diff --git a/cpp/CMakeLists.txt b/cpp/CMakeLists.txt
index 7d62e0acb10..3c7e10c9bc4 100644
--- a/cpp/CMakeLists.txt
+++ b/cpp/CMakeLists.txt
@@ -359,6 +359,8 @@ add_library(
src/interop/from_arrow.cu
src/interop/to_arrow.cu
src/interop/to_arrow_device.cu
+ src/interop/to_arrow_schema.cpp
+ src/interop/to_arrow_utilities.cpp
src/interop/detail/arrow_allocator.cpp
src/io/avro/avro.cpp
src/io/avro/avro_gpu.cu
diff --git a/cpp/include/cudf/interop.hpp b/cpp/include/cudf/interop.hpp
index dc4d66a8f6e..defc1fc834c 100644
--- a/cpp/include/cudf/interop.hpp
+++ b/cpp/include/cudf/interop.hpp
@@ -258,6 +258,70 @@ unique_device_array_t to_arrow_device(
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::device_async_resource_ref mr = rmm::mr::get_current_device_resource());
+/**
+ * @brief Create `ArrowDeviceArray` from a table view
+ *
+ * Populates the C struct ArrowDeviceArray performing copies only if necessary.
+ * This wraps the data on the GPU device and gives a view of the table data
+ * to the ArrowDeviceArray struct. If the caller frees the data referenced by
+ * the table_view, using the returned object results in undefined behavior.
+ *
+ * After calling this function, the release callback on the returned ArrowDeviceArray
+ * must be called to clean up any memory created during conversion.
+ *
+ * @note For decimals, since the precision is not stored for them in libcudf
+ * it will be converted to an Arrow decimal128 with the widest-precision the cudf decimal type
+ * supports. For example, numeric::decimal32 will be converted to Arrow decimal128 of the precision
+ * 9 which is the maximum precision for 32-bit types. Similarly, numeric::decimal128 will be
+ * converted to Arrow decimal128 of the precision 38.
+ *
+ * Copies will be performed in the cases where cudf differs from Arrow:
+ * - BOOL8: Arrow uses a bitmap and cudf uses 1 byte per value
+ * - DECIMAL32 and DECIMAL64: Converted to Arrow decimal128
+ * - STRING: Arrow expects a single value int32 offset child array for empty strings columns
+ *
+ * @param table Input table
+ * @param stream CUDA stream used for device memory operations and kernel launches
+ * @param mr Device memory resource used for any allocations during conversion
+ * @return ArrowDeviceArray which will have ownership of any copied data
+ */
+unique_device_array_t to_arrow_device(
+ cudf::table_view const& table,
+ rmm::cuda_stream_view stream = cudf::get_default_stream(),
+ rmm::device_async_resource_ref mr = rmm::mr::get_current_device_resource());
+
+/**
+ * @brief Create `ArrowDeviceArray` from a column view
+ *
+ * Populates the C struct ArrowDeviceArray performing copies only if necessary.
+ * This wraps the data on the GPU device and gives a view of the column data
+ * to the ArrowDeviceArray struct. If the caller frees the data referenced by
+ * the column_view, using the returned object results in undefined behavior.
+ *
+ * After calling this function, the release callback on the returned ArrowDeviceArray
+ * must be called to clean up any memory created during conversion.
+ *
+ * @note For decimals, since the precision is not stored for them in libcudf
+ * it will be converted to an Arrow decimal128 with the widest-precision the cudf decimal type
+ * supports. For example, numeric::decimal32 will be converted to Arrow decimal128 of the precision
+ * 9 which is the maximum precision for 32-bit types. Similar, numeric::decimal128 will be
+ * converted to Arrow decimal128 of the precision 38.
+ *
+ * Copies will be performed in the cases where cudf differs from Arrow:
+ * - BOOL8: Arrow uses a bitmap and cudf uses 1 byte per value
+ * - DECIMAL32 and DECIMAL64: Converted to Arrow decimal128
+ * - STRING: Arrow expects a single value int32 offset child array for empty strings columns
+ *
+ * @param col Input column
+ * @param stream CUDA stream used for device memory operations and kernel launches
+ * @param mr Device memory resource used for any allocations during conversion
+ * @return ArrowDeviceArray which will have ownership of any copied data
+ */
+unique_device_array_t to_arrow_device(
+ cudf::column_view const& col,
+ rmm::cuda_stream_view stream = cudf::get_default_stream(),
+ rmm::device_async_resource_ref mr = rmm::mr::get_current_device_resource());
+
/**
* @brief Create `cudf::table` from given arrow Table input
*
@@ -266,7 +330,6 @@ unique_device_array_t to_arrow_device(
* @param mr Device memory resource used to allocate `cudf::table`
* @return cudf table generated from given arrow Table
*/
-
std::unique_ptr
from_arrow(
arrow::Table const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
@@ -280,7 +343,6 @@ std::unique_ptr from_arrow(
* @param mr Device memory resource used to allocate `cudf::scalar`
* @return cudf scalar generated from given arrow Scalar
*/
-
std::unique_ptr from_arrow(
arrow::Scalar const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
diff --git a/cpp/src/interop/to_arrow_device.cu b/cpp/src/interop/to_arrow_device.cu
index 1754d1493bd..737f8c7f625 100644
--- a/cpp/src/interop/to_arrow_device.cu
+++ b/cpp/src/interop/to_arrow_device.cu
@@ -14,11 +14,14 @@
* limitations under the License.
*/
+#include "to_arrow_utilities.hpp"
+
#include
#include
#include
#include
#include
+#include
#include
#include
#include
@@ -45,198 +48,10 @@
namespace cudf {
namespace detail {
namespace {
+
static constexpr int validity_buffer_idx = 0;
static constexpr int fixed_width_data_buffer_idx = 1;
-ArrowType id_to_arrow_type(cudf::type_id id)
-{
- switch (id) {
- case cudf::type_id::BOOL8: return NANOARROW_TYPE_BOOL;
- case cudf::type_id::INT8: return NANOARROW_TYPE_INT8;
- case cudf::type_id::INT16: return NANOARROW_TYPE_INT16;
- case cudf::type_id::INT32: return NANOARROW_TYPE_INT32;
- case cudf::type_id::INT64: return NANOARROW_TYPE_INT64;
- case cudf::type_id::UINT8: return NANOARROW_TYPE_UINT8;
- case cudf::type_id::UINT16: return NANOARROW_TYPE_UINT16;
- case cudf::type_id::UINT32: return NANOARROW_TYPE_UINT32;
- case cudf::type_id::UINT64: return NANOARROW_TYPE_UINT64;
- case cudf::type_id::FLOAT32: return NANOARROW_TYPE_FLOAT;
- case cudf::type_id::FLOAT64: return NANOARROW_TYPE_DOUBLE;
- case cudf::type_id::TIMESTAMP_DAYS: return NANOARROW_TYPE_DATE32;
- default: CUDF_FAIL("Unsupported type_id conversion to arrow type");
- }
-}
-
-struct dispatch_to_arrow_type {
- template ())>
- int operator()(column_view, column_metadata const&, ArrowSchema*)
- {
- CUDF_FAIL("Unsupported type for to_arrow_schema");
- }
-
- template ())>
- int operator()(column_view input_view, column_metadata const&, ArrowSchema* out)
- {
- cudf::type_id id = input_view.type().id();
- switch (id) {
- case cudf::type_id::TIMESTAMP_SECONDS:
- return ArrowSchemaSetTypeDateTime(
- out, NANOARROW_TYPE_TIMESTAMP, NANOARROW_TIME_UNIT_SECOND, nullptr);
- case cudf::type_id::TIMESTAMP_MILLISECONDS:
- return ArrowSchemaSetTypeDateTime(
- out, NANOARROW_TYPE_TIMESTAMP, NANOARROW_TIME_UNIT_MILLI, nullptr);
- case cudf::type_id::TIMESTAMP_MICROSECONDS:
- return ArrowSchemaSetTypeDateTime(
- out, NANOARROW_TYPE_TIMESTAMP, NANOARROW_TIME_UNIT_MICRO, nullptr);
- case cudf::type_id::TIMESTAMP_NANOSECONDS:
- return ArrowSchemaSetTypeDateTime(
- out, NANOARROW_TYPE_TIMESTAMP, NANOARROW_TIME_UNIT_NANO, nullptr);
- case cudf::type_id::DURATION_SECONDS:
- return ArrowSchemaSetTypeDateTime(
- out, NANOARROW_TYPE_DURATION, NANOARROW_TIME_UNIT_SECOND, nullptr);
- case cudf::type_id::DURATION_MILLISECONDS:
- return ArrowSchemaSetTypeDateTime(
- out, NANOARROW_TYPE_DURATION, NANOARROW_TIME_UNIT_MILLI, nullptr);
- case cudf::type_id::DURATION_MICROSECONDS:
- return ArrowSchemaSetTypeDateTime(
- out, NANOARROW_TYPE_DURATION, NANOARROW_TIME_UNIT_MICRO, nullptr);
- case cudf::type_id::DURATION_NANOSECONDS:
- return ArrowSchemaSetTypeDateTime(
- out, NANOARROW_TYPE_DURATION, NANOARROW_TIME_UNIT_NANO, nullptr);
- default: return ArrowSchemaSetType(out, id_to_arrow_type(id));
- }
- }
-};
-
-template
-int decimals_to_arrow(column_view input, ArrowSchema* out)
-{
- // Arrow doesn't support decimal32/decimal64 currently. decimal128
- // is the smallest that arrow supports besides float32/float64 so we
- // upcast to decimal128.
