diff --git a/ci/build_docs.sh b/ci/build_docs.sh
index 2b55a9db8af..529eaeae696 100755
--- a/ci/build_docs.sh
+++ b/ci/build_docs.sh
@@ -3,6 +3,8 @@
set -euo pipefail
+export RAPIDS_VERSION_NUMBER="$(rapids-generate-version)"
+
rapids-logger "Create test conda environment"
. /opt/conda/etc/profile.d/conda.sh
@@ -27,7 +29,6 @@ rapids-mamba-retry install \
--channel "${PYTHON_CHANNEL}" \
libcudf cudf dask-cudf
-export RAPIDS_VERSION_NUMBER="24.04"
export RAPIDS_DOCS_DIR="$(mktemp -d)"
rapids-logger "Build CPP docs"
diff --git a/ci/release/update-version.sh b/ci/release/update-version.sh
index 1186b02f244..811e7825363 100755
--- a/ci/release/update-version.sh
+++ b/ci/release/update-version.sh
@@ -86,7 +86,6 @@ for FILE in .github/workflows/*.yaml; do
sed_runner "/shared-workflows/ s/@.*/@branch-${NEXT_SHORT_TAG}/g" "${FILE}"
sed_runner "s/dask-cuda.git@branch-[^\"\s]\+/dask-cuda.git@branch-${NEXT_SHORT_TAG}/g" ${FILE};
done
-sed_runner "s/RAPIDS_VERSION_NUMBER=\".*/RAPIDS_VERSION_NUMBER=\"${NEXT_SHORT_TAG}\"/g" ci/build_docs.sh
# Java files
NEXT_FULL_JAVA_TAG="${NEXT_SHORT_TAG}.${PATCH_PEP440}-SNAPSHOT"
diff --git a/ci/test_cpp_memcheck.sh b/ci/test_cpp_memcheck.sh
index 0233c2b55f8..fda11c64155 100755
--- a/ci/test_cpp_memcheck.sh
+++ b/ci/test_cpp_memcheck.sh
@@ -8,9 +8,7 @@ source ./ci/test_cpp_common.sh
rapids-logger "Memcheck gtests with rmm_mode=cuda"
-./ci/run_cudf_memcheck_ctests.sh \
- --gtest_output=xml:"${RAPIDS_TESTS_DIR}${test_name}.xml" \
- && EXITCODE=$? || EXITCODE=$?;
+./ci/run_cudf_memcheck_ctests.sh && EXITCODE=$? || EXITCODE=$?;
rapids-logger "Test script exiting with value: $EXITCODE"
exit ${EXITCODE}
diff --git a/cpp/include/cudf/detail/sorting.hpp b/cpp/include/cudf/detail/sorting.hpp
index 8f92b66d5fa..97cc054da57 100644
--- a/cpp/include/cudf/detail/sorting.hpp
+++ b/cpp/include/cudf/detail/sorting.hpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2019-2023, NVIDIA CORPORATION.
+ * Copyright (c) 2019-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -150,5 +150,16 @@ std::unique_ptr
sort(table_view const& values,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
+/**
+ * @copydoc cudf::stable_sort
+ *
+ * @param stream CUDA stream used for device memory operations and kernel launches.
+ */
+std::unique_ptr stable_sort(table_view const& values,
+ std::vector const& column_order,
+ std::vector const& null_precedence,
+ rmm::cuda_stream_view stream,
+ rmm::mr::device_memory_resource* mr);
+
} // namespace detail
} // namespace cudf
diff --git a/cpp/include/cudf/sorting.hpp b/cpp/include/cudf/sorting.hpp
index e4e803b2d3c..42bcb5da8e3 100644
--- a/cpp/include/cudf/sorting.hpp
+++ b/cpp/include/cudf/sorting.hpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2019-2023, NVIDIA CORPORATION.
+ * Copyright (c) 2019-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -115,6 +115,18 @@ std::unique_ptr sort(
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
+/**
+ * @brief Performs a stable lexicographic sort of the rows of a table
+ *
+ * @copydoc cudf::sort
+ */
+std::unique_ptr stable_sort(
+ table_view const& input,
+ std::vector const& column_order = {},
+ std::vector const& null_precedence = {},
+ rmm::cuda_stream_view stream = cudf::get_default_stream(),
+ rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
+
/**
* @brief Performs a key-value sort.
