diff --git a/python/cudf/cudf/core/column/__init__.py b/python/cudf/cudf/core/column/__init__.py index aba4ded4f9d..3dddcae85dc 100644 --- a/python/cudf/cudf/core/column/__init__.py +++ b/python/cudf/cudf/core/column/__init__.py @@ -1,4 +1,4 @@ -# Copyright (c) 2020-2023, NVIDIA CORPORATION. +# Copyright (c) 2020-2024, NVIDIA CORPORATION. """ isort: skip_file @@ -8,7 +8,6 @@ from cudf.core.column.categorical import CategoricalColumn from cudf.core.column.column import ( ColumnBase, - arange, as_column, build_categorical_column, build_column, diff --git a/python/cudf/cudf/core/column/categorical.py b/python/cudf/cudf/core/column/categorical.py index eb4220c5895..f52621dc444 100644 --- a/python/cudf/cudf/core/column/categorical.py +++ b/python/cudf/cudf/core/column/categorical.py @@ -1159,7 +1159,7 @@ def find_and_replace( new_cats_col = new_cats_col.apply_boolean_mask(bmask) new_cats = cudf.DataFrame._from_data( { - "index": cudf.core.column.arange(len(new_cats_col)), + "index": column.as_column(range(len(new_cats_col))), "cats": new_cats_col, } ) @@ -1531,9 +1531,13 @@ def _set_categories( ) out_code_dtype = min_unsigned_type(max_cat_size) - cur_order = column.arange(len(cur_codes)) - old_codes = column.arange(len(cur_cats), dtype=out_code_dtype) - new_codes = column.arange(len(new_cats), dtype=out_code_dtype) + cur_order = column.as_column(range(len(cur_codes))) + old_codes = column.as_column( + range(len(cur_cats)), dtype=out_code_dtype + ) + new_codes = column.as_column( + range(len(new_cats)), dtype=out_code_dtype + ) new_df = cudf.DataFrame._from_data( data={"new_codes": new_codes, "cats": new_cats} diff --git a/python/cudf/cudf/core/column/column.py b/python/cudf/cudf/core/column/column.py index 3cf686da7b0..c13ec33c51c 100644 --- a/python/cudf/cudf/core/column/column.py +++ b/python/cudf/cudf/core/column/column.py @@ -554,10 +554,8 @@ def slice( ]._with_type_metadata(self.dtype) else: # Need to create a gather map for given slice with stride - gather_map = arange( - start=start, - stop=stop, - step=stride, + gather_map = as_column( + range(start, stop, stride), dtype=cudf.dtype(np.int32), ) return self.take(gather_map) @@ -626,10 +624,8 @@ def _scatter_by_slice( ) # step != 1, create a scatter map with arange - scatter_map = arange( - start=start, - stop=stop, - step=step, + scatter_map = as_column( + range(start, stop, step), dtype=cudf.dtype(np.int32), ) @@ -745,7 +741,7 @@ def indices_of( assert len(value) == 1 mask = libcudf.search.contains(value, self) return apply_boolean_mask( - [arange(0, len(self), dtype=size_type_dtype)], mask + [as_column(range(0, len(self)), dtype=size_type_dtype)], mask )[0] def _find_first_and_last(self, value: ScalarLike) -> Tuple[int, int]: @@ -1379,7 +1375,9 @@ def _return_sentinel_column(): [self], [cats], how="left" ) codes = libcudf.copying.gather( - [arange(len(cats), dtype=dtype)], right_gather_map, nullify=True + [as_column(range(len(cats)), dtype=dtype)], + right_gather_map, + nullify=True, ) del right_gather_map # reorder `codes` so that its values correspond to the @@ -1905,13 +1903,26 @@ def as_column( * Objects exposing ``__array_interface__``(e.g., numpy arrays) * pyarrow array * pandas.Categorical objects + * range objects """ - if isinstance(arbitrary, ColumnBase): + if isinstance(arbitrary, (range, pd.RangeIndex, cudf.RangeIndex)): + column = libcudf.filling.sequence( + len(arbitrary), + as_device_scalar(arbitrary.start, dtype=cudf.dtype("int64")), + as_device_scalar(arbitrary.step, dtype=cudf.dtype("int64")), + ) + if cudf.get_option("default_integer_bitwidth") and dtype is None: + dtype = cudf.dtype( + f'i{cudf.get_option("default_integer_bitwidth")//8}' + ) + if dtype is not None: + column = column.astype(dtype) + return column + elif isinstance(arbitrary, ColumnBase): if dtype is not None: return arbitrary.astype(dtype) else: return arbitrary - elif isinstance(arbitrary, cudf.Series): data = arbitrary._column if dtype is not None: @@ -2614,70 +2625,6 @@ def