comparator = cudf::experimental::row::equality::physical_equality_comparator; - reduce_by_row(nan_unequal_comparator{}); - } - - return reduction_results; -} - -} // namespace cudf::detail diff --git a/cpp/src/reductions/histogram.cu b/cpp/src/reductions/histogram.cu index 362b5f74c46..b40b2b6dd2e 100644 --- a/cpp/src/reductions/histogram.cu +++ b/cpp/src/reductions/histogram.cu @@ -15,18 +15,24 @@ */ #include <cudf/column/column_factories.hpp> +#include <cudf/detail/cuco_helpers.hpp> #include <cudf/detail/gather.hpp> -#include <cudf/detail/hash_reduce_by_row.cuh> #include <cudf/detail/iterator.cuh> #include <cudf/scalar/scalar.hpp> #include <cudf/structs/structs_column_view.hpp> +#include <cudf/table/experimental/row_operators.cuh> #include <cudf/utilities/memory_resource.hpp> +#include <rmm/exec_policy.hpp> + +#include <cuco/operator.hpp> +#include <cuco/static_set.cuh> #include <cuda/atomic> #include <cuda/functional> #include <thrust/copy.h> #include <thrust/iterator/zip_iterator.h> #include <thrust/tuple.h> +#include <thrust/uninitialized_fill.h> #include <optional> @@ -34,61 +40,12 @@ namespace cudf::reduction::detail { namespace { +// A CUDA Cooperative Group of 1 thread for the hash set for histogram +auto constexpr DEFAULT_HISTOGRAM_CG_SIZE = 1; + // Always use 64-bit signed integer for storing count. using histogram_count_type = int64_t; -/** - * @brief The functor to accumulate the frequency of each distinct rows in the input table. - */ -template <typename MapView, typename KeyHasher, typename KeyEqual, typename CountType> -struct reduce_fn : cudf::detail::reduce_by_row_fn_base<MapView, KeyHasher, KeyEqual, CountType> { - CountType const* d_partial_output; - - reduce_fn(MapView const& d_map, - KeyHasher const& d_hasher, - KeyEqual const& d_equal, - CountType* const d_output, - CountType const* const d_partial_output) - : cudf::detail::reduce_by_row_fn_base<MapView, KeyHasher, KeyEqual, CountType>{d_map, - d_hasher, - d_equal, - d_output}, - d_partial_output{d_partial_output} - { - } - - // Count the number of rows in each group of rows that are compared equal. - __device__ void operator()(size_type const idx) const - { - auto const increment = d_partial_output ? d_partial_output[idx] : CountType{1}; - auto const count = - cuda::atomic_ref<CountType, cuda::thread_scope_device>(*this->get_output_ptr(idx)); - count.fetch_add(increment, cuda::std::memory_order_relaxed); - } -}; - -/** - * @brief The builder to construct an instance of `reduce_fn` functor. - */ -template <typename CountType> -struct reduce_func_builder { - CountType const* const d_partial_output; - - reduce_func_builder(CountType const* const d_partial_output) : d_partial_output{d_partial_output} - { - } - - template <typename MapView, typename KeyHasher, typename KeyEqual> - auto build(MapView const& d_map, - KeyHasher const& d_hasher, - KeyEqual const& d_equal, - CountType* const d_output) - { - return reduce_fn<MapView, KeyHasher, KeyEqual, CountType>{ - d_map, d_hasher, d_equal, d_output, d_partial_output}; - } -}; - /** * @brief Specialized functor to check for not-zero of the second component of the input. */ @@ -163,14 +120,6 @@ compute_row_frequencies(table_view const& input, "Nested types are not yet supported in histogram aggregation.", std::invalid_argument); - auto map = cudf::detail::hash_map_type{ - compute_hash_table_size(input.num_rows()), - cuco::empty_key{-1}, - cuco::empty_value{std::numeric_limits<size_type>::min()}, - - cudf::detail::cuco_allocator<char>{rmm::mr::polymorphic_allocator<char>{}, stream}, - stream.value()}; - auto const preprocessed_input = cudf::experimental::row::hash::preprocessed_table::create(input, stream); auto const has_nulls = nullate::DYNAMIC{cudf::has_nested_nulls(input)}; @@ -179,51 +128,68 @@ compute_row_frequencies(table_view const& input, auto const key_hasher = row_hasher.device_hasher(has_nulls); auto const row_comp = cudf::experimental::row::equality::self_comparator(preprocessed_input); - auto const pair_iter = cudf::detail::make_counting_transform_iterator( - size_type{0}, - cuda::proclaim_return_type<cuco::pair<size_type, size_type>>( - [] __device__(size_type const i) { return cuco::make_pair(i, i); })); - // Always compare NaNs as equal. using nan_equal_comparator = cudf::experimental::row::equality::nan_equal_physical_equality_comparator; auto const value_comp = nan_equal_comparator{}; + // Hard set