*
@@ -148,26 +160,7 @@ std::unique_ptr sort_by_key(
/**
* @brief Performs a key-value stable sort.
*
- * Creates a new table that reorders the rows of `values` according to the
- * lexicographic ordering of the rows of `keys`.
- *
- * The order of equivalent elements is guaranteed to be preserved.
- *
- * @throws cudf::logic_error if `values.num_rows() != keys.num_rows()`.
- *
- * @param values The table to reorder
- * @param keys The table that determines the ordering
- * @param column_order The desired order for each column in `keys`. Size must be
- * equal to `keys.num_columns()` or empty. If empty, all columns are sorted in
- * ascending order.
- * @param null_precedence The desired order of a null element compared to other
- * elements for each column in `keys`. Size must be equal to
- * `keys.num_columns()` or empty. If empty, all columns will be sorted with
- * `null_order::BEFORE`.
- * @param stream CUDA stream used for device memory operations and kernel launches
- * @param mr Device memory resource used to allocate the returned table's device memory
- * @return The reordering of `values` determined by the lexicographic order of
- * the rows of `keys`.
+ * @copydoc cudf::sort_by_key
*/
std::unique_ptr stable_sort_by_key(
table_view const& values,
diff --git a/cpp/src/join/distinct_hash_join.cu b/cpp/src/join/distinct_hash_join.cu
index 7c834d1a96b..981a7bf0dea 100644
--- a/cpp/src/join/distinct_hash_join.cu
+++ b/cpp/src/join/distinct_hash_join.cu
@@ -205,18 +205,14 @@ CUDF_KERNEL void distinct_join_probe_kernel(Iter iter,
cudf::size_type buffer_size = 0;
while (idx - block.thread_rank() < n) { // the whole thread block falls into the same iteration
- cudf::size_type thread_count{0};
- cudf::size_type build_idx{0};
- if (idx < n) {
- auto const found = hash_table.find(*(iter + idx));
- thread_count = found != hash_table.end();
- build_idx = static_cast(found->second);
- }
+ auto const found = idx < n ? hash_table.find(*(iter + idx)) : hash_table.end();
+ auto const has_match = found != hash_table.end();
// Use a whole-block scan to calculate the output location
cudf::size_type offset;
cudf::size_type block_count;
- block_scan(block_scan_temp_storage).ExclusiveSum(thread_count, offset, block_count);
+ block_scan(block_scan_temp_storage)
+ .ExclusiveSum(static_cast(has_match), offset, block_count);
if (buffer_size + block_count > buffer_capacity) {
flush_buffer(block, buffer_size, buffer, counter, build_indices, probe_indices);
@@ -224,8 +220,9 @@ CUDF_KERNEL void distinct_join_probe_kernel(Iter iter,
buffer_size = 0;
}
- if (thread_count == 1) {
- buffer[buffer_size + offset] = cuco::pair{build_idx, static_cast(idx)};
+ if (has_match) {
+ buffer[buffer_size + offset] = cuco::pair{static_cast(found->second),
+ static_cast(idx)};
}
buffer_size += block_count;
block.sync();
diff --git a/cpp/src/sort/common_sort_impl.cuh b/cpp/src/sort/common_sort_impl.cuh
new file mode 100644
index 00000000000..745e2717304
--- /dev/null
+++ b/cpp/src/sort/common_sort_impl.cuh
@@ -0,0 +1,101 @@
+/*
+ * Copyright (c) 2024, NVIDIA CORPORATION.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#pragma once
+
+#include
+#include
+#include
+#include
+
+#include
+#include
+
+#include
+
+namespace cudf {
+namespace detail {
+
+/**
+ * @brief The enum specifying which sorting method to use (stable or unstable).
+ */
+enum class sort_method : bool { STABLE, UNSTABLE };
+
+/**
+ * @brief Functor performs a fast-path, in-place sort on eligible columns
+ *
+ * @tparam method Whether to use a stable or unstable sort.
