From 7ae536031effd31d1c7aab63d1af812b0fc2a291 Mon Sep 17 00:00:00 2001 From: Muhammad Haseeb <14217455+mhaseeb123@users.noreply.github.com> Date: Wed, 2 Oct 2024 20:26:17 -0700 Subject: [PATCH] Batch memcpy the last offsets for output buffers of str and list cols in PQ reader (#16905) This PR adds the capability to batch memcpy the last offsets for the output buffers of string and list columns in PQ reader. This reduces the overhead from several `cudaMemcpyAsync` calls when reading wide strings and/or list columns tables. This optimization was found as well as ORC changes were contributed by @vuule. See this [comment](https://github.com/rapidsai/cudf/pull/16905#issuecomment-2375532577) for performance improvement data and discussion. Authors: - Muhammad Haseeb (https://github.com/mhaseeb123) Approvers: - Vukasin Milovanovic (https://github.com/vuule) - Vyas Ramasubramani (https://github.com/vyasr) URL: https://github.com/rapidsai/cudf/pull/16905 --- cpp/benchmarks/CMakeLists.txt | 5 - .../io/utilities/batched_memset_bench.cpp | 101 ------------- .../cudf/detail/utilities/batched_memcpy.hpp | 67 +++++++++ .../utilities}/batched_memset.hpp | 4 +- cpp/src/io/orc/stripe_enc.cu | 64 +++++--- cpp/src/io/parquet/page_data.cu | 26 ++++ cpp/src/io/parquet/parquet_gpu.hpp | 12 ++ cpp/src/io/parquet/reader_impl.cpp | 24 ++- cpp/src/io/parquet/reader_impl_preprocess.cu | 6 +- cpp/tests/CMakeLists.txt | 3 +- .../utilities_tests/batched_memcpy_tests.cu | 139 ++++++++++++++++++ .../utilities_tests/batched_memset_tests.cu | 4 +- 12 files changed, 308 insertions(+), 147 deletions(-) delete mode 100644 cpp/benchmarks/io/utilities/batched_memset_bench.cpp create mode 100644 cpp/include/cudf/detail/utilities/batched_memcpy.hpp rename cpp/include/cudf/{io/detail => detail/utilities}/batched_memset.hpp (98%) create mode 100644 cpp/tests/utilities_tests/batched_memcpy_tests.cu diff --git a/cpp/benchmarks/CMakeLists.txt b/cpp/benchmarks/CMakeLists.txt index 4113e38dcf4..110b4557840 100644 --- a/cpp/benchmarks/CMakeLists.txt +++ b/cpp/benchmarks/CMakeLists.txt @@ -392,11 +392,6 @@ ConfigureNVBench(JSON_READER_NVBENCH io/json/nested_json.cpp io/json/json_reader ConfigureNVBench(JSON_READER_OPTION_NVBENCH io/json/json_reader_option.cpp) ConfigureNVBench(JSON_WRITER_NVBENCH io/json/json_writer.cpp) -# ################################################################################################## -# * multi buffer memset benchmark -# ---------------------------------------------------------------------- -ConfigureNVBench(BATCHED_MEMSET_BENCH io/utilities/batched_memset_bench.cpp) - # ################################################################################################## # * io benchmark --------------------------------------------------------------------- ConfigureNVBench(MULTIBYTE_SPLIT_NVBENCH io/text/multibyte_split.cpp) diff --git a/cpp/benchmarks/io/utilities/batched_memset_bench.cpp b/cpp/benchmarks/io/utilities/batched_memset_bench.cpp deleted file mode 100644 index 2905895a63b..00000000000 --- a/cpp/benchmarks/io/utilities/batched_memset_bench.cpp +++ /dev/null @@ -1,101 +0,0 @@ -/* - * Copyright (c) 2024, NVIDIA CORPORATION. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include -#include -#include -#include - -#include -#include - -#include - -// Size of the data in the benchmark dataframe; chosen to be low enough to allow benchmarks to -// run on most GPUs, but large enough to allow highest throughput -constexpr size_t data_size = 512 << 20; - -void parquet_read_common(cudf::size_type num_rows_to_read, - cudf::size_type num_cols_to_read, - cuio_source_sink_pair& source_sink, - nvbench::state& state) -{ - cudf::io::parquet_reader_options read_opts = - cudf::io::parquet_reader_options::builder(source_sink.make_source_info()); - - auto mem_stats_logger = cudf::memory_stats_logger(); - state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value())); - state.exec( - nvbench::exec_tag::sync | nvbench::exec_tag::timer, [&](nvbench::launch& launch, auto& timer) { - try_drop_l3_cache(); - - timer.start(); - auto const result = cudf::io::read_parquet(read_opts); - timer.stop(); - - CUDF_EXPECTS(result.tbl->num_columns() == num_cols_to_read, "Unexpected number of columns"); - CUDF_EXPECTS(result.tbl->num_rows() == num_rows_to_read, "Unexpected number of rows"); - }); - - auto const time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value"); - state.add_element_count(static_cast(data_size) / time, "bytes_per_second"); - state.add_buffer_size( - mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage"); - state.add_buffer_size(source_sink.size(), "encoded_file_size", "encoded_file_size"); -} - -template -void bench_batched_memset(nvbench::state& state, nvbench::type_list>) -{ - auto const d_type = get_type_or_group(static_cast(DataType)); - auto const num_cols = static_cast(state.get_int64("num_cols")); - auto const cardinality = static_cast(state.get_int64("cardinality")); - auto const run_length = static_cast(state.get_int64("run_length")); - auto const source_type = retrieve_io_type_enum(state.get_string("io_type")); - auto const compression = cudf::io::compression_type::NONE; - cuio_source_sink_pair source_sink(source_type); - auto const tbl = - create_random_table(cycle_dtypes(d_type, num_cols), - table_size_bytes{data_size}, - data_profile_builder().cardinality(cardinality).avg_run_length(run_length)); - auto const view = tbl->view(); - - cudf::io::parquet_writer_options write_opts = - cudf::io::parquet_writer_options::builder(source_sink.make_sink_info(), view) - .compression(compression); - cudf::io::write_parquet(write_opts); - auto const num_rows = view.num_rows(); - - parquet_read_common(num_rows, num_cols, source_sink, state); -} - -using d_type_list = nvbench::enum_type_list; - -NVBENCH_BENCH_TYPES(bench_batched_memset, NVBENCH_TYPE_AXES(d_type_list)) - .set_name("batched_memset") - .set_type_axes_names({"data_type"}) - .add_int64_axis("num_cols", {1000}) - .add_string_axis("io_type", {"DEVICE_BUFFER"}) - .set_min_samples(4) - .add_int64_axis("cardinality", {0, 1000}) - .add_int64_axis("run_length", {1, 32}); diff --git a/cpp/include/cudf/detail/utilities/batched_memcpy.hpp b/cpp/include/cudf/detail/utilities/batched_memcpy.hpp new file mode 100644 index 00000000000..ed0ab9e6e5b --- /dev/null +++ b/cpp/include/cudf/detail/utilities/batched_memcpy.hpp @@ -0,0 +1,67 @@ +/* + * Copyright (c) 2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include + +#include +#include + +#include +#include +#include + +namespace CUDF_EXPORT cudf { +namespace detail { + +/** + * @brief A helper function that copies a vector of vectors from source to destination addresses in + * a batched manner. + * + * @tparam SrcIterator **[inferred]** The type of device-accessible source addresses iterator + * @tparam DstIterator **[inferred]** The