- return ArrowSchemaSetTypeDecimal(out,
- NANOARROW_TYPE_DECIMAL128,
- cudf::detail::max_precision(),
- -input.type().scale());
-}
-
-template <>
-int dispatch_to_arrow_type::operator()(column_view input,
- column_metadata const&,
- ArrowSchema* out)
-{
- using DeviceType = int32_t;
- return decimals_to_arrow(input, out);
-}
-
-template <>
-int dispatch_to_arrow_type::operator()(column_view input,
- column_metadata const&,
- ArrowSchema* out)
-{
- using DeviceType = int64_t;
- return decimals_to_arrow(input, out);
-}
-
-template <>
-int dispatch_to_arrow_type::operator()(column_view input,
- column_metadata const&,
- ArrowSchema* out)
-{
- using DeviceType = __int128_t;
- return decimals_to_arrow(input, out);
-}
-
-template <>
-int dispatch_to_arrow_type::operator()(column_view input,
- column_metadata const&,
- ArrowSchema* out)
-{
- return ArrowSchemaSetType(out, NANOARROW_TYPE_STRING);
-}
-
-// these forward declarations are needed due to the recursive calls to them
-// inside their definitions and in struct_vew for handling children
-template <>
-int dispatch_to_arrow_type::operator()(column_view input,
- column_metadata const& metadata,
- ArrowSchema* out);
-
-template <>
-int dispatch_to_arrow_type::operator()(column_view input,
- column_metadata const& metadata,
- ArrowSchema* out);
-
-template <>
-int dispatch_to_arrow_type::operator()(column_view input,
- column_metadata const& metadata,
- ArrowSchema* out)
-{
- CUDF_EXPECTS(metadata.children_meta.size() == static_cast(input.num_children()),
- "Number of field names and number of children doesn't match\n");
-
- NANOARROW_RETURN_NOT_OK(ArrowSchemaSetTypeStruct(out, input.num_children()));
- for (int i = 0; i < input.num_children(); ++i) {
- auto child = out->children[i];
- auto col = input.child(i);
- ArrowSchemaInit(child);
- NANOARROW_RETURN_NOT_OK(ArrowSchemaSetName(child, metadata.children_meta[i].name.c_str()));
-
- child->flags = col.has_nulls() ? ARROW_FLAG_NULLABLE : 0;
-
- if (col.type().id() == cudf::type_id::EMPTY) {
- NANOARROW_RETURN_NOT_OK(ArrowSchemaSetType(child, NANOARROW_TYPE_NA));
- continue;
- }
-
- NANOARROW_RETURN_NOT_OK(cudf::type_dispatcher(
- col.type(), detail::dispatch_to_arrow_type{}, col, metadata.children_meta[i], child));
- }
-
- return NANOARROW_OK;
-}
-
-template <>
-int dispatch_to_arrow_type::operator()(column_view input,
- column_metadata const& metadata,
- ArrowSchema* out)
-{
- NANOARROW_RETURN_NOT_OK(ArrowSchemaSetType(out, NANOARROW_TYPE_LIST));
- auto child = input.child(cudf::lists_column_view::child_column_index);
- ArrowSchemaInit(out->children[0]);
- if (child.type().id() == cudf::type_id::EMPTY) {
- return ArrowSchemaSetType(out->children[0], NANOARROW_TYPE_NA);
- }
- auto child_meta =
- metadata.children_meta.empty() ? column_metadata{"element"} : metadata.children_meta[0];
-
- out->flags = input.has_nulls() ? ARROW_FLAG_NULLABLE : 0;
- NANOARROW_RETURN_NOT_OK(ArrowSchemaSetName(out->children[0], child_meta.name.c_str()));
- out->children[0]->flags = child.has_nulls() ? ARROW_FLAG_NULLABLE : 0;
- return cudf::type_dispatcher(
- child.type(), detail::dispatch_to_arrow_type{}, child, child_meta, out->children[0]);
-}
-
-template <>
-int dispatch_to_arrow_type::operator()(column_view input,
- column_metadata const& metadata,
- ArrowSchema* out)
-{
- cudf::dictionary_column_view dview{input};
-
- NANOARROW_RETURN_NOT_OK(ArrowSchemaSetType(out, id_to_arrow_type(dview.indices().type().id())));
- NANOARROW_RETURN_NOT_OK(ArrowSchemaAllocateDictionary(out));
- ArrowSchemaInit(out->dictionary);
-
- auto dict_keys = dview.keys();
- return cudf::type_dispatcher(
- dict_keys.type(),
- detail::dispatch_to_arrow_type{},
- dict_keys,
- metadata.children_meta.empty() ? column_metadata{"keys"} : metadata.children_meta[0],
- out->dictionary);
-}
-
template
void device_buffer_finalize(ArrowBufferAllocator* allocator, uint8_t*, int64_t)
{
@@ -244,6 +59,14 @@ void device_buffer_finalize(ArrowBufferAllocator* allocator, uint8_t*, int64_t)
delete unique_buffer;
}
+int initialize_array(ArrowArray* arr, ArrowType storage_type, cudf::column_view column)
+{
+ NANOARROW_RETURN_NOT_OK(ArrowArrayInitFromType(arr, storage_type));
+ arr->length = column.size();
+ arr->null_count = column.null_count();
+ return NANOARROW_OK;
+}
+
template
struct is_device_scalar : public std::false_type {};
@@ -279,19 +102,26 @@ int set_buffer(std::unique_ptr device_buf, int64_t i, ArrowArray* out)
return NANOARROW_OK;
}
-int initialize_array(ArrowArray* arr, ArrowType storage_type, cudf::column const& column)
+ArrowType id_to_arrow_storage_type(cudf::type_id id)
{
- NANOARROW_RETURN_NOT_OK(ArrowArrayInitFromType(arr, storage_type));
- arr->length = column.size();
- arr->null_count = column.null_count();
- return NANOARROW_OK;
+ switch (id) {
+ case cudf::type_id::TIMESTAMP_SECONDS:
+ case cudf::type_id::TIMESTAMP_MILLISECONDS:
+ case cudf::type_id::TIMESTAMP_MICROSECONDS:
+ case cudf::type_id::TIMESTAMP_NANOSECONDS: return NANOARROW_TYPE_INT64;
+ case cudf::type_id::DURATION_SECONDS:
+ case cudf::type_id::DURATION_MILLISECONDS:
+ case cudf::type_id::DURATION_MICROSECONDS:
+ case cudf::type_id::DURATION_NANOSECONDS: return NANOARROW_TYPE_INT64;
+ default: return id_to_arrow_type(id);
+ }
}
struct dispatch_to_arrow_device {
template ())>
int operator()(cudf::column&&, rmm::cuda_stream_view, rmm::device_async_resource_ref, ArrowArray*)
{
- CUDF_FAIL("Unsupported type for to_arrow_device");
+ CUDF_FAIL("Unsupported type for to_arrow_device", cudf::data_type_error);
}
template ())>
@@ -302,38 +132,34 @@ struct dispatch_to_arrow_device {
{
nanoarrow::UniqueArray tmp;
- const ArrowType storage_type = [&] {
- switch (column.type().id()) {
- case cudf::type_id::TIMESTAMP_SECONDS:
- case cudf::type_id::TIMESTAMP_MILLISECONDS:
- case cudf::type_id::TIMESTAMP_MICROSECONDS:
- case cudf::type_id::TIMESTAMP_NANOSECONDS: return NANOARROW_TYPE_INT64;
- case cudf::type_id::DURATION_SECONDS:
- case cudf::type_id::DURATION_MILLISECONDS:
- case cudf::type_id::DURATION_MICROSECONDS:
- case cudf::type_id::DURATION_NANOSECONDS: return NANOARROW_TYPE_INT64;
- default: return id_to_arrow_type(column.type().id());
- }
- }();
+ auto const storage_type = id_to_arrow_storage_type(column.type().id());
NANOARROW_RETURN_NOT_OK(initialize_array(tmp.get(), storage_type, column));
auto contents = column.release();
+ NANOARROW_RETURN_NOT_OK(set_contents(contents, tmp.get()));
+
+ ArrowArrayMove(tmp.get(), out);
+ return NANOARROW_OK;
+ }
+
+ int set_null_mask(column::contents& contents, ArrowArray* out)
+ {
if (contents.null_mask) {
- NANOARROW_RETURN_NOT_OK(
- set_buffer(std::move(contents.null_mask), validity_buffer_idx, tmp.get()));
+ NANOARROW_RETURN_NOT_OK(set_buffer(std::move(contents.null_mask), validity_buffer_idx, out));
}
+ return NANOARROW_OK;
+ }
- NANOARROW_RETURN_NOT_OK(
- set_buffer(std::move(contents.data), fixed_width_data_buffer_idx, tmp.get()));
-
- ArrowArrayMove(tmp.get(), out);
+ int set_contents(column::contents& contents, ArrowArray* out)
+ {
+ NANOARROW_RETURN_NOT_OK(set_null_mask(contents, out));
+ NANOARROW_RETURN_NOT_OK(set_buffer(std::move(contents.data), fixed_width_data_buffer_idx, out));
return NANOARROW_OK;
}
};
template
-int decimals_to_arrow(cudf::column&& input,
- int32_t precision,
+int decimals_to_arrow(cudf::column_view input,
rmm::cuda_stream_view stream,
rmm::device_async_resource_ref mr,
ArrowArray* out)
@@ -341,42 +167,28 @@ int decimals_to_arrow(cudf::column&& input,
nanoarrow::UniqueArray tmp;
NANOARROW_RETURN_NOT_OK(initialize_array(tmp.get(), NANOARROW_TYPE_DECIMAL128, input));
- if constexpr (!std::is_same_v) {
- constexpr size_type BIT_WIDTH_RATIO = sizeof(__int128_t) / sizeof(DeviceType);
- auto buf =
- std::make_unique>(input.size() * BIT_WIDTH_RATIO, stream, mr);
-
- auto count = thrust::make_counting_iterator(0);
-
- thrust::for_each(rmm::exec_policy(stream, mr),
- count,
- count + input.size(),
- [in = input.view().begin(),
- out = buf->data(),
- BIT_WIDTH_RATIO] __device__(auto in_idx) {
- auto const out_idx = in_idx * BIT_WIDTH_RATIO;
- // the lowest order bits are the value, the remainder
- // simply matches the sign bit to satisfy the two's
- // complement integer representation of negative numbers.