+ */
+template
+struct inplace_column_sort_fn {
+ /**
+ * @brief Check if fast-path, in-place sort is available for the given column
+ *
+ * @param column to check
+ * @return true if fast-path sort is available, false otherwise.
+ */
+ static bool is_usable(column_view const& column)
+ {
+ return !column.has_nulls() && cudf::is_fixed_width(column.type()) &&
+ !cudf::is_floating_point(column.type());
+ }
+ /**
+ * @brief Check if fast-path, in-place sort is available for the given table
+ *
+ * @param table to check
+ * @return true if fast-path sort is available, false otherwise.
+ */
+ static bool is_usable(table_view const& table)
+ {
+ return table.num_columns() == 1 && is_usable(table.column(0));
+ }
+
+ /**
+ * @brief Fast-path sort a column in place
+ *
+ * Precondition, is_usable(column) returned true
+ *
+ * @tparam T column data type.
+ * @param col Column to sort, modified in place.
+ * @param order Ascending or descending sort order.
+ * @param stream CUDA stream used for device memory operations and kernel launches
+ *
+ */
+ template ()>* = nullptr>
+ void operator()(mutable_column_view& col, order order, rmm::cuda_stream_view stream) const
+ {
+ auto const do_sort = [&](auto const cmp) {
+ if constexpr (method == sort_method::STABLE) {
+ thrust::stable_sort(rmm::exec_policy(stream), col.begin(), col.end(), cmp);
+ } else {
+ thrust::sort(rmm::exec_policy(stream), col.begin(), col.end(), cmp);
+ }
+ };
+ if (order == order::ASCENDING) {
+ do_sort(thrust::less());
+ } else {
+ do_sort(thrust::greater());
+ }
+ }
+
+ template ()>* = nullptr>
+ void operator()(mutable_column_view&, order, rmm::cuda_stream_view) const
+ {
+ CUDF_FAIL("Column type must be relationally comparable and fixed-width");
+ }
+};
+
+} // namespace detail
+} // namespace cudf
diff --git a/cpp/src/sort/segmented_sort_impl.cuh b/cpp/src/sort/segmented_sort_impl.cuh
index 5d11bf055f1..796e178fecd 100644
--- a/cpp/src/sort/segmented_sort_impl.cuh
+++ b/cpp/src/sort/segmented_sort_impl.cuh
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2021-2023, NVIDIA CORPORATION.
+ * Copyright (c) 2021-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -14,6 +14,10 @@
* limitations under the License.
*/
+#pragma once
+
+#include "common_sort_impl.cuh"
+
#include
#include
#include
@@ -29,11 +33,6 @@
namespace cudf {
namespace detail {
-/**
- * @brief The enum specifying which sorting method to use (stable or unstable).
- */
-enum class sort_method { STABLE, UNSTABLE };
-
/**
* @brief Functor performs faster segmented sort on eligible columns
*/
diff --git a/cpp/src/sort/sort.cu b/cpp/src/sort/sort.cu
index 46edae798d4..adffc06ab93 100644
--- a/cpp/src/sort/sort.cu
+++ b/cpp/src/sort/sort.cu
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2019-2023, NVIDIA CORPORATION.
+ * Copyright (c) 2019-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -14,6 +14,7 @@
* limitations under the License.