type of device-accessible destination address iterator + * @tparam SizeIterator **[inferred]** The type of device-accessible buffer size iterator + * + * @param src_iter Device-accessible iterator to source addresses + * @param dst_iter Device-accessible iterator to destination addresses + * @param size_iter Device-accessible iterator to the buffer sizes (in bytes) + * @param num_buffs Number of buffers to be copied + * @param stream CUDA stream to use + */ +template +void batched_memcpy_async(SrcIterator src_iter, + DstIterator dst_iter, + SizeIterator size_iter, + size_t num_buffs, + rmm::cuda_stream_view stream) +{ + size_t temp_storage_bytes = 0; + cub::DeviceMemcpy::Batched( + nullptr, temp_storage_bytes, src_iter, dst_iter, size_iter, num_buffs, stream.value()); + + rmm::device_buffer d_temp_storage{temp_storage_bytes, stream.value()}; + + cub::DeviceMemcpy::Batched(d_temp_storage.data(), + temp_storage_bytes, + src_iter, + dst_iter, + size_iter, + num_buffs, + stream.value()); +} + +} // namespace detail +} // namespace CUDF_EXPORT cudf diff --git a/cpp/include/cudf/io/detail/batched_memset.hpp b/cpp/include/cudf/detail/utilities/batched_memset.hpp similarity index 98% rename from cpp/include/cudf/io/detail/batched_memset.hpp rename to cpp/include/cudf/detail/utilities/batched_memset.hpp index 1c74be4a9fe..75f738f7529 100644 --- a/cpp/include/cudf/io/detail/batched_memset.hpp +++ b/cpp/include/cudf/detail/utilities/batched_memset.hpp @@ -28,7 +28,7 @@ #include namespace CUDF_EXPORT cudf { -namespace io::detail { +namespace detail { /** * @brief A helper function that takes in a vector of device spans and memsets them to the @@ -78,5 +78,5 @@ void batched_memset(std::vector> const& bufs, d_temp_storage.data(), temp_storage_bytes, iter_in, iter_out, sizes, num_bufs, stream); } -} // namespace io::detail +} // namespace detail } // namespace CUDF_EXPORT cudf diff --git a/cpp/src/io/orc/stripe_enc.cu b/cpp/src/io/orc/stripe_enc.cu index 5c70e35fd2e..ed0b6969154 100644 --- a/cpp/src/io/orc/stripe_enc.cu +++ b/cpp/src/io/orc/stripe_enc.cu @@ -20,6 +20,8 @@ #include "orc_gpu.hpp" #include +#include +#include #include #include #include @@ -1087,37 +1089,42 @@ CUDF_KERNEL void __launch_bounds__(block_size) /** * @brief Merge chunked column data into a single contiguous stream * - * @param[in,out] strm_desc StripeStream device array [stripe][stream] - * @param[in,out] streams List of encoder chunk streams [column][rowgroup] + * @param[in] strm_desc StripeStream device array [stripe][stream] + * @param[in] streams List of encoder chunk streams [column][rowgroup] + * @param[out] srcs List of source encoder chunk stream data addresses + * @param[out] dsts List of destination StripeStream data addresses + * @param[out] sizes List of stream sizes in bytes */ // blockDim {compact_streams_block_size,1,1} CUDF_KERNEL void __launch_bounds__(compact_streams_block_size) - gpuCompactOrcDataStreams(device_2dspan strm_desc, - device_2dspan streams) + gpuInitBatchedMemcpy(device_2dspan strm_desc, + device_2dspan streams, + device_span srcs, + device_span dsts, + device_span sizes) { - __shared__ __align__(16) StripeStream ss; - - auto const stripe_id = blockIdx.x; + auto const stripe_id = cudf::detail::grid_1d::global_thread_id(); auto const stream_id = blockIdx.y; - auto const t = threadIdx.x; + if (stripe_id >= strm_desc.size().first) { return; } - if (t == 0) { ss = strm_desc[stripe_id][stream_id]; } - __syncthreads(); + auto const out_id = stream_id * strm_desc.size().first + stripe_id; + StripeStream ss = strm_desc[stripe_id][stream_id]; if (ss.data_ptr == nullptr) { return; } auto const cid = ss.stream_type; auto dst_ptr = ss.data_ptr; for (auto group = ss.first_chunk_id; group < ss.first_chunk_id + ss.num_chunks; ++group) { + auto const out_id = stream_id * streams.size().second + group; + srcs[out_id] = streams[ss.column_id][group].data_ptrs[cid]; + dsts[out_id] = dst_ptr; + + // Also update the stream here, data will be copied in a separate kernel + streams[ss.column_id][group].data_ptrs[cid] = dst_ptr; + auto const len = streams[ss.column_id][group].lengths[cid]; - if (len > 0) { - auto const src_ptr = streams[ss.column_id][group].data_ptrs[cid]; - for (uint32_t i = t; i < len; i += blockDim.x) { - dst_ptr[i] = src_ptr[i]; - } - __syncthreads(); - } - if (t == 0) { streams[ss.column_id][group].data_ptrs[cid] = dst_ptr; } + // len is the size (in bytes) of the current stream. + sizes[out_id] = len; dst_ptr += len; } } @@ -1325,9 +1332,26 @@ void CompactOrcDataStreams(device_2dspan strm_desc, device_2dspan enc_streams, rmm::cuda_stream_view stream) { + auto const num_rowgroups = enc_streams.size().second; + auto const num_streams = strm_desc.size().second; + auto const num_stripes = strm_desc.size().first; + auto const num_chunks = num_rowgroups * num_streams; + auto srcs = cudf::detail::make_zeroed_device_uvector_async( + num_chunks, stream, rmm::mr::get_current_device_resource()); + auto dsts = cudf::detail::make_zeroed_device_uvector_async( + num_chunks, stream, rmm::mr::get_current_device_resource()); + auto lengths = cudf::detail::make_zeroed_device_uvector_async( + num_chunks, stream, rmm::mr::get_current_device_resource()); + dim3 dim_block(compact_streams_block_size, 1); - dim3 dim_grid(strm_desc.size().first, strm_desc.size().second); - gpuCompactOrcDataStreams<<>>(strm_desc, enc_streams); + dim3 dim_grid(cudf::util::div_rounding_up_unsafe(num_stripes, compact_streams_block_size), + strm_desc.size().second); + gpuInitBatchedMemcpy<<>>( + strm_desc, enc_streams, srcs, dsts, lengths); + + // Copy streams in a batched manner. + cudf::detail::batched_memcpy_async( + srcs.begin(), dsts.begin(), lengths.begin(), lengths.size(), stream); } std::optional CompressOrcDataStreams( diff --git a/cpp/src/io/parquet/page_data.cu b/cpp/src/io/parquet/page_data.cu index e0d50d7ccf9..b3276c81c1f 100644 --- a/cpp/src/io/parquet/page_data.cu +++ b/cpp/src/io/parquet/page_data.cu @@ -17,6 +17,8 @@ #include "page_data.cuh" #include "page_decode.cuh" +#include + #include #include @@ -466,4 +468,28 @@ void __host__ DecodeSplitPageData(cudf::detail::hostdevice_span pages, } } +void WriteFinalOffsets(host_span offsets, + host_span buff_addrs, + rmm::cuda_stream_view stream) +{ + // Copy offsets to device and create an iterator + auto d_src_data = cudf::detail::make_device_uvector_async( + offsets, stream, cudf::get_current_device_resource_ref()); + // Iterator for the source (scalar) data + auto src_iter = cudf::detail::make_counting_transform_iterator( + static_cast(0), + cuda::proclaim_return_type( + [src = d_src_data.begin()] __device__(std::size_t i) { return src + i; })); + + // Copy buffer addresses to device and create an iterator + auto d_dst_addrs = cudf::detail::make_device_uvector_async( + buff_addrs, stream, cudf::get_current_device_resource_ref()); + // size_iter