deserialize_columns(headers: List[dict], frames: List) -> List[ColumnBase]: return columns -def arange( - start: Union[int, float], - stop: Optional[Union[int, float]] = None, - step: Union[int, float] = 1, - dtype=None, -) -> cudf.core.column.NumericalColumn: - """ - Returns a column with evenly spaced values within a given interval. - - Values are generated within the half-open interval [start, stop). - The first three arguments are mapped like the range built-in function, - i.e. start and step are optional. - - Parameters - ---------- - start : int/float - Start of the interval. - stop : int/float, default is None - Stop of the interval. - step : int/float, default 1 - Step width between each pair of consecutive values. - dtype : default None - Data type specifier. It is inferred from other arguments by default. - - Returns - ------- - cudf.core.column.NumericalColumn - - Examples - -------- - >>> import cudf - >>> col = cudf.core.column.arange(2, 7, 1, dtype='int16') - >>> col - - >>> cudf.Series(col) - 0 2 - 1 3 - 2 4 - 3 5 - 4 6 - dtype: int16 - """ - if stop is None: - stop = start - start = 0 - - if step is None: - step = 1 - - size = len(range(int(start), int(stop), int(step))) - if size == 0: - if dtype is None: - dtype = cudf.dtype("int64") - return cast( - cudf.core.column.NumericalColumn, column_empty(0, dtype=dtype) - ) - - return libcudf.filling.sequence( - size, - as_device_scalar(start, dtype=dtype), - as_device_scalar(step, dtype=dtype), - ) - - def full( size: int, fill_value: ScalarLike, dtype: Optional[Dtype] = None ) -> ColumnBase: diff --git a/python/cudf/cudf/core/dataframe.py b/python/cudf/cudf/core/dataframe.py index 51b661593fc..f9cf180ff44 100644 --- a/python/cudf/cudf/core/dataframe.py +++ b/python/cudf/cudf/core/dataframe.py @@ -342,10 +342,16 @@ def _getitem_tuple_arg(self, arg): tmp_col_name = (tmp_col_name, *extra) cantor_name = (cantor_name, *extra) other_df = DataFrame( - {tmp_col_name: column.arange(len(tmp_arg[0]))}, + { + tmp_col_name: column.as_column( + range(len(tmp_arg[0])) + ) + }, index=as_index(tmp_arg[0]), ) - columns_df[cantor_name] = column.arange(len(columns_df)) + columns_df[cantor_name] = column.as_column( + range(len(columns_df)) + ) df = other_df.join(columns_df, how="inner") # as join is not assigning any names to index, # update it over here diff --git a/python/cudf/cudf/core/groupby/groupby.py b/python/cudf/cudf/core/groupby/groupby.py index 73e6774f5ce..fbd85fd9876 100644 --- a/python/cudf/cudf/core/groupby/groupby.py +++ b/python/cudf/cudf/core/groupby/groupby.py @@ -1,4 +1,4 @@ -# Copyright (c) 2020-2023, NVIDIA CORPORATION. +# Copyright (c) 2020-2024, NVIDIA CORPORATION. import copy import itertools @@ -23,7 +23,7 @@ from cudf._typing import AggType, DataFrameOrSeries, MultiColumnAggType from cudf.api.types import is_bool_dtype, is_float_dtype, is_list_like from cudf.core.abc import Serializable -from cudf.core.column.column import ColumnBase, arange, as_column +from cudf.core.column.column import ColumnBase, as_column from cudf.core.column_accessor import ColumnAccessor from cudf.core.join._join_helpers import _match_join_keys from cudf.core.mixins import Reducible, Scannable @@ -761,7 +761,7 @@ def _head_tail(self, n, *, take_head: bool, preserve_order: bool): # subsample the gather map from the full input ordering, # rather than permuting the gather map of the output. _, (ordering,), _ = self._groupby.groups( - [arange(0, len(self.obj))] + [as_column(range(0, len(self.obj)))] ) # Invert permutation from original order to groups on the # subset of entries we want. @@ -2543,7 +2543,9 @@ def _mimic_pandas_order( # result coming back from libcudf has null_count few rows than # the input, so we must produce an ordering from the full # input range. - _, (ordering,), _ = self._groupby.groups([arange(0, len(self.obj))]) + _, (ordering,), _ = self._groupby.groups( + [as_column(range(0, len(self.obj)))] + ) if self._dropna and any( c.has_nulls(include_nan=True) > 0 for c in self.grouping._key_columns