- out[out_idx] = in[in_idx];
+ constexpr size_type BIT_WIDTH_RATIO = sizeof(__int128_t) / sizeof(DeviceType);
+ auto buf =
+ std::make_unique>(input.size() * BIT_WIDTH_RATIO, stream, mr);
+
+ auto count = thrust::counting_iterator(0);
+
+ thrust::for_each(
+ rmm::exec_policy(stream, mr),
+ count,
+ count + input.size(),
+ [in = input.begin(), out = buf->data(), BIT_WIDTH_RATIO] __device__(auto in_idx) {
+ auto const out_idx = in_idx * BIT_WIDTH_RATIO;
+ // the lowest order bits are the value, the remainder
+ // simply matches the sign bit to satisfy the two's
+ // complement integer representation of negative numbers.
+ out[out_idx] = in[in_idx];
#pragma unroll BIT_WIDTH_RATIO - 1
- for (auto i = 1; i < BIT_WIDTH_RATIO; ++i) {
- out[out_idx + i] = in[in_idx] < 0 ? -1 : 0;
- }
- });
- NANOARROW_RETURN_NOT_OK(set_buffer(std::move(buf), fixed_width_data_buffer_idx, tmp.get()));
- }
-
- auto contents = input.release();
- if (contents.null_mask) {
- NANOARROW_RETURN_NOT_OK(
- set_buffer(std::move(contents.null_mask), validity_buffer_idx, tmp.get()));
- }
-
- if constexpr (std::is_same_v) {
- NANOARROW_RETURN_NOT_OK(
- set_buffer(std::move(contents.data), fixed_width_data_buffer_idx, tmp.get()));
- }
+ for (auto i = 1; i < BIT_WIDTH_RATIO; ++i) {
+ out[out_idx + i] = in[in_idx] < 0 ? -1 : 0;
+ }
+ });
+ NANOARROW_RETURN_NOT_OK(set_buffer(std::move(buf), fixed_width_data_buffer_idx, tmp.get()));
ArrowArrayMove(tmp.get(), out);
return NANOARROW_OK;
@@ -389,8 +201,10 @@ int dispatch_to_arrow_device::operator()(cudf::column&& colu
ArrowArray* out)
{
using DeviceType = int32_t;
- return decimals_to_arrow(
- std::move(column), cudf::detail::max_precision(), stream, mr, out);
+ NANOARROW_RETURN_NOT_OK(decimals_to_arrow(column.view(), stream, mr, out));
+ auto contents = column.release();
+ NANOARROW_RETURN_NOT_OK(set_null_mask(contents, out));
+ return NANOARROW_OK;
}
template <>
@@ -400,8 +214,10 @@ int dispatch_to_arrow_device::operator()(cudf::column&& colu
ArrowArray* out)
{
using DeviceType = int64_t;
- return decimals_to_arrow(
- std::move(column), cudf::detail::max_precision(), stream, mr, out);
+ NANOARROW_RETURN_NOT_OK(decimals_to_arrow(column.view(), stream, mr, out));
+ auto contents = column.release();
+ NANOARROW_RETURN_NOT_OK(set_null_mask(contents, out));
+ return NANOARROW_OK;
}
template <>
@@ -410,9 +226,12 @@ int dispatch_to_arrow_device::operator()(cudf::column&& col
rmm::device_async_resource_ref mr,
ArrowArray* out)
{
- using DeviceType = __int128_t;
- return decimals_to_arrow(
- std::move(column), cudf::detail::max_precision(), stream, mr, out);
+ nanoarrow::UniqueArray tmp;
+ NANOARROW_RETURN_NOT_OK(initialize_array(tmp.get(), NANOARROW_TYPE_DECIMAL128, column));
+ auto contents = column.release();
+ NANOARROW_RETURN_NOT_OK(set_contents(contents, tmp.get()));
+ ArrowArrayMove(tmp.get(), out);
+ return NANOARROW_OK;
}
template <>
@@ -426,10 +245,7 @@ int dispatch_to_arrow_device::operator()(cudf::column&& column,
auto bitmask = bools_to_mask(column.view(), stream, mr);
auto contents = column.release();
- if (contents.null_mask) {
- NANOARROW_RETURN_NOT_OK(
- set_buffer(std::move(contents.null_mask), validity_buffer_idx, tmp.get()));
- }
+ NANOARROW_RETURN_NOT_OK(set_null_mask(contents, tmp.get()));
NANOARROW_RETURN_NOT_OK(
set_buffer(std::move(bitmask.first), fixed_width_data_buffer_idx, tmp.get()));
@@ -459,10 +275,7 @@ int dispatch_to_arrow_device::operator()(cudf::column&& colum
}
auto contents = column.release();
- if (contents.null_mask) {
- NANOARROW_RETURN_NOT_OK(
- set_buffer(std::move(contents.null_mask), validity_buffer_idx, tmp.get()));
- }
+ NANOARROW_RETURN_NOT_OK(set_null_mask(contents, tmp.get()));
auto offsets_contents =
contents.children[cudf::strings_column_view::offsets_column_index]->release();
@@ -496,22 +309,13 @@ int dispatch_to_arrow_device::operator()(cudf::column&& colum
NANOARROW_RETURN_NOT_OK(ArrowArrayAllocateChildren(tmp.get(), column.num_children()));
auto contents = column.release();
- if (contents.null_mask) {
- NANOARROW_RETURN_NOT_OK(
- set_buffer(std::move(contents.null_mask), validity_buffer_idx, tmp.get()));
- }
+ NANOARROW_RETURN_NOT_OK(set_null_mask(contents, tmp.get()));
for (size_t i = 0; i < size_t(tmp->n_children); ++i) {
ArrowArray* child_ptr = tmp->children[i];
auto& child = contents.children[i];
- if (child->type().id() == cudf::type_id::EMPTY) {
- NANOARROW_RETURN_NOT_OK(ArrowArrayInitFromType(child_ptr, NANOARROW_TYPE_NA));
- child_ptr->length = child->size();
- child_ptr->null_count = child->size();
- } else {
- NANOARROW_RETURN_NOT_OK(cudf::type_dispatcher(
- child->type(), dispatch_to_arrow_device{}, std::move(*child), stream, mr, child_ptr));
- }
+ NANOARROW_RETURN_NOT_OK(cudf::type_dispatcher(
+ child->type(), dispatch_to_arrow_device{}, std::move(*child), stream, mr, child_ptr));
}
ArrowArrayMove(tmp.get(), out);
@@ -529,24 +333,15 @@ int dispatch_to_arrow_device::operator()(cudf::column&& column,
NANOARROW_RETURN_NOT_OK(ArrowArrayAllocateChildren(tmp.get(), 1));
auto contents = column.release();
- if (contents.null_mask) {
- NANOARROW_RETURN_NOT_OK(
- set_buffer(std::move(contents.null_mask), validity_buffer_idx, tmp.get()));
- }
+ NANOARROW_RETURN_NOT_OK(set_null_mask(contents, tmp.get()));
auto offsets_contents =
contents.children[cudf::lists_column_view::offsets_column_index]->release();
NANOARROW_RETURN_NOT_OK(set_buffer(std::move(offsets_contents.data), 1, tmp.get()));
auto& child = contents.children[cudf::lists_column_view::child_column_index];
- if (child->type().id() == cudf::type_id::EMPTY) {
- NANOARROW_RETURN_NOT_OK(ArrowArrayInitFromType(tmp->children[0], NANOARROW_TYPE_NA));
- tmp->children[0]->length = 0;
- tmp->children[0]->null_count = 0;
- } else {
- NANOARROW_RETURN_NOT_OK(cudf::type_dispatcher(
- child->type(), dispatch_to_arrow_device{}, std::move(*child), stream, mr, tmp->children[0]));
- }
+ NANOARROW_RETURN_NOT_OK(cudf::type_dispatcher(
+ child->type(), dispatch_to_arrow_device{}, std::move(*child), stream, mr, tmp->children[0]));
ArrowArrayMove(tmp.get(), out);
return NANOARROW_OK;
@@ -566,10 +361,7 @@ int dispatch_to_arrow_device::operator()(cudf::column&& colu
NANOARROW_RETURN_NOT_OK(ArrowArrayAllocateDictionary(tmp.get()));
auto contents = column.release();
- if (contents.null_mask) {
- NANOARROW_RETURN_NOT_OK(
- set_buffer(std::move(contents.null_mask), validity_buffer_idx, tmp.get()));
- }
+ NANOARROW_RETURN_NOT_OK(set_null_mask(contents, tmp.get()));
auto indices_contents =