is simply a constant iterator of sizeof(size_type) bytes. + auto size_iter = thrust::make_constant_iterator(sizeof(size_type)); + + // Copy offsets to buffers in batched manner. + cudf::detail::batched_memcpy_async( + src_iter, d_dst_addrs.begin(), size_iter, offsets.size(), stream); +} + } // namespace cudf::io::parquet::detail diff --git a/cpp/src/io/parquet/parquet_gpu.hpp b/cpp/src/io/parquet/parquet_gpu.hpp index e631e12119d..a8ba3a969ce 100644 --- a/cpp/src/io/parquet/parquet_gpu.hpp +++ b/cpp/src/io/parquet/parquet_gpu.hpp @@ -797,6 +797,18 @@ void DecodeSplitPageData(cudf::detail::hostdevice_span pages, kernel_error::pointer error_code, rmm::cuda_stream_view stream); +/** + * @brief Writes the final offsets to the corresponding list and string buffer end addresses in a + * batched manner. + * + * @param offsets Host span of final offsets + * @param buff_addrs Host span of corresponding output col buffer end addresses + * @param stream CUDA stream to use + */ +void WriteFinalOffsets(host_span offsets, + host_span buff_addrs, + rmm::cuda_stream_view stream); + /** * @brief Launches kernel for reading the string column data stored in the pages * diff --git a/cpp/src/io/parquet/reader_impl.cpp b/cpp/src/io/parquet/reader_impl.cpp index 7d817bde7af..1b69ccb7742 100644 --- a/cpp/src/io/parquet/reader_impl.cpp +++ b/cpp/src/io/parquet/reader_impl.cpp @@ -371,13 +371,15 @@ void reader::impl::decode_page_data(read_mode mode, size_t skip_rows, size_t num CUDF_FAIL("Parquet data decode failed with code(s) " + kernel_error::to_string(error)); } - // for list columns, add the final offset to every offset buffer. - // TODO : make this happen in more efficiently. Maybe use thrust::for_each - // on each buffer. + // For list and string columns, add the final offset to every offset buffer. // Note : the reason we are doing this here instead of in the decode kernel is // that it is difficult/impossible for a given page to know that it is writing the very // last value that should then be followed by a terminator (because rows can span // page boundaries). + std::vector out_buffers; + std::vector final_offsets; + out_buffers.reserve(_input_columns.size()); + final_offsets.reserve(_input_columns.size()); for (size_t idx = 0; idx < _input_columns.size(); idx++) { input_column_info const& input_col = _input_columns[idx]; @@ -393,25 +395,21 @@ void reader::impl::decode_page_data(read_mode mode, size_t skip_rows, size_t num // the final offset for a list at level N is the size of it's child size_type const offset = child.type.id() == type_id::LIST ? child.size - 1 : child.size; - CUDF_CUDA_TRY(cudaMemcpyAsync(static_cast(out_buf.data()) + (out_buf.size - 1), - &offset, - sizeof(size_type), - cudaMemcpyDefault, - _stream.value())); + out_buffers.emplace_back(static_cast(out_buf.data()) + (out_buf.size - 1)); + final_offsets.emplace_back(offset); out_buf.user_data |= PARQUET_COLUMN_BUFFER_FLAG_LIST_TERMINATED; } else if (out_buf.type.id() == type_id::STRING) { // need to cap off the string offsets column auto const sz = static_cast(col_string_sizes[idx]); if (sz <= strings::detail::get_offset64_threshold()) { - CUDF_CUDA_TRY(cudaMemcpyAsync(static_cast(out_buf.data()) + out_buf.size, - &sz, - sizeof(size_type), - cudaMemcpyDefault, - _stream.value())); + out_buffers.emplace_back(static_cast(out_buf.data()) + out_buf.size); + final_offsets.emplace_back(sz); } } } } + // Write