*/
+#include "common_sort_impl.cuh"
#include "sort_impl.cuh"
#include
@@ -37,7 +38,7 @@ std::unique_ptr sorted_order(table_view const& input,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
- return sorted_order(input, column_order, null_precedence, stream, mr);
+ return sorted_order(input, column_order, null_precedence, stream, mr);
}
std::unique_ptr sort_by_key(table_view const& values,
@@ -61,47 +62,24 @@ std::unique_ptr sort_by_key(table_view const& values,
mr);
}
-struct inplace_column_sort_fn {
- template ()>* = nullptr>
- void operator()(mutable_column_view& col, bool ascending, rmm::cuda_stream_view stream) const
- {
- CUDF_EXPECTS(!col.has_nulls(), "Nulls not supported for in-place sort");
- if (ascending) {
- thrust::sort(rmm::exec_policy(stream), col.begin(), col.end(), thrust::less());
- } else {
- thrust::sort(rmm::exec_policy(stream), col.begin(), col.end(), thrust::greater());
- }
- }
-
- template ()>* = nullptr>
- void operator()(mutable_column_view&, bool, rmm::cuda_stream_view) const
- {
- CUDF_FAIL("Column type must be relationally comparable and fixed-width");
- }
-};
-
std::unique_ptr sort(table_view const& input,
std::vector const& column_order,
std::vector const& null_precedence,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
- CUDF_FUNC_RANGE();
// fast-path sort conditions: single, non-floating-point, fixed-width column with no nulls
- if (input.num_columns() == 1 && !input.column(0).has_nulls() &&
- cudf::is_fixed_width(input.column(0).type()) &&
- !cudf::is_floating_point(input.column(0).type())) {
- auto output = std::make_unique(input.column(0), stream, mr);
- auto view = output->mutable_view();
- bool ascending = (column_order.empty() ? true : column_order.front() == order::ASCENDING);
+ if (inplace_column_sort_fn::is_usable(input)) {
+ auto output = std::make_unique(input.column(0), stream, mr);
+ auto view = output->mutable_view();
+ auto order = (column_order.empty() ? order::ASCENDING : column_order.front());
cudf::type_dispatcher(
- output->type(), inplace_column_sort_fn{}, view, ascending, stream);
+ output->type(), inplace_column_sort_fn{}, view, order, stream);
std::vector> columns;
columns.emplace_back(std::move(output));
return std::make_unique(std::move(columns));
}
- return detail::sort_by_key(
- input, input, column_order, null_precedence, cudf::get_default_stream(), mr);
+ return detail::sort_by_key(input, input, column_order, null_precedence, stream, mr);
}
} // namespace detail
diff --git a/cpp/src/sort/sort_column.cu b/cpp/src/sort/sort_column.cu
index 9df04251e93..7db44476988 100644
--- a/cpp/src/sort/sort_column.cu
+++ b/cpp/src/sort/sort_column.cu
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2021-2023, NVIDIA CORPORATION.
+ * Copyright (c) 2021-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -14,6 +14,7 @@
* limitations under the License.
*/
+#include "common_sort_impl.cuh"
#include "sort_column_impl.cuh"
#include
@@ -30,11 +31,11 @@ namespace detail {
* sorted_order(column_view&,order,null_order,rmm::cuda_stream_view,rmm::mr::device_memory_resource*)
*/
template <>
-std::unique_ptr sorted_order(column_view const& input,
- order column_order,
- null_order null_precedence,
- rmm::cuda_stream_view stream,
- rmm::mr::device_memory_resource* mr)
+std::unique_ptr sorted_order(column_view const& input,
+ order column_order,
+ null_order null_precedence,
+ rmm::cuda_stream_view stream,
+ rmm::mr::device_memory_resource* mr)
{
auto sorted_indices = cudf::make_numeric_column(
data_type(type_to_id()), input.size(), mask_state::UNALLOCATED, stream, mr);
@@ -42,7 +43,7 @@ std::unique_ptr sorted_order(column_view const& input,
thrust::sequence(
rmm::exec_policy(stream), indices_view.begin(), indices_view.end(), 0);
cudf::type_dispatcher(input.type(),
- column_sorted_order_fn{},
+ column_sorted_order_fn{},
input,
indices_view,
column_order == order::ASCENDING,
diff --git a/cpp/src/sort/sort_column_impl.cuh b/cpp/src/sort/sort_column_impl.cuh
index 5abc6bdfadf..7af24f22b67 100644
--- a/cpp/src/sort/sort_column_impl.cuh
+++ b/cpp/src/sort/sort_column_impl.cuh
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2021-2023, NVIDIA CORPORATION.
+ * Copyright (c) 2021-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -16,6 +16,8 @@
#pragma once
+#include "common_sort_impl.cuh"
+
#include
#include
#include
@@ -36,7 +38,7 @@ namespace detail {
* This API offers fast sorting for primitive types. It cannot handle nested types and will not
* consider `NaN` as equivalent to other `NaN`.
