diff --git a/python/cudf/cudf/core/udf/groupby_utils.py b/python/cudf/cudf/core/udf/groupby_utils.py index dc31cf43292..ebf8c677e55 100644 --- a/python/cudf/cudf/core/udf/groupby_utils.py +++ b/python/cudf/cudf/core/udf/groupby_utils.py @@ -19,11 +19,13 @@ groupby_apply_kernel_template, ) from cudf.core.udf.utils import ( + _generate_cache_key, _get_extensionty_size, _get_kernel, _get_udf_return_type, _supported_cols_from_frame, _supported_dtypes_from_frame, + precompiled, ) from cudf.utils.utils import _cudf_nvtx_annotate @@ -147,12 +149,19 @@ def jit_groupby_apply(offsets, grouped_values, function, *args): offsets = cp.asarray(offsets) ngroups = len(offsets) - 1 - kernel, return_type = _get_groupby_apply_kernel( - grouped_values, function, args + cache_key = _generate_cache_key( + grouped_values, function, suffix="__GROUPBY_APPLY_UDF" ) - return_type = numpy_support.as_dtype(return_type) + if cache_key not in precompiled: + precompiled[cache_key] = _get_groupby_apply_kernel( + grouped_values, function, args + ) + kernel, return_type = precompiled[cache_key] + + return_type = numpy_support.as_dtype(return_type) output = cudf.core.column.column_empty(ngroups, dtype=return_type) + launch_args = [ offsets, output, diff --git a/python/cudf/cudf/core/udf/utils.py b/python/cudf/cudf/core/udf/utils.py index edc1a16353f..ed0c3332499 100644 --- a/python/cudf/cudf/core/udf/utils.py +++ b/python/cudf/cudf/core/udf/utils.py @@ -245,7 +245,7 @@ def _mask_get(mask, pos): return (mask[pos // MASK_BITSIZE] >> (pos % MASK_BITSIZE)) & 1 -def _generate_cache_key(frame, func: Callable): +def _generate_cache_key(frame, func: Callable, suffix="__APPLY_UDF"): """Create a cache key that uniquely identifies a compilation. A new compilation is needed any time any of the following things change: @@ -259,6 +259,7 @@ def _generate_cache_key(frame, func: Callable): ), *(col.mask is None for col in frame._data.values()), *frame._data.keys(), + suffix, ) diff --git a/python/cudf/cudf/tests/test_groupby.py b/python/cudf/cudf/tests/test_groupby.py index 1b86c68b582..2a4b860c196 100644 --- a/python/cudf/cudf/tests/test_groupby.py +++ b/python/cudf/cudf/tests/test_groupby.py @@ -20,6 +20,7 @@ from cudf import DataFrame, Series from cudf.core._compat import PANDAS_GE_150, PANDAS_LT_140 from cudf.core.udf.groupby_typing import SUPPORTED_GROUPBY_NUMPY_TYPES +from cudf.core.udf.utils import precompiled from cudf.testing._utils import ( DATETIME_TYPES, SIGNED_TYPES, @@ -534,6 +535,42 @@ def diverging_block(grp_df): run_groupby_apply_jit_test(df, diverging_block, ["a"]) +def test_groupby_apply_caching(): + # Make sure similar functions that differ + # by simple things like constants actually + # recompile + + # begin with a clear cache + precompiled.clear() + assert precompiled.currsize == 0 + + data = cudf.DataFrame({"a": [1, 1, 1, 2, 2, 2], "b": [1, 2, 3, 4, 5, 6]}) + + def f(group): + return group["b"].mean() * 2 + + # a single run should result in a cache size of 1 + run_groupby_apply_jit_test(data, f, ["a"]) + assert precompiled.currsize == 1 + + # a second run with f should not increase the count + run_groupby_apply_jit_test(data, f, ["a"]) + assert precompiled.currsize == 1 + + # changing a constant value inside the UDF should miss + def f(group): + return group["b"].mean() * 3 + + run_groupby_apply_jit_test(data, f, ["a"]) + assert precompiled.currsize == 2 + + # changing the dtypes of the columns should miss + data["b"] = data["b"].astype("float64") + run_groupby_apply_jit_test(data, f, ["a"]) + + assert precompiled.currsize == 3 + + @pytest.mark.parametrize("nelem", [2, 3, 100, 500, 1000]) @pytest.mark.parametrize( "func",