the final offsets for list and string columns in a batched manner + WriteFinalOffsets(final_offsets, out_buffers, _stream); // update null counts in the final column buffers for (size_t idx = 0; idx < subpass.pages.size(); idx++) { diff --git a/cpp/src/io/parquet/reader_impl_preprocess.cu b/cpp/src/io/parquet/reader_impl_preprocess.cu index 3763c2e8e6d..8cab68ea721 100644 --- a/cpp/src/io/parquet/reader_impl_preprocess.cu +++ b/cpp/src/io/parquet/reader_impl_preprocess.cu @@ -19,9 +19,9 @@ #include #include +#include #include #include -#include #include #include @@ -1656,9 +1656,9 @@ void reader::impl::allocate_columns(read_mode mode, size_t skip_rows, size_t num } } - cudf::io::detail::batched_memset(memset_bufs, static_cast(0), _stream); + cudf::detail::batched_memset(memset_bufs, static_cast(0), _stream); // Need to set null mask bufs to all high bits - cudf::io::detail::batched_memset( + cudf::detail::batched_memset( nullmask_bufs, std::numeric_limits::max(), _stream); } diff --git a/cpp/tests/CMakeLists.txt b/cpp/tests/CMakeLists.txt index b67d922d377..4596ec65ce7 100644 --- a/cpp/tests/CMakeLists.txt +++ b/cpp/tests/CMakeLists.txt @@ -385,6 +385,8 @@ ConfigureTest( # * utilities tests ------------------------------------------------------------------------------- ConfigureTest( UTILITIES_TEST + utilities_tests/batched_memcpy_tests.cu + utilities_tests/batched_memset_tests.cu utilities_tests/column_debug_tests.cpp utilities_tests/column_utilities_tests.cpp utilities_tests/column_wrapper_tests.cpp @@ -395,7 +397,6 @@ ConfigureTest( utilities_tests/pinned_memory_tests.cpp utilities_tests/type_check_tests.cpp utilities_tests/type_list_tests.cpp - utilities_tests/batched_memset_tests.cu ) # ################################################################################################## diff --git a/cpp/tests/utilities_tests/batched_memcpy_tests.cu b/cpp/tests/utilities_tests/batched_memcpy_tests.cu new file mode 100644 index 00000000000..98657f8e224 --- /dev/null +++ b/cpp/tests/utilities_tests/batched_memcpy_tests.cu @@ -0,0 +1,139 @@ +/* + * Copyright (c) 2024, NVIDIA CORPORATION. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include +#include +#include + +#include +#include +#include +#include +#include + +#include +#include + +#include +#include +#include + +#include +#include +#include +#include + +template +struct BatchedMemcpyTest : public cudf::test::BaseFixture {}; + +TEST(BatchedMemcpyTest, BasicTest) +{ + using T1 = int64_t; + + // Device init + auto stream = cudf::get_default_stream(); + auto mr = cudf::get_current_device_resource_ref(); + + // Buffer lengths (in number of elements) + std::vector const h_lens{ + 50000, 4, 1000, 0, 250000, 1, 100, 8000, 0, 1, 100, 1000, 10000, 100000, 0, 1, 100000}; + + // Total number of buffers + auto const num_buffs = h_lens.size(); + + // Exclusive sum of buffer lengths for pointers + std::vector h_lens_excl_sum(num_buffs); + std::exclusive_scan(h_lens.begin(), h_lens.end(), h_lens_excl_sum.begin(), 0); + + // Corresponding buffer sizes (in bytes) + std::vector h_sizes_bytes; + h_sizes_bytes.reserve(num_buffs); + std::transform( + h_lens.cbegin(), h_lens.cend(), std::back_inserter(h_sizes_bytes), [&](auto& size) { + return size * sizeof(T1); + }); + + // Initialize random engine + auto constexpr seed = 0xcead; + std::mt19937 engine{seed}; + using uniform_distribution = + typename