*
- * @tparam stable Whether to use stable sort
+ * @tparam method Whether to use stable sort
* @param input Column to sort. The column data is not modified.
* @param column_order Ascending or descending sort order
* @param null_precedence How null rows are to be ordered
@@ -45,7 +47,7 @@ namespace detail {
* @param mr Device memory resource used to allocate the returned column's device memory
* @return Sorted indices for the input column.
*/
-template
+template
std::unique_ptr sorted_order(column_view const& input,
order column_order,
null_order null_precedence,
@@ -78,7 +80,7 @@ struct simple_comparator {
null_order null_precedence{};
};
-template
+template
struct column_sorted_order_fn {
/**
* @brief Compile time check for allowing faster sort.
@@ -121,7 +123,7 @@ struct column_sorted_order_fn {
auto const do_sort = [&](auto const comp) {
// Compiling `thrust::*sort*` APIs is expensive.
// Thus, we should optimize that by using constexpr condition to only compile what we need.
- if constexpr (stable) {
+ if constexpr (method == sort_method::STABLE) {
thrust::stable_sort_by_key(rmm::exec_policy(stream),
d_col.begin(),
d_col.end(),
@@ -165,7 +167,7 @@ struct column_sorted_order_fn {
auto comp = simple_comparator{*keys, input.has_nulls(), ascending, null_precedence};
// Compiling `thrust::*sort*` APIs is expensive.
// Thus, we should optimize that by using constexpr condition to only compile what we need.
- if constexpr (stable) {
+ if constexpr (method == sort_method::STABLE) {
thrust::stable_sort(
rmm::exec_policy(stream), indices.begin(), indices.end(), comp);
} else {
diff --git a/cpp/src/sort/sort_impl.cuh b/cpp/src/sort/sort_impl.cuh
index 5fae8db1a70..e0331d65053 100644
--- a/cpp/src/sort/sort_impl.cuh
+++ b/cpp/src/sort/sort_impl.cuh
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2020-2023, NVIDIA CORPORATION.
+ * Copyright (c) 2020-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -16,6 +16,7 @@
#pragma once
+#include "common_sort_impl.cuh"
#include "sort_column_impl.cuh"
#include
@@ -30,7 +31,7 @@ namespace detail {
* @tparam stable Whether to use stable sort
* @param stream CUDA stream used for device memory operations and kernel launches
*/
-template
+template
std::unique_ptr sorted_order(table_view input,
std::vector const& column_order,
std::vector const& null_precedence,
@@ -39,7 +40,7 @@ std::unique_ptr sorted_order(table_view input,
{
if (input.num_rows() == 0 or input.num_columns() == 0) {
return cudf::make_numeric_column(
- data_type(type_to_id()), 0, mask_state::UNALLOCATED, stream);
+ data_type(type_to_id()), 0, mask_state::UNALLOCATED, stream, mr);
}
if (not column_order.empty()) {
@@ -57,7 +58,7 @@ std::unique_ptr sorted_order(table_view input,
auto const single_col = input.column(0);
auto const col_order = column_order.empty() ? order::ASCENDING : column_order.front();
auto const null_prec = null_precedence.empty() ? null_order::BEFORE : null_precedence.front();
- return sorted_order(single_col, col_order, null_prec, stream, mr);
+ return sorted_order(single_col, col_order, null_prec, stream, mr);
}
std::unique_ptr sorted_indices = cudf::make_numeric_column(
@@ -71,7 +72,7 @@ std::unique_ptr sorted_order(table_view input,
auto const do_sort = [&](auto const comparator) {
// Compiling `thrust::*sort*` APIs is expensive.
// Thus, we should optimize that by using constexpr condition to only compile what we need.
- if constexpr (stable) {
+ if constexpr (method == sort_method::STABLE) {
thrust::stable_sort(rmm::exec_policy(stream),
mutable_indices_view.begin(),
mutable_indices_view.end(),
diff --git a/cpp/src/sort/stable_sort.cu b/cpp/src/sort/stable_sort.cu
index cf602dcf1a9..0bfe2cfef16 100644
--- a/cpp/src/sort/stable_sort.cu
+++ b/cpp/src/sort/stable_sort.cu
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2019-2023, NVIDIA CORPORATION.