contents.children[cudf::dictionary_column_view::indices_column_index]->release();
@@ -584,6 +376,205 @@ int dispatch_to_arrow_device::operator()(cudf::column&& colu
return NANOARROW_OK;
}
+struct dispatch_to_arrow_device_view {
+ cudf::column_view column;
+ rmm::cuda_stream_view stream;
+ rmm::device_async_resource_ref mr;
+
+ template ())>
+ int operator()(ArrowArray*) const
+ {
+ CUDF_FAIL("Unsupported type for to_arrow_device", cudf::data_type_error);
+ }
+
+ template ())>
+ int operator()(ArrowArray* out) const
+ {
+ nanoarrow::UniqueArray tmp;
+
+ auto const storage_type = id_to_arrow_storage_type(column.type().id());
+ NANOARROW_RETURN_NOT_OK(initialize_array(tmp.get(), storage_type, column));
+ NANOARROW_RETURN_NOT_OK(set_null_mask(column, tmp.get()));
+ NANOARROW_RETURN_NOT_OK(set_view_to_buffer(column, tmp.get()));
+
+ ArrowArrayMove(tmp.get(), out);
+ return NANOARROW_OK;
+ }
+
+ int set_buffer_view(void const* in_ptr, size_t size, int64_t i, ArrowArray* out) const
+ {
+ ArrowBuffer* buf = ArrowArrayBuffer(out, i);
+ buf->size_bytes = size;
+
+ // reset the deallocator to do nothing since this is a non-owning view
+ NANOARROW_RETURN_NOT_OK(ArrowBufferSetAllocator(
+ buf, ArrowBufferDeallocator([](ArrowBufferAllocator*, uint8_t*, int64_t) {}, nullptr)));
+
+ buf->data = const_cast(reinterpret_cast(in_ptr));
+ return NANOARROW_OK;
+ }
+
+ int set_null_mask(column_view column, ArrowArray* out) const
+ {
+ if (column.nullable()) {
+ NANOARROW_RETURN_NOT_OK(set_buffer_view(column.null_mask(),
+ bitmask_allocation_size_bytes(column.size()),
+ validity_buffer_idx,
+ out));
+ }
+ return NANOARROW_OK;
+ }
+
+ int set_view_to_buffer(column_view column, ArrowArray* out) const
+ {
+ auto const type_size = cudf::size_of(column.type());
+ return set_buffer_view(column.head() + (type_size * column.offset()),
+ column.size() * type_size,
+ fixed_width_data_buffer_idx,
+ out);
+ }
+};
+
+template <>
+int dispatch_to_arrow_device_view::operator()(ArrowArray* out) const
+{
+ using DeviceType = int32_t;
+ NANOARROW_RETURN_NOT_OK(decimals_to_arrow(column, stream, mr, out));
+ NANOARROW_RETURN_NOT_OK(set_null_mask(column, out));
+ return NANOARROW_OK;
+}
+
+template <>
+int dispatch_to_arrow_device_view::operator()(ArrowArray* out) const
+{
+ using DeviceType = int64_t;
+ NANOARROW_RETURN_NOT_OK(decimals_to_arrow(column, stream, mr, out));
+ NANOARROW_RETURN_NOT_OK(set_null_mask(column, out));
+ return NANOARROW_OK;
+}
+
+template <>
+int dispatch_to_arrow_device_view::operator()(ArrowArray* out) const
+{
+ nanoarrow::UniqueArray tmp;
+
+ NANOARROW_RETURN_NOT_OK(initialize_array(tmp.get(), NANOARROW_TYPE_DECIMAL128, column));
+ NANOARROW_RETURN_NOT_OK(set_null_mask(column, tmp.get()));
+ NANOARROW_RETURN_NOT_OK(set_view_to_buffer(column, tmp.get()));
+
+ ArrowArrayMove(tmp.get(), out);
+ return NANOARROW_OK;
+}
+
+template <>
+int dispatch_to_arrow_device_view::operator()(ArrowArray* out) const
+{
+ nanoarrow::UniqueArray tmp;
+ NANOARROW_RETURN_NOT_OK(initialize_array(tmp.get(), NANOARROW_TYPE_BOOL, column));
+
+ auto bitmask = bools_to_mask(column, stream, mr);
+ NANOARROW_RETURN_NOT_OK(
+ set_buffer(std::move(bitmask.first), fixed_width_data_buffer_idx, tmp.get()));
+ NANOARROW_RETURN_NOT_OK(set_null_mask(column, tmp.get()));
+
+ ArrowArrayMove(tmp.get(), out);
+ return NANOARROW_OK;
+}
+
+template <>
+int dispatch_to_arrow_device_view::operator()(ArrowArray* out) const
+{
+ nanoarrow::UniqueArray tmp;
+ NANOARROW_RETURN_NOT_OK(initialize_array(tmp.get(), NANOARROW_TYPE_STRING, column));
+
+ if (column.size() == 0) {
+ // https://github.com/rapidsai/cudf/pull/15047#discussion_r1546528552
+ auto zero = std::make_unique>(0, stream, mr);
+ NANOARROW_RETURN_NOT_OK(set_buffer(std::move(zero), fixed_width_data_buffer_idx, tmp.get()));
+ ArrowArrayMove(tmp.get(), out);
+ return NANOARROW_OK;
+ }
+
+ NANOARROW_RETURN_NOT_OK(set_null_mask(column, tmp.get()));
+
+ auto const scv = cudf::strings_column_view(column);
+ NANOARROW_RETURN_NOT_OK(set_view_to_buffer(scv.offsets(), tmp.get()));
+ NANOARROW_RETURN_NOT_OK(
+ set_buffer_view(scv.chars_begin(stream), scv.chars_size(stream), 2, tmp.get()));
+
+ ArrowArrayMove(tmp.get(), out);
+ return NANOARROW_OK;
+}
+
+template <>
+int dispatch_to_arrow_device_view::operator()(ArrowArray* out) const;
+
+template <>
+int dispatch_to_arrow_device_view::operator()(ArrowArray* out) const;
+
+template <>
+int dispatch_to_arrow_device_view::operator()(ArrowArray* out) const
+{
+ nanoarrow::UniqueArray tmp;
+
+ NANOARROW_RETURN_NOT_OK(initialize_array(tmp.get(), NANOARROW_TYPE_STRUCT, column));
+ NANOARROW_RETURN_NOT_OK(ArrowArrayAllocateChildren(tmp.get(), column.num_children()));
+ NANOARROW_RETURN_NOT_OK(set_null_mask(column, tmp.get()));
+
+ for (size_t i = 0; i < size_t(tmp->n_children); ++i) {
+ ArrowArray* child_ptr = tmp->children[i];
+ auto const child = column.child(i);
+ NANOARROW_RETURN_NOT_OK(cudf::type_dispatcher(
+ child.type(), dispatch_to_arrow_device_view{child, stream, mr}, child_ptr));
+ }
+
+ ArrowArrayMove(tmp.get(), out);
+ return NANOARROW_OK;
+}
+
+template <>
+int dispatch_to_arrow_device_view::operator()(ArrowArray* out) const
+{
+ nanoarrow::UniqueArray tmp;
+
+ NANOARROW_RETURN_NOT_OK(initialize_array(tmp.get(), NANOARROW_TYPE_LIST, column));
+ NANOARROW_RETURN_NOT_OK(ArrowArrayAllocateChildren(tmp.get(), 1));
+ NANOARROW_RETURN_NOT_OK(set_null_mask(column, tmp.get()));
+
+ auto const lcv = cudf::lists_column_view(column);
+ NANOARROW_RETURN_NOT_OK(set_view_to_buffer(lcv.offsets(), tmp.get()));
+
+ auto child = lcv.child();
+ NANOARROW_RETURN_NOT_OK(cudf::type_dispatcher(
+ child.type(), dispatch_to_arrow_device_view{child, stream, mr}, tmp->children[0]));
+
+ ArrowArrayMove(tmp.get(), out);
+ return NANOARROW_OK;
+}
+
+template <>
+int dispatch_to_arrow_device_view::operator()(ArrowArray* out) const
+{
+ nanoarrow::UniqueArray tmp;
+
+ NANOARROW_RETURN_NOT_OK(initialize_array(
+ tmp.get(),
+ id_to_arrow_type(column.child(cudf::dictionary_column_view::indices_column_index).type().id()),
+ column));
+ NANOARROW_RETURN_NOT_OK(ArrowArrayAllocateDictionary(tmp.get()));
+ NANOARROW_RETURN_NOT_OK(set_null_mask(column, tmp.get()));
+
+ auto const dcv = cudf::dictionary_column_view(column);
+ NANOARROW_RETURN_NOT_OK(set_view_to_buffer(dcv.indices(), tmp.get()));
+
+ auto keys = dcv.keys();
+ NANOARROW_RETURN_NOT_OK(cudf::type_dispatcher(
+ keys.type(), dispatch_to_arrow_device_view{keys, stream, mr}, tmp->dictionary));
+
+ ArrowArrayMove(tmp.get(), out);
+ return NANOARROW_OK;
+}
+
struct ArrowDeviceArrayPrivateData {
ArrowArray parent;
cudaEvent_t sync_event;
@@ -592,49 +583,38 @@ struct ArrowDeviceArrayPrivateData {
void ArrowDeviceArrayRelease(ArrowArray* array)
{
auto private_data = reinterpret_cast(array->private_data);
- cudaEventDestroy(private_data->sync_event);
+ RMM_ASSERT_CUDA_SUCCESS(cudaEventDestroy(private_data->sync_event));
ArrowArrayRelease(&private_data->parent);
delete private_data;
array->release = nullptr;
}
-} // namespace
-} // namespace detail
-
-unique_schema_t to_arrow_schema(cudf::table_view const& input,
- cudf::host_span metadata)
+unique_device_array_t create_device_array(nanoarrow::UniqueArray&& out,
+ rmm::cuda_stream_view stream)
{
- CUDF_EXPECTS((metadata.size() == static_cast(input.num_columns())),
- "columns' metadata should be equal to the number of columns in table");
-
- nanoarrow::UniqueSchema result;
- ArrowSchemaInit(result.get());
- NANOARROW_THROW_NOT_OK(ArrowSchemaSetTypeStruct(result.get(), input.num_columns()));
-
- for (int i = 0; i < input.num_columns(); ++i) {
- auto child = result->children[i];
- auto col = input.column(i);
- ArrowSchemaInit(child);
- NANOARROW_THROW_NOT_OK(ArrowSchemaSetName(child, metadata[i].name.c_str()));
- child->flags = col.has_nulls() ? ARROW_FLAG_NULLABLE : 0;
-
- if (col.type().id() == cudf::type_id::EMPTY) {
- NANOARROW_THROW_NOT_OK(ArrowSchemaSetType(child, NANOARROW_TYPE_NA));
- continue;
- }
+ NANOARROW_THROW_NOT_OK(
+ ArrowArrayFinishBuilding(out.get(), NANOARROW_VALIDATION_LEVEL_MINIMAL, nullptr));
- NANOARROW_THROW_NOT_OK(
- cudf::type_dispatcher(col.type(), detail::dispatch_to_arrow_type{}, col, metadata[i], child));
- }
+ auto private_data = std::make_unique();
+ CUDF_CUDA_TRY(cudaEventCreate(&private_data->sync_event));
+ CUDF_CUDA_TRY(cudaEventRecord(private_data->sync_event, stream.value()));
- unique_schema_t out(new ArrowSchema, [](ArrowSchema* schema) {
- if (schema->release != nullptr) { ArrowSchemaRelease(schema); }
- delete schema;
+ ArrowArrayMove(out.get(), &private_data->parent);
+ unique_device_array_t result(new ArrowDeviceArray, [](ArrowDeviceArray* arr) {
+ if (arr->array.release != nullptr) { ArrowArrayRelease(&arr->array); }
+ delete arr;
});
- result.move(out.get());
- return out;
+ result->device_id = rmm::get_current_cuda_device().value();
+ result->device_type = ARROW_DEVICE_CUDA;
+ result->sync_event = private_data->sync_event;
+ result->array = private_data->parent; // makes a shallow copy
+ result->array.private_data = private_data.release();
+ result->array.release = &detail::ArrowDeviceArrayRelease;
+ return result;
}
+} // namespace
+
unique_device_array_t to_arrow_device(cudf::table&& table,
rmm::cuda_stream_view stream,
rmm::device_async_resource_ref mr)
@@ -650,76 +630,89 @@ unique_device_array_t to_arrow_device(cudf::table&& table,
for (size_t i = 0; i < cols.size(); ++i) {
auto child = tmp->children[i];
auto col = cols[i].get();
-
- if (col->type().id() == cudf::type_id::EMPTY) {
- NANOARROW_THROW_NOT_OK(ArrowArrayInitFromType(child, NANOARROW_TYPE_NA));
- child->length = col->size();
- child->null_count = col->size();
- continue;
- }
-
NANOARROW_THROW_NOT_OK(cudf::type_dispatcher(
col->type(), detail::dispatch_to_arrow_device{}, std::move(*col), stream, mr, child));
}
- NANOARROW_THROW_NOT_OK(
- ArrowArrayFinishBuilding(tmp.get(), NANOARROW_VALIDATION_LEVEL_MINIMAL, nullptr));
+ return create_device_array(std::move(tmp), stream);
+}
- auto private_data = std::make_unique();
- cudaEventCreate(&private_data->sync_event);
+unique_device_array_t to_arrow_device(cudf::column&& col,
+ rmm::cuda_stream_view stream,
+ rmm::device_async_resource_ref mr)
+{
+ nanoarrow::UniqueArray tmp;
- auto status = cudaEventRecord(private_data->sync_event, stream);
- if (status != cudaSuccess) { CUDF_FAIL("could not create event to sync on"); }
+ NANOARROW_THROW_NOT_OK(cudf::type_dispatcher(
+ col.type(), detail::dispatch_to_arrow_device{}, std::move(col), stream, mr, tmp.get()));
- ArrowArrayMove(tmp.get(), &private_data->parent);
- unique_device_array_t result(new ArrowDeviceArray, [](ArrowDeviceArray* arr) {
- if (arr->array.release != nullptr) { ArrowArrayRelease(&arr->array); }
- delete arr;
- });
- result->device_id = rmm::get_current_cuda_device().value();
- result->device_type = ARROW_DEVICE_CUDA;
- result->sync_event = &private_data->sync_event;
- result->array = private_data->parent;
- result->array.private_data = private_data.release();
- result->array.release = &detail::ArrowDeviceArrayRelease;
- return result;
+ return create_device_array(std::move(tmp), stream);
}
-unique_device_array_t to_arrow_device(cudf::column&& col,
+unique_device_array_t to_arrow_device(cudf::table_view const& table,
rmm::cuda_stream_view stream,
rmm::device_async_resource_ref mr)
{
nanoarrow::UniqueArray tmp;
- if (col.type().id() == cudf::type_id::EMPTY) {
- NANOARROW_THROW_NOT_OK(ArrowArrayInitFromType(tmp.get(), NANOARROW_TYPE_NA));
- tmp->length = col.size();
- tmp->null_count = col.size();
+ NANOARROW_THROW_NOT_OK(ArrowArrayInitFromType(tmp.get(), NANOARROW_TYPE_STRUCT));
+
+ NANOARROW_THROW_NOT_OK(ArrowArrayAllocateChildren(tmp.get(), table.num_columns()));
+ tmp->length = table.num_rows();
+ tmp->null_count = 0;
+
+ for (cudf::size_type i = 0; i < table.num_columns(); ++i) {
+ auto child = tmp->children[i];
+ auto col = table.column(i);
+ NANOARROW_THROW_NOT_OK(cudf::type_dispatcher(
+ col.type(), detail::dispatch_to_arrow_device_view{col, stream, mr}, child));
}
+ return create_device_array(std::move(tmp), stream);
+}
+
+unique_device_array_t to_arrow_device(cudf::column_view const& col,
+ rmm::cuda_stream_view stream,
+ rmm::device_async_resource_ref mr)
+{
+ nanoarrow::UniqueArray tmp;
+
NANOARROW_THROW_NOT_OK(cudf::type_dispatcher(
- col.type(), detail::dispatch_to_arrow_device{}, std::move(col), stream, mr, tmp.get()));
+ col.type(), detail::dispatch_to_arrow_device_view{col, stream, mr}, tmp.get()));
- NANOARROW_THROW_NOT_OK(
- ArrowArrayFinishBuilding(tmp.get(), NANOARROW_VALIDATION_LEVEL_MINIMAL, nullptr));
+ return create_device_array(std::move(tmp), stream);
+}
- auto private_data = std::make_unique();
- cudaEventCreate(&private_data->sync_event);
+} // namespace detail
- auto status = cudaEventRecord(private_data->sync_event, stream);
- if (status != cudaSuccess) { CUDF_FAIL("could not create event to sync on"); }
+unique_device_array_t to_arrow_device(cudf::table&& table,
+ rmm::cuda_stream_view stream,
+ rmm::device_async_resource_ref mr)
+{
+ CUDF_FUNC_RANGE();