std::conditional_t, + std::bernoulli_distribution, + std::conditional_t, + std::uniform_real_distribution, + std::uniform_int_distribution>>; + uniform_distribution dist{}; + + // Generate a src vector of random data vectors + std::vector> h_sources; + h_sources.reserve(num_buffs); + std::transform(h_lens.begin(), h_lens.end(), std::back_inserter(h_sources), [&](auto size) { + std::vector data(size); + std::generate_n(data.begin(), size, [&]() { return T1{dist(engine)}; }); + return data; + }); + // Copy the vectors to device + std::vector> h_device_vecs; + h_device_vecs.reserve(h_sources.size()); + std::transform( + h_sources.begin(), h_sources.end(), std::back_inserter(h_device_vecs), [stream, mr](auto& vec) { + return cudf::detail::make_device_uvector_async(vec, stream, mr); + }); + // Pointers to the source vectors + std::vector h_src_ptrs; + h_src_ptrs.reserve(h_sources.size()); + std::transform( + h_device_vecs.begin(), h_device_vecs.end(), std::back_inserter(h_src_ptrs), [](auto& vec) { + return static_cast(vec.data()); + }); + // Copy the source data pointers to device + auto d_src_ptrs = cudf::detail::make_device_uvector_async(h_src_ptrs, stream, mr); + + // Total number of elements in all buffers + auto const total_buff_len = std::accumulate(h_lens.cbegin(), h_lens.cend(), 0); + + // Create one giant buffer for destination + auto d_dst_data = cudf::detail::make_zeroed_device_uvector_async(total_buff_len, stream, mr); + // Pointers to destination buffers within the giant destination buffer + std::vector h_dst_ptrs(num_buffs); + std::for_each(thrust::make_counting_iterator(static_cast(0)), + thrust::make_counting_iterator(num_buffs), + [&](auto i) { return h_dst_ptrs[i] = d_dst_data.data() + h_lens_excl_sum[i]; }); + // Copy destination data pointers to device + auto d_dst_ptrs = cudf::detail::make_device_uvector_async(h_dst_ptrs, stream, mr); + + // Copy buffer size iterators (in bytes) to device + auto d_sizes_bytes = cudf::detail::make_device_uvector_async(h_sizes_bytes, stream, mr); + + // Run the batched memcpy + cudf::detail::batched_memcpy_async( + d_src_ptrs.begin(), d_dst_ptrs.begin(), d_sizes_bytes.begin(), num_buffs, stream); + + // Expected giant destination buffer after the memcpy + std::vector expected_buffer; + expected_buffer.reserve(total_buff_len); + std::for_each(h_sources.cbegin(), h_sources.cend(), [&expected_buffer](auto& source) { + expected_buffer.insert(expected_buffer.end(), source.begin(), source.end()); + }); + + // Copy over the result destination buffer to host and synchronize the stream + auto result_dst_buffer = + cudf::detail::make_std_vector_sync(cudf::device_span(d_dst_data), stream); + + // Check if both vectors are equal + EXPECT_TRUE( + std::equal(expected_buffer.begin(), expected_buffer.end(), result_dst_buffer.begin())); +} diff --git a/cpp/tests/utilities_tests/batched_memset_tests.cu b/cpp/tests/utilities_tests/batched_memset_tests.cu index bed0f40d70e..0eeb7b95318 100644 --- a/cpp/tests/utilities_tests/batched_memset_tests.cu +++ b/cpp/tests/utilities_tests/batched_memset_tests.cu @@ -18,8 +18,8 @@ #include #include +#include #include -#include #include #include #include @@ -78,7 +78,7 @@ TEST(MultiBufferTestIntegral, BasicTest1) }); // Function Call - cudf::io::detail::batched_memset(memset_bufs, uint64_t{0}, stream); + cudf::detail::batched_memset(memset_bufs, uint64_t{0}, stream); // Set all buffer regions to 0 for expected comparison std::for_each(