+ * Copyright (c) 2019-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -14,6 +14,7 @@
* limitations under the License.
*/
+#include "common_sort_impl.cuh"
#include "sort_impl.cuh"
#include
@@ -34,7 +35,26 @@ std::unique_ptr stable_sorted_order(table_view const& input,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
- return sorted_order(input, column_order, null_precedence, stream, mr);
+ return sorted_order(input, column_order, null_precedence, stream, mr);
+}
+
+std::unique_ptr stable_sort(table_view const& input,
+ std::vector const& column_order,
+ std::vector const& null_precedence,
+ rmm::cuda_stream_view stream,
+ rmm::mr::device_memory_resource* mr)
+{
+ if (inplace_column_sort_fn::is_usable(input)) {
+ auto output = std::make_unique(input.column(0), stream, mr);
+ auto view = output->mutable_view();
+ auto order = (column_order.empty() ? order::ASCENDING : column_order.front());
+ cudf::type_dispatcher(
+ output->type(), inplace_column_sort_fn{}, view, order, stream);
+ std::vector> columns;
+ columns.emplace_back(std::move(output));
+ return std::make_unique(std::move(columns));
+ }
+ return detail::stable_sort_by_key(input, input, column_order, null_precedence, stream, mr);
}
std::unique_ptr stable_sort_by_key(table_view const& values,
@@ -69,6 +89,16 @@ std::unique_ptr stable_sorted_order(table_view const& input,
return detail::stable_sorted_order(input, column_order, null_precedence, stream, mr);
}
+std::unique_ptr stable_sort(table_view const& input,
+ std::vector const& column_order,
+ std::vector const& null_precedence,
+ rmm::cuda_stream_view stream,
+ rmm::mr::device_memory_resource* mr)
+{
+ CUDF_FUNC_RANGE();
+ return detail::stable_sort(input, column_order, null_precedence, stream, mr);
+}
+
std::unique_ptr stable_sort_by_key(table_view const& values,
table_view const& keys,
std::vector const& column_order,
diff --git a/cpp/src/sort/stable_sort_column.cu b/cpp/src/sort/stable_sort_column.cu
index be519ead951..25a6c92034a 100644
--- a/cpp/src/sort/stable_sort_column.cu
+++ b/cpp/src/sort/stable_sort_column.cu
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2021-2023, NVIDIA CORPORATION.
+ * Copyright (c) 2021-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -14,6 +14,7 @@
* limitations under the License.
*/
+#include "common_sort_impl.cuh"
#include "sort_column_impl.cuh"
#include
@@ -30,11 +31,11 @@ namespace detail {
* sorted_order(column_view&,order,null_order,rmm::cuda_stream_view,rmm::mr::device_memory_resource*)
*/
template <>
-std::unique_ptr sorted_order(column_view const& input,
- order column_order,
- null_order null_precedence,
- rmm::cuda_stream_view stream,
- rmm::mr::device_memory_resource* mr)
+std::unique_ptr sorted_order(column_view const& input,
+ order column_order,
+ null_order null_precedence,
+ rmm::cuda_stream_view stream,
+ rmm::mr::device_memory_resource* mr)
{
auto sorted_indices = cudf::make_numeric_column(
data_type(type_to_id()), input.size(), mask_state::UNALLOCATED, stream, mr);
@@ -42,7 +43,7 @@ std::unique_ptr sorted_order(column_view const& input,
thrust::sequence(
rmm::exec_policy(stream), indices_view.begin(), indices_view.end(), 0);
cudf::type_dispatcher(input.type(),
- column_sorted_order_fn{},
+ column_sorted_order_fn{},
input,
indices_view,
column_order == order::ASCENDING,
diff --git a/cpp/tests/sort/stable_sort_tests.cpp b/cpp/tests/sort/stable_sort_tests.cpp
index 71520ef007b..341f8317004 100644
--- a/cpp/tests/sort/stable_sort_tests.cpp
+++ b/cpp/tests/sort/stable_sort_tests.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2022-2023, NVIDIA CORPORATION.