the tparam `has_nested_columns` = false for now as we don't yet support nested columns + auto const key_equal = row_comp.equal_to<false>(has_nulls, null_equality::EQUAL, value_comp); + + using row_hash = + cudf::experimental::row::hash::device_row_hasher<cudf::hashing::detail::default_hash, + cudf::nullate::DYNAMIC>; + + size_t const num_rows = input.num_rows(); + + // Construct a vector to store reduced counts and init to zero + rmm::device_uvector<histogram_count_type> reduction_results(num_rows, stream, mr); + thrust::uninitialized_fill(rmm::exec_policy_nosync(stream), + reduction_results.begin(), + reduction_results.end(), + histogram_count_type{0}); + + // Construct a hash set + auto row_set = cuco::static_set{ + cuco::extent{num_rows}, + cudf::detail::CUCO_DESIRED_LOAD_FACTOR, + cuco::empty_key<size_type>{-1}, + key_equal, + cuco::linear_probing<DEFAULT_HISTOGRAM_CG_SIZE, row_hash>{key_hasher}, + {}, // thread scope + {}, // storage + cudf::detail::cuco_allocator<char>{rmm::mr::polymorphic_allocator<char>{}, stream}, + stream.value()}; - if (has_nested_columns) { - auto const key_equal = row_comp.equal_to<true>(has_nulls, null_equality::EQUAL, value_comp); - map.insert(pair_iter, pair_iter + input.num_rows(), key_hasher, key_equal, stream.value()); - } else { - auto const key_equal = row_comp.equal_to<false>(has_nulls, null_equality::EQUAL, value_comp); - map.insert(pair_iter, pair_iter + input.num_rows(), key_hasher, key_equal, stream.value()); - } - - // Gather the indices of distinct rows. - auto distinct_indices = std::make_unique<rmm::device_uvector<size_type>>( - static_cast<size_type>(map.get_size()), stream, mr); - - // Store the number of occurrences of each distinct row. - auto distinct_counts = make_numeric_column(data_type{type_to_id<histogram_count_type>()}, - static_cast<size_type>(map.get_size()), - mask_state::UNALLOCATED, - stream, - mr); + // Device-accessible reference to the hash set with `insert_and_find` operator + auto row_set_ref = row_set.ref(cuco::op::insert_and_find); // Compute frequencies (aka distinct counts) for the input rows. // Note that we consider null and NaNs as always equal. - auto const reduction_results = cudf::detail::hash_reduce_by_row( - map, - preprocessed_input, - input.num_rows(), - has_nulls, - has_nested_columns, - null_equality::EQUAL, - nan_equality::ALL_EQUAL, - reduce_func_builder<histogram_count_type>{ - partial_counts ? partial_counts.value().begin<histogram_count_type>() : nullptr}, - histogram_count_type{0}, - stream, - cudf::get_current_device_resource_ref()); - + thrust::for_each( + rmm::exec_policy_nosync(stream), + thrust::make_counting_iterator<size_t>(0), + thrust::make_counting_iterator<size_t>(num_rows), + [set_ref = row_set_ref, + increments = + partial_counts.has_value() ? partial_counts.value().begin<histogram_count_type>() : nullptr, + counts = reduction_results.begin()] __device__(auto const idx) mutable { + auto const [inserted_idx_ptr, _] = set_ref.insert_and_find(idx); + cuda::atomic_ref<histogram_count_type, cuda::thread_scope_device> count_ref{ + counts[*inserted_idx_ptr]}; + auto const increment = increments ? increments[idx] : histogram_count_type{1}; + count_ref.fetch_add(increment, cuda::std::memory_order_relaxed); + }); + + // Set-size is the number of distinct (inserted) rows + auto const set_size = row_set.size(stream); + + // Vector of distinct indices + auto distinct_indices = std::make_unique<rmm::device_uvector<size_type>>(set_size, stream, mr); + // Column of distinct counts + auto distinct_counts = make_numeric_column( + data_type{type_to_id<histogram_count_type>()}, set_size, mask_state::UNALLOCATED, stream, mr); + + // Copy row indices and counts to the output if counts are non-zero auto const input_it = thrust::make_zip_iterator( thrust::make_tuple(thrust::make_counting_iterator(0), reduction_results.begin())); auto const output_it = thrust::make_zip_iterator(thrust::make_tuple( @@ -232,7 +198,7 @@ compute_row_frequencies(table_view const& input, // Reduction results above are either group sizes of equal rows, or `0`. // The final output is non-zero group sizes only. thrust::copy_if( - rmm::exec_policy(stream), input_it, input_it + input.num_rows(), output_it, is_not_zero{}); + rmm::exec_policy_nosync(stream), input_it, input_it + num_rows, output_it, is_not_zero{}); return {std::move(distinct_indices), std::move(distinct_counts)}; }