diff --git a/python/cudf/cudf/core/index.py b/python/cudf/cudf/core/index.py index 5c33cd09ad1..e012d8e7140 100644 --- a/python/cudf/cudf/core/index.py +++ b/python/cudf/cudf/core/index.py @@ -286,9 +286,7 @@ def _num_rows(self): @_cudf_nvtx_annotate def _values(self): if len(self) > 0: - return column.arange( - self._start, self._stop, self._step, dtype=self.dtype - ) + return column.as_column(self._range, dtype=self.dtype) else: return column.column_empty(0, masked=False, dtype=self.dtype) diff --git a/python/cudf/cudf/core/indexed_frame.py b/python/cudf/cudf/core/indexed_frame.py index 5955e21fea0..2a35ac0f959 100644 --- a/python/cudf/cudf/core/indexed_frame.py +++ b/python/cudf/cudf/core/indexed_frame.py @@ -182,12 +182,8 @@ def _indices_from_labels(obj, labels): # join is not guaranteed to maintain the index ordering # so we will sort it with its initial ordering which is stored # in column "__" - lhs = cudf.DataFrame( - {"__": cudf.core.column.arange(len(labels))}, index=labels - ) - rhs = cudf.DataFrame( - {"_": cudf.core.column.arange(len(obj))}, index=obj.index - ) + lhs = cudf.DataFrame({"__": as_column(range(len(labels)))}, index=labels) + rhs = cudf.DataFrame({"_": as_column(range(len(obj)))}, index=obj.index) return lhs.join(rhs).sort_values(by=["__", "_"])["_"] @@ -1897,10 +1893,8 @@ def _slice(self, arg: slice, keep_index: bool = True) -> Self: if stride != 1: return self._gather( GatherMap.from_column_unchecked( - cudf.core.column.arange( - start, - stop=stop, - step=stride, + as_column( + range(start, stop, stride), dtype=libcudf.types.size_type_dtype, ), len(self), @@ -2541,9 +2535,9 @@ def _align_to_index( # to recover ordering after index alignment. sort_col_id = str(uuid4()) if how == "left": - lhs[sort_col_id] = cudf.core.column.arange(len(lhs)) + lhs[sort_col_id] = as_column(range(len(lhs))) elif how == "right": - rhs[sort_col_id] = cudf.core.column.arange(len(rhs)) + rhs[sort_col_id] = as_column(range(len(rhs))) result = lhs.join(rhs, how=how, sort=sort) if how in ("left", "right"): diff --git a/python/cudf/cudf/core/join/join.py b/python/cudf/cudf/core/join/join.py index 20f5b7989eb..86f0c8465ba 100644 --- a/python/cudf/cudf/core/join/join.py +++ b/python/cudf/cudf/core/join/join.py @@ -1,4 +1,4 @@ -# Copyright (c) 2020-2023, NVIDIA CORPORATION. +# Copyright (c) 2020-2024, NVIDIA CORPORATION. from __future__ import annotations import itertools @@ -232,7 +232,11 @@ def _gather_maps(self, left_cols, right_cols): key_order = list( itertools.chain.from_iterable( libcudf.copying.gather( - [cudf.core.column.arange(n, dtype=size_type_dtype)], + [ + cudf.core.column.as_column( + range(n), dtype=size_type_dtype + ) + ], map_, nullify=null, ) diff --git a/python/cudf/cudf/core/multiindex.py b/python/cudf/cudf/core/multiindex.py index 489f0e74dd6..0f323dd5540 100644 --- a/python/cudf/cudf/core/multiindex.py +++ b/python/cudf/cudf/core/multiindex.py @@ -501,9 +501,9 @@ def __repr__(self): # TODO: Update the following two arange calls to # a single arange call once arange has support for # a vector start/end points. - indices = column.arange(start=0, stop=n, step=1) + indices = column.as_column(range(n)) indices = indices.append( - column.arange(start=len(self) - n, stop=len(self), step=1) + column.as_column(range(len(self) - n, len(self), 1)) ) preprocess = self.take(indices) else: @@ -795,7 +795,7 @@ def _compute_validity_mask(self, index, row_tuple, max_length): [ frame, cudf.DataFrame( - {"idx": cudf.Series(column.arange(len(frame)))} + {"idx": cudf.Series(column.as_column(range(len(frame))))} ), ], axis=1, @@ -807,7 +807,7 @@ def _compute_validity_mask(self, index, row_tuple, max_length): # obtain deterministic ordering. if cudf.get_option("mode.pandas_compatible"): lookup_order = "_" + "_".join(map(str, lookup._data.names)) - lookup[lookup_order] = column.arange(len(lookup)) + lookup[lookup_order] = column.as_column(range(len(lookup))) postprocess = operator.methodcaller( "sort_values", by=[lookup_order, "idx"] ) @@ -840,14 +840,16 @@ def _get_valid_indices_by_tuple(self, index, row_tuple, max_length): ): stop = row_tuple.stop or max_length start, stop, step = row_tuple.indices(stop) - return column.arange(start, stop, step) + return column.as_column(range(start, stop, step)) start_values = self._compute_validity_mask( index, row_tuple.start, max_length ) stop_values = self._compute_validity_mask( index, row_tuple.stop, max_length ) - return column.arange(start_values.min(), stop_values.max() + 1) + return column.as_column( + range(start_values.min(), stop_values.max() + 1) + ) elif isinstance(row_tuple, numbers.Number): return row_tuple return self._compute_validity_mask(index, row_tuple, max_length) @@ -1024,7 +1026,7 @@ def __getitem__(self, index): index = np.array(index) elif isinstance(index, slice): start, stop, step = index.indices(len(self)) - index = column.arange(start, stop, step) + index = column.as_column(range(start, stop, step)) result = MultiIndex.from_frame( self.to_frame(index=False, name=range(0, self.nlevels)).take( index diff --git a/python/cudf/cudf/core/series.py b/python/cudf/cudf/core/series.py index df5a62b384e..bc1eaef86db 100644 --- a/python/cudf/cudf/core/series.py +++ b/python/cudf/cudf/core/series.py @@ -55,7 +55,6 @@ DatetimeColumn, IntervalColumn, TimeDeltaColumn, - arange, as_column, full, ) @@ -1366,7 +1365,9 @@ def map(self, arg, na_action=None) -> "Series": raise NotImplementedError( "default values in dicts are currently not supported." ) - lhs = cudf.DataFrame({"x": self, "orig_order": arange(len(self))}) + lhs = cudf.DataFrame( + {"x": self, "orig_order": as_column(range(len(self)))} + ) rhs = cudf.DataFrame( { "x": arg.keys(), @@ -1386,7 +1387,9 @@ def map(self, arg, na_action=None) -> "Series": "Reindexing only valid with" " uniquely valued Index objects" ) - lhs = cudf.DataFrame({"x": self, "orig_order": arange(len(self))}) + lhs = cudf.DataFrame( + {"x": self, "orig_order": as_column(range(len(self)))} + ) rhs = cudf.DataFrame( { "x": arg.keys(), diff --git a/python/cudf/cudf/core/window/rolling.py b/python/cudf/cudf/core/window/rolling.py index 8a92ea86d57..207fb469990 100644 --- a/python/cudf/cudf/core/window/rolling.py +++ b/python/cudf/cudf/core/window/rolling.py @@ -1,4 +1,4 @@ -# Copyright (c) 2020-2023, NVIDIA CORPORATION +# Copyright (c) 2020-2024, NVIDIA CORPORATION import itertools @@ -235,7 +235,7 @@ def _apply_agg_column(self, source_column, agg_name): start = as_column(start, dtype="int32") end = as_column(end, dtype="int32") - idx = cudf.core.column.arange(len(start)) + idx = as_column(range(len(start))) preceding_window = (idx - start + cudf.Scalar(1, "int32")).astype( "int32" ) @@ -531,7 +531,7 @@ def __init__(self, groupby, window, min_periods=None, center=False): def _window_to_window_sizes(self, window): if is_integer(window): return cudautils.grouped_window_sizes_from_offset( - column.arange(len(self.obj)).data_array_view(mode="read"), + as_column(range(len(self.obj))).data_array_view(mode="read"), self._group_starts, window, ) diff --git a/python/cudf/cudf/tests/test_column.py b/python/cudf/cudf/tests/test_column.py index a4b27ae19ac..3d21994a8d5 100644 --- a/python/cudf/cudf/tests/test_column.py +++ b/python/cudf/cudf/tests/test_column.py @@ -1,4 +1,4 @@ -# Copyright (c) 2020-2023, NVIDIA CORPORATION. +# Copyright (c) 2020-2024, NVIDIA CORPORATION. import cupy as cp import numpy as np @@ -8,7 +8,7 @@ import cudf from cudf._lib.transform import mask_to_bools -from cudf.core.column.column import arange, as_column +from cudf.core.column.column import as_column from cudf.testing._utils import assert_eq, assert_exceptions_equal from cudf.utils import dtypes as dtypeutils @@ -552,9 +552,3 @@ def test_astype_with_aliases(alias, expect_dtype, data): gd_data = cudf.Series.from_pandas(pd_data) assert_eq(pd_data.astype(expect_dtype), gd_data.astype(alias)) - - -def test_arange_empty(): - result = arange(0) - assert len(result) == 0 - assert result.dtype == np.dtype(np.int64)