+ * Copyright (c) 2022-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -34,12 +34,14 @@
void run_stable_sort_test(cudf::table_view input,
cudf::column_view expected_sorted_indices,
std::vector column_order = {},
- std::vector null_precedence = {})
+ std::vector null_precedence = {},
+ bool by_key = true)
{
- auto got_sort_by_key_table = cudf::sort_by_key(input, input, column_order, null_precedence);
- auto expected_sort_by_key_table = cudf::gather(input, expected_sorted_indices);
+ auto got = by_key ? cudf::stable_sort_by_key(input, input, column_order, null_precedence)
+ : cudf::stable_sort(input, column_order, null_precedence);
+ auto expected = cudf::gather(input, expected_sorted_indices);
- CUDF_TEST_EXPECT_TABLES_EQUAL(expected_sort_by_key_table->view(), got_sort_by_key_table->view());
+ CUDF_TEST_EXPECT_TABLES_EQUAL(expected->view(), got->view());
}
using TestTypes = cudf::test::Concat col3{{10, 40, 70, 10, 2, 10}, {1, 1, 0, 1, 1, 1}};
cudf::table_view input{{col1, col2, col3}};
- cudf::test::fixed_width_column_wrapper expected{{1, 0, 3, 5, 4, 2}};
std::vector column_order{
cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::DESCENDING};
std::vector null_precedence{
cudf::null_order::AFTER, cudf::null_order::AFTER, cudf::null_order::AFTER};
+ auto expected = std::is_same_v
+ // All the bools are true, and therefore don't affect sort order,
+ // so this is just the sort order of the nullable string column
+ ? cudf::test::fixed_width_column_wrapper{{0, 3, 5, 1, 4, 2}}
+ : cudf::test::fixed_width_column_wrapper{{1, 0, 3, 5, 4, 2}};
auto got = cudf::stable_sorted_order(input, column_order, null_precedence);
- if (not std::is_same_v) {
- CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, got->view());
-
- run_stable_sort_test(input, expected, column_order, null_precedence);
- } else {
- // for bools only validate that the null element landed at the back, since
- // the rest of the values are equivalent and yields random sorted order.
- auto to_host = [](cudf::column_view const& col) {
- thrust::host_vector h_data(col.size());
- CUDF_CUDA_TRY(cudaMemcpy(
- h_data.data(), col.data(), h_data.size() * sizeof(int32_t), cudaMemcpyDefault));
- return h_data;
- };
- thrust::host_vector h_exp = to_host(expected);
- thrust::host_vector h_got = to_host(got->view());
- EXPECT_EQ(h_exp[h_exp.size() - 1], h_got[h_got.size() - 1]);
-
- cudf::test::fixed_width_column_wrapper expected_for_bool{{0, 3, 5, 1, 4, 2}};
- run_stable_sort_test(input, expected_for_bool, column_order, null_precedence);
- }
+ CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, got->view());
+
+ run_stable_sort_test(input, expected, column_order, null_precedence, false);
+ run_stable_sort_test(input, expected, column_order, null_precedence, true);
+}
+
+TYPED_TEST(StableSort, SingleColumnNoNull)
+{
+ // This test exercises the "fast-path" single column sort.
+ using T = TypeParam;
+ // 0 1 2 3 4 5 6 7 8 9
+ cudf::test::fixed_width_column_wrapper col{{7, 1, -2, 5, 1, 0, 1, -2, 0, 5}};
+ cudf::table_view input{{col}};
+ std::vector column_order{cudf::order::ASCENDING};
+ auto expected =
+ std::is_same_v
+ ? cudf::test::fixed_width_column_wrapper{{8, 5, 0, 1, 2, 3, 4, 6, 7, 9}}
+ : std::is_unsigned_v
+ ? cudf::test::fixed_width_column_wrapper{{5, 8, 1, 4, 6, 3, 9, 0, 2, 7}}
+ : cudf::test::fixed_width_column_wrapper{{2, 7, 5, 8, 1, 4, 6, 3, 9, 0}};
+ run_stable_sort_test(input, expected, column_order, {}, false);
+ run_stable_sort_test(input, expected, column_order, {}, true);
+}
+