+ return detail::to_arrow_device(std::move(table), stream, mr);
+}
- ArrowArrayMove(tmp.get(), &private_data->parent);
- unique_device_array_t result(new ArrowDeviceArray, [](ArrowDeviceArray* arr) {
- if (arr->array.release != nullptr) { ArrowArrayRelease(&arr->array); }
- delete arr;
- });
- result->device_id = rmm::get_current_cuda_device().value();
- result->device_type = ARROW_DEVICE_CUDA;
- result->sync_event = &private_data->sync_event;
- result->array = private_data->parent;
- result->array.private_data = private_data.release();
- result->array.release = &detail::ArrowDeviceArrayRelease;
- return result;
+unique_device_array_t to_arrow_device(cudf::column&& col,
+ rmm::cuda_stream_view stream,
+ rmm::device_async_resource_ref mr)
+{
+ CUDF_FUNC_RANGE();
+ return detail::to_arrow_device(std::move(col), stream, mr);
+}
+
+unique_device_array_t to_arrow_device(cudf::table_view const& table,
+ rmm::cuda_stream_view stream,
+ rmm::device_async_resource_ref mr)
+{
+ CUDF_FUNC_RANGE();
+ return detail::to_arrow_device(table, stream, mr);
}
+unique_device_array_t to_arrow_device(cudf::column_view const& col,
+ rmm::cuda_stream_view stream,
+ rmm::device_async_resource_ref mr)
+{
+ CUDF_FUNC_RANGE();
+ return detail::to_arrow_device(col, stream, mr);
+}
} // namespace cudf
diff --git a/cpp/src/interop/to_arrow_schema.cpp b/cpp/src/interop/to_arrow_schema.cpp
new file mode 100644
index 00000000000..6f943593dce
--- /dev/null
+++ b/cpp/src/interop/to_arrow_schema.cpp
@@ -0,0 +1,231 @@
+/*
+ * Copyright (c) 2024, NVIDIA CORPORATION.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "to_arrow_utilities.hpp"
+
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+#include
+
+#include
+#include
+
+namespace cudf {
+namespace detail {
+namespace {
+
+struct dispatch_to_arrow_type {
+ template ())>
+ int operator()(column_view, column_metadata const&, ArrowSchema*)
+ {
+ CUDF_FAIL("Unsupported type for to_arrow_schema", cudf::data_type_error);
+ }
+
+ template ())>
+ int operator()(column_view input_view, column_metadata const&, ArrowSchema* out)
+ {
+ cudf::type_id id = input_view.type().id();
+ switch (id) {
+ case cudf::type_id::TIMESTAMP_SECONDS:
+ return ArrowSchemaSetTypeDateTime(
+ out, NANOARROW_TYPE_TIMESTAMP, NANOARROW_TIME_UNIT_SECOND, nullptr);
+ case cudf::type_id::TIMESTAMP_MILLISECONDS:
+ return ArrowSchemaSetTypeDateTime(
+ out, NANOARROW_TYPE_TIMESTAMP, NANOARROW_TIME_UNIT_MILLI, nullptr);
+ case cudf::type_id::TIMESTAMP_MICROSECONDS:
+ return ArrowSchemaSetTypeDateTime(
+ out, NANOARROW_TYPE_TIMESTAMP, NANOARROW_TIME_UNIT_MICRO, nullptr);
+ case cudf::type_id::TIMESTAMP_NANOSECONDS:
+ return ArrowSchemaSetTypeDateTime(
+ out, NANOARROW_TYPE_TIMESTAMP, NANOARROW_TIME_UNIT_NANO, nullptr);
+ case cudf::type_id::DURATION_SECONDS:
+ return ArrowSchemaSetTypeDateTime(
+ out, NANOARROW_TYPE_DURATION, NANOARROW_TIME_UNIT_SECOND, nullptr);
+ case cudf::type_id::DURATION_MILLISECONDS:
+ return ArrowSchemaSetTypeDateTime(
+ out, NANOARROW_TYPE_DURATION, NANOARROW_TIME_UNIT_MILLI, nullptr);
+ case cudf::type_id::DURATION_MICROSECONDS:
+ return ArrowSchemaSetTypeDateTime(
+ out, NANOARROW_TYPE_DURATION, NANOARROW_TIME_UNIT_MICRO, nullptr);
+ case cudf::type_id::DURATION_NANOSECONDS:
+ return ArrowSchemaSetTypeDateTime(
+ out, NANOARROW_TYPE_DURATION, NANOARROW_TIME_UNIT_NANO, nullptr);
+ default: return ArrowSchemaSetType(out, id_to_arrow_type(id));
+ }
+ }
+};
+
+template
+int decimals_to_arrow(column_view input, ArrowSchema* out)
+{
+ // Arrow doesn't support decimal32/decimal64 currently. decimal128
+ // is the smallest that arrow supports besides float32/float64 so we
+ // upcast to decimal128.
+ return ArrowSchemaSetTypeDecimal(out,
+ NANOARROW_TYPE_DECIMAL128,
+ cudf::detail::max_precision(),
+ -input.type().scale());
+}
+
+template <>
+int dispatch_to_arrow_type::operator()(column_view input,
+ column_metadata const&,
+ ArrowSchema* out)
+{
+ using DeviceType = int32_t;
+ return decimals_to_arrow(input, out);
+}
+
+template <>
+int dispatch_to_arrow_type::operator()(column_view input,
+ column_metadata const&,
+ ArrowSchema* out)
+{
+ using DeviceType = int64_t;
+ return decimals_to_arrow(input, out);
+}
+
+template <>
+int dispatch_to_arrow_type::operator()(column_view input,
+ column_metadata const&,
+ ArrowSchema* out)
+{
+ using DeviceType = __int128_t;
+ return decimals_to_arrow(input, out);
+}
+
+template <>
+int dispatch_to_arrow_type::operator()(column_view input,
+ column_metadata const&,
+ ArrowSchema* out)
+{
+ return ArrowSchemaSetType(out, NANOARROW_TYPE_STRING);
+}
+
+// these forward declarations are needed due to the recursive calls to them
+// inside their definitions and in struct_vew for handling children
+template <>
+int dispatch_to_arrow_type::operator()(column_view input,
+ column_metadata const& metadata,
+ ArrowSchema* out);
+
+template <>
+int dispatch_to_arrow_type::operator()(column_view input,
+ column_metadata const& metadata,
+ ArrowSchema* out);
+
+template <>
+int dispatch_to_arrow_type::operator()(column_view input,
+ column_metadata const& metadata,
+ ArrowSchema* out)
+{
+ CUDF_EXPECTS(metadata.children_meta.size() == static_cast(input.num_children()),
+ "Number of field names and number of children doesn't match\n");
+
+ NANOARROW_RETURN_NOT_OK(ArrowSchemaSetTypeStruct(out, input.num_children()));
+ for (int i = 0; i < input.num_children(); ++i) {
+ auto child = out->children[i];
+ auto col = input.child(i);
+ ArrowSchemaInit(child);
+ NANOARROW_RETURN_NOT_OK(ArrowSchemaSetName(child, metadata.children_meta[i].name.c_str()));
+
+ child->flags = col.has_nulls() ? ARROW_FLAG_NULLABLE : 0;
+
+ NANOARROW_RETURN_NOT_OK(cudf::type_dispatcher(
+ col.type(), detail::dispatch_to_arrow_type{}, col, metadata.children_meta[i], child));
+ }
+
+ return NANOARROW_OK;
+}
+
+template <>
+int dispatch_to_arrow_type::operator()(column_view input,
+ column_metadata const& metadata,
+ ArrowSchema* out)
+{
+ NANOARROW_RETURN_NOT_OK(ArrowSchemaSetType(out, NANOARROW_TYPE_LIST));
+ auto child = input.child(cudf::lists_column_view::child_column_index);
+ ArrowSchemaInit(out->children[0]);
+ auto child_meta =
+ metadata.children_meta.empty() ? column_metadata{"element"} : metadata.children_meta[0];
+
+ out->flags = input.has_nulls() ? ARROW_FLAG_NULLABLE : 0;
+ NANOARROW_RETURN_NOT_OK(ArrowSchemaSetName(out->children[0], child_meta.name.c_str()));
+ out->children[0]->flags = child.has_nulls() ? ARROW_FLAG_NULLABLE : 0;
+ return cudf::type_dispatcher(
+ child.type(), detail::dispatch_to_arrow_type{}, child, child_meta, out->children[0]);
