diff --git a/docs/cudf/source/user_guide/guide-to-udfs.ipynb b/docs/cudf/source/user_guide/guide-to-udfs.ipynb index 0d05ddb00b4..8026c378156 100644 --- a/docs/cudf/source/user_guide/guide-to-udfs.ipynb +++ b/docs/cudf/source/user_guide/guide-to-udfs.ipynb @@ -4,7 +4,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Overview of User Defined Functions with cuDF" + "Overview of User Defined Functions with cuDF\n", + "====================================" ] }, { @@ -40,7 +41,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Series UDFs\n", + "Series UDFs\n", + "--------------\n", "\n", "You can execute UDFs on Series in two ways:\n", "\n", @@ -54,7 +56,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# `cudf.Series.apply`" + "`cudf.Series.apply`\n", + "---------------------" ] }, { @@ -126,7 +129,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Functions with Additional Scalar Arguments" + "Functions with Additional Scalar Arguments\n", + "---------------------------------------------------" ] }, { @@ -181,7 +185,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Nullable Data" + "Nullable Data\n", + "----------------" ] }, { @@ -307,7 +312,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Lower level control with custom `numba` kernels" + "Lower level control with custom `numba` kernels\n", + "---------------------------------------------------------" ] }, { @@ -472,7 +478,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## DataFrame UDFs\n", + "DataFrame UDFs\n", + "--------------------\n", "\n", "Like `cudf.Series`, there are multiple ways of using UDFs on dataframes, which essentially amount to UDFs that expect multiple columns as input:\n", "\n", @@ -485,7 +492,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# `cudf.DataFrame.apply`" + "`cudf.DataFrame.apply`\n", + "---------------------------" ] }, { @@ -1197,7 +1205,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Numba kernels for DataFrames" + "Numba kernels for DataFrames\n", + "------------------------------------" ] }, { @@ -1546,7 +1555,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Rolling Window UDFs\n", + "Rolling Window UDFs\n", + "-------------------------\n", "\n", "For time-series data, we may need to operate on a small \\\"window\\\" of our column at a time, processing each portion independently. We could slide (\\\"roll\\\") this window over the entire column to answer questions like \\\"What is the 3-day moving average of a stock price over the past year?\"\n", "\n", @@ -1859,7 +1869,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## GroupBy DataFrame UDFs\n", + "GroupBy DataFrame UDFs\n", + "-------------------------------\n", "\n", "We can also apply UDFs to grouped DataFrames using `apply_grouped`. This example is also drawn and adapted from the RAPIDS [API documentation]().\n", "\n", @@ -2155,7 +2166,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Numba Kernels on CuPy Arrays\n", + "Numba Kernels on CuPy Arrays\n", + "-------------------------------------\n", "\n", "We can also execute Numba kernels on CuPy NDArrays, again thanks to the `__cuda_array_interface__`. We can even run the same UDF on the Series and the CuPy array. First, we define a Series and then create a CuPy array from that Series." ] @@ -2257,7 +2269,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Caveats" + "Caveats\n", + "---------" ] }, { @@ -2272,7 +2285,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Summary\n", + "Summary\n", + "-----------\n", "\n", "This guide has covered a lot of content. At this point, you should hopefully feel comfortable writing UDFs (with or without null values) that operate on\n", "\n", @@ -2305,7 +2319,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.8.13" } }, "nbformat": 4,