+}
+
+template <>
+int dispatch_to_arrow_type::operator()(column_view input,
+ column_metadata const& metadata,
+ ArrowSchema* out)
+{
+ cudf::dictionary_column_view dview{input};
+
+ NANOARROW_RETURN_NOT_OK(ArrowSchemaSetType(out, id_to_arrow_type(dview.indices().type().id())));
+ NANOARROW_RETURN_NOT_OK(ArrowSchemaAllocateDictionary(out));
+ ArrowSchemaInit(out->dictionary);
+
+ auto dict_keys = dview.keys();
+ return cudf::type_dispatcher(
+ dict_keys.type(),
+ detail::dispatch_to_arrow_type{},
+ dict_keys,
+ metadata.children_meta.empty() ? column_metadata{"keys"} : metadata.children_meta[0],
+ out->dictionary);
+}
+} // namespace
+} // namespace detail
+
+unique_schema_t to_arrow_schema(cudf::table_view const& input,
+ cudf::host_span metadata)
+{
+ CUDF_EXPECTS((metadata.size() == static_cast(input.num_columns())),
+ "columns' metadata should be equal to the number of columns in table");
+
+ nanoarrow::UniqueSchema result;
+ ArrowSchemaInit(result.get());
+ NANOARROW_THROW_NOT_OK(ArrowSchemaSetTypeStruct(result.get(), input.num_columns()));
+
+ for (int i = 0; i < input.num_columns(); ++i) {
+ auto child = result->children[i];
+ auto col = input.column(i);
+ ArrowSchemaInit(child);
+ NANOARROW_THROW_NOT_OK(ArrowSchemaSetName(child, metadata[i].name.c_str()));
+ child->flags = col.has_nulls() ? ARROW_FLAG_NULLABLE : 0;
+
+ NANOARROW_THROW_NOT_OK(
+ cudf::type_dispatcher(col.type(), detail::dispatch_to_arrow_type{}, col, metadata[i], child));
+ }
+
+ unique_schema_t out(new ArrowSchema, [](ArrowSchema* schema) {
+ if (schema->release != nullptr) { ArrowSchemaRelease(schema); }
+ delete schema;
+ });
+ result.move(out.get());
+ return out;
+}
+
+} // namespace cudf
diff --git a/cpp/src/interop/to_arrow_utilities.cpp b/cpp/src/interop/to_arrow_utilities.cpp
new file mode 100644
index 00000000000..04d17847273
--- /dev/null
+++ b/cpp/src/interop/to_arrow_utilities.cpp
@@ -0,0 +1,44 @@
+/*
+ * Copyright (c) 2024, NVIDIA CORPORATION.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "to_arrow_utilities.hpp"
+
+#include
+
+namespace cudf {
+namespace detail {
+
+ArrowType id_to_arrow_type(cudf::type_id id)
+{
+ switch (id) {
+ case cudf::type_id::BOOL8: return NANOARROW_TYPE_BOOL;
+ case cudf::type_id::INT8: return NANOARROW_TYPE_INT8;
+ case cudf::type_id::INT16: return NANOARROW_TYPE_INT16;
+ case cudf::type_id::INT32: return NANOARROW_TYPE_INT32;
+ case cudf::type_id::INT64: return NANOARROW_TYPE_INT64;
+ case cudf::type_id::UINT8: return NANOARROW_TYPE_UINT8;
+ case cudf::type_id::UINT16: return NANOARROW_TYPE_UINT16;
+ case cudf::type_id::UINT32: return NANOARROW_TYPE_UINT32;
+ case cudf::type_id::UINT64: return NANOARROW_TYPE_UINT64;
+ case cudf::type_id::FLOAT32: return NANOARROW_TYPE_FLOAT;
+ case cudf::type_id::FLOAT64: return NANOARROW_TYPE_DOUBLE;
+ case cudf::type_id::TIMESTAMP_DAYS: return NANOARROW_TYPE_DATE32;
+ default: CUDF_FAIL("Unsupported type_id conversion to arrow type", cudf::data_type_error);
+ }
+}
+
+} // namespace detail
+} // namespace cudf
diff --git a/cpp/src/interop/to_arrow_utilities.hpp b/cpp/src/interop/to_arrow_utilities.hpp
new file mode 100644
index 00000000000..3c01c726a7b
--- /dev/null
+++ b/cpp/src/interop/to_arrow_utilities.hpp
@@ -0,0 +1,34 @@
+/*
+ * Copyright (c) 2024, NVIDIA CORPORATION.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#pragma once
+
+#include
+
+#include
+
+namespace cudf {
+namespace detail {
+
+/**
+ * @brief Map cudf column type id to ArrowType id
+ *
+ * @param id Column type id
+ * @return ArrowType id
+ */
+ArrowType id_to_arrow_type(cudf::type_id id);
+
+} // namespace detail
+} // namespace cudf
diff --git a/cpp/tests/interop/to_arrow_device_test.cpp b/cpp/tests/interop/to_arrow_device_test.cpp
index 16aab53a249..d6eae8dece1 100644
--- a/cpp/tests/interop/to_arrow_device_test.cpp
+++ b/cpp/tests/interop/to_arrow_device_test.cpp
@@ -327,14 +327,16 @@ TEST_F(ToArrowDeviceTest, EmptyTable)
auto got_arrow_schema = cudf::to_arrow_schema(table->view(), meta);
compare_schemas(schema.get(), got_arrow_schema.get());
- ArrowSchemaRelease(got_arrow_schema.get());
- auto got_arrow_device = cudf::to_arrow_device(std::move(*table));
+ auto got_arrow_device = cudf::to_arrow_device(table->view());
EXPECT_EQ(rmm::get_current_cuda_device().value(), got_arrow_device->device_id);
EXPECT_EQ(ARROW_DEVICE_CUDA, got_arrow_device->device_type);
+ compare_arrays(schema.get(), arr.get(), &got_arrow_device->array);
+ got_arrow_device = cudf::to_arrow_device(std::move(*table));
+ EXPECT_EQ(rmm::get_current_cuda_device().value(), got_arrow_device->device_id);
+ EXPECT_EQ(ARROW_DEVICE_CUDA, got_arrow_device->device_type);
compare_arrays(schema.get(), arr.get(), &got_arrow_device->array);
- ArrowArrayRelease(&got_arrow_device->array);
}
TEST_F(ToArrowDeviceTest, DateTimeTable)
@@ -358,10 +360,9 @@ TEST_F(ToArrowDeviceTest, DateTimeTable)
expected_schema->children[0]->flags = 0;
compare_schemas(expected_schema.get(), got_arrow_schema.get());
- ArrowSchemaRelease(got_arrow_schema.get());
auto data_ptr = input.get_column(0).view().data();
- auto got_arrow_array = cudf::to_arrow_device(std::move(input));
+ auto got_arrow_array = cudf::to_arrow_device(input.view());
EXPECT_EQ(rmm::get_current_cuda_device().value(), got_arrow_array->device_id);
EXPECT_EQ(ARROW_DEVICE_CUDA, got_arrow_array->device_type);
@@ -377,7 +378,21 @@ TEST_F(ToArrowDeviceTest, DateTimeTable)
EXPECT_EQ(nullptr, got_arrow_array->array.children[0]->buffers[0]);
EXPECT_EQ(data_ptr, got_arrow_array->array.children[0]->buffers[1]);
- ArrowArrayRelease(&got_arrow_array->array);
+ got_arrow_array = cudf::to_arrow_device(std::move(input));
+ EXPECT_EQ(rmm::get_current_cuda_device().value(), got_arrow_array->device_id);
+ EXPECT_EQ(ARROW_DEVICE_CUDA, got_arrow_array->device_type);
+
+ EXPECT_EQ(data.size(), got_arrow_array->array.length);
+ EXPECT_EQ(0, got_arrow_array->array.null_count);
+ EXPECT_EQ(0, got_arrow_array->array.offset);
+ EXPECT_EQ(1, got_arrow_array->array.n_children);
+ EXPECT_EQ(nullptr, got_arrow_array->array.buffers[0]);
+
+ EXPECT_EQ(data.size(), got_arrow_array->array.children[0]->length);
+ EXPECT_EQ(0, got_arrow_array->array.children[0]->null_count);
+ EXPECT_EQ(0, got_arrow_array->array.children[0]->offset);
+ EXPECT_EQ(nullptr, got_arrow_array->array.children[0]->buffers[0]);
+ EXPECT_EQ(data_ptr, got_arrow_array->array.children[0]->buffers[1]);
}
TYPED_TEST(ToArrowDeviceTestDurationsTest, DurationTable)
@@ -415,10 +430,9 @@ TYPED_TEST(ToArrowDeviceTestDurationsTest, DurationTable)
auto got_arrow_schema =
cudf::to_arrow_schema(input.view(), std::vector{{"a"}});
BaseArrowFixture::compare_schemas(expected_schema.get(), got_arrow_schema.get());
- ArrowSchemaRelease(got_arrow_schema.get());
auto data_ptr = input.get_column(0).view().data();
- auto got_arrow_array = cudf::to_arrow_device(std::move(input));
+ auto got_arrow_array = cudf::to_arrow_device(input.view());
EXPECT_EQ(rmm::get_current_cuda_device().value(), got_arrow_array->device_id);
EXPECT_EQ(ARROW_DEVICE_CUDA, got_arrow_array->device_type);
@@ -434,7 +448,21 @@ TYPED_TEST(ToArrowDeviceTestDurationsTest, DurationTable)
EXPECT_EQ(nullptr, got_arrow_array->array.children[0]->buffers[0]);
EXPECT_EQ(data_ptr, got_arrow_array->array.children[0]->buffers[1]);
- ArrowArrayRelease(&got_arrow_array->array);
+ got_arrow_array = cudf::to_arrow_device(std::move(input));
+ EXPECT_EQ(rmm::get_current_cuda_device().value(), got_arrow_array->device_id);
+ EXPECT_EQ(ARROW_DEVICE_CUDA, got_arrow_array->device_type);
+
+ EXPECT_EQ(data.size(), got_arrow_array->array.length);
+ EXPECT_EQ(0, got_arrow_array->array.null_count);
+ EXPECT_EQ(0, got_arrow_array->array.offset);
+ EXPECT_EQ(1, got_arrow_array->array.n_children);
+ EXPECT_EQ(nullptr, got_arrow_array->array.buffers[0]);
+
+ EXPECT_EQ(data.size(), got_arrow_array->array.children[0]->length);
+ EXPECT_EQ(0, got_arrow_array->array.children[0]->null_count);
+ EXPECT_EQ(0, got_arrow_array->array.children[0]->offset);
+ EXPECT_EQ(nullptr, got_arrow_array->array.children[0]->buffers[0]);
+ EXPECT_EQ(data_ptr, got_arrow_array->array.children[0]->buffers[1]);
}
TEST_F(ToArrowDeviceTest, NestedList)
@@ -471,7 +499,6 @@ TEST_F(ToArrowDeviceTest, NestedList)
auto got_arrow_schema =
cudf::to_arrow_schema(input.view(), std::vector{{"a"}});
compare_schemas(expected_schema.get(), got_arrow_schema.get());
- ArrowSchemaRelease(got_arrow_schema.get());
nanoarrow::UniqueArray expected_array;
EXPECT_EQ(NANOARROW_OK,
@@ -487,12 +514,15 @@ TEST_F(ToArrowDeviceTest, NestedList)
NANOARROW_THROW_NOT_OK(
ArrowArrayFinishBuilding(expected_array.get(), NANOARROW_VALIDATION_LEVEL_NONE, nullptr));
- auto got_arrow_array = cudf::to_arrow_device(std::move(input));
+ auto got_arrow_array = cudf::to_arrow_device(input.view());
EXPECT_EQ(rmm::get_current_cuda_device().value(), got_arrow_array->device_id);
EXPECT_EQ(ARROW_DEVICE_CUDA, got_arrow_array->device_type);
+ compare_arrays(expected_schema.get(), expected_array.get(), &got_arrow_array->array);
+ got_arrow_array = cudf::to_arrow_device(std::move(input));
+ EXPECT_EQ(rmm::get_current_cuda_device().value(), got_arrow_array->device_id);
+ EXPECT_EQ(ARROW_DEVICE_CUDA, got_arrow_array->device_type);
compare_arrays(expected_schema.get(), expected_array.get(), &got_arrow_array->array);
- ArrowArrayRelease(&got_arrow_array->array);
}
TEST_F(ToArrowDeviceTest, StructColumn)
@@ -588,7 +618,6 @@ TEST_F(ToArrowDeviceTest, StructColumn)
auto got_arrow_schema =
cudf::to_arrow_schema(input.view(), std::vector{metadata});
compare_schemas(expected_schema.get(), got_arrow_schema.get());
- ArrowSchemaRelease(got_arrow_schema.get());
nanoarrow::UniqueArray expected_array;
NANOARROW_THROW_NOT_OK(
@@ -629,12 +658,15 @@ TEST_F(ToArrowDeviceTest, StructColumn)
NANOARROW_THROW_NOT_OK(
ArrowArrayFinishBuilding(expected_array.get(), NANOARROW_VALIDATION_LEVEL_NONE, nullptr));
- auto got_arrow_array = cudf::to_arrow_device(std::move(input));
+ auto got_arrow_array = cudf::to_arrow_device(input.view());
EXPECT_EQ(rmm::get_current_cuda_device().value(), got_arrow_array->device_id);
EXPECT_EQ(ARROW_DEVICE_CUDA, got_arrow_array->device_type);
+ compare_arrays(expected_schema.get(), expected_array.get(), &got_arrow_array->array);
+ got_arrow_array = cudf::to_arrow_device(std::move(input));
+ EXPECT_EQ(rmm::get_current_cuda_device().value(), got_arrow_array->device_id);
+ EXPECT_EQ(ARROW_DEVICE_CUDA, got_arrow_array->device_type);
compare_arrays(expected_schema.get(), expected_array.get(), &got_arrow_array->array);
- ArrowArrayRelease(&got_arrow_array->array);
}
template
@@ -665,7 +697,6 @@ TEST_F(ToArrowDeviceTest, FixedPoint64Table)
auto got_arrow_schema =
cudf::to_arrow_schema(input.view(), std::vector{{"a"}});
compare_schemas(expected_schema.get(), got_arrow_schema.get());
- ArrowSchemaRelease(got_arrow_schema.get());
auto result_dev_data = std::make_unique>(
expect_data.size(), cudf::get_default_stream());
@@ -700,12 +731,15 @@ TEST_F(ToArrowDeviceTest, FixedPoint64Table)
NANOARROW_THROW_NOT_OK(
ArrowArrayFinishBuilding(expected_array.get(), NANOARROW_VALIDATION_LEVEL_NONE, nullptr));
- auto got_arrow_array = cudf::to_arrow_device(std::move(input));
+ auto got_arrow_array = cudf::to_arrow_device(input.view());
ASSERT_EQ(rmm::get_current_cuda_device().value(), got_arrow_array->device_id);
ASSERT_EQ(ARROW_DEVICE_CUDA, got_arrow_array->device_type);
+ compare_arrays(expected_schema.get(), expected_array.get(), &got_arrow_array->array);
+ got_arrow_array = cudf::to_arrow_device(std::move(input));
+ ASSERT_EQ(rmm::get_current_cuda_device().value(), got_arrow_array->device_id);
+ ASSERT_EQ(ARROW_DEVICE_CUDA, got_arrow_array->device_type);
compare_arrays(expected_schema.get(), expected_array.get(), &got_arrow_array->array);
- ArrowArrayRelease(&got_arrow_array->array);
}
}
@@ -734,7 +768,6 @@ TEST_F(ToArrowDeviceTest, FixedPoint128Table)
auto got_arrow_schema =
cudf::to_arrow_schema(input.view(), std::vector{{"a"}});
compare_schemas(expected_schema.get(), got_arrow_schema.get());
- ArrowSchemaRelease(got_arrow_schema.get());
nanoarrow::UniqueArray expected_array;
NANOARROW_THROW_NOT_OK(
@@ -745,11 +778,14 @@ TEST_F(ToArrowDeviceTest, FixedPoint128Table)
NANOARROW_THROW_NOT_OK(
ArrowArrayFinishBuilding(expected_array.get(), NANOARROW_VALIDATION_LEVEL_NONE, nullptr));
- auto got_arrow_array = cudf::to_arrow_device(std::move(input));
+ auto got_arrow_array = cudf::to_arrow_device(input.view());
EXPECT_EQ(rmm::get_current_cuda_device().value(), got_arrow_array->device_id);
EXPECT_EQ(ARROW_DEVICE_CUDA, got_arrow_array->device_type);
+ compare_arrays(expected_schema.get(), expected_array.get(), &got_arrow_array->array);
+ got_arrow_array = cudf::to_arrow_device(std::move(input));
+ EXPECT_EQ(rmm::get_current_cuda_device().value(), got_arrow_array->device_id);
+ EXPECT_EQ(ARROW_DEVICE_CUDA, got_arrow_array->device_type);
compare_arrays(expected_schema.get(), expected_array.get(), &got_arrow_array->array);
- ArrowArrayRelease(&got_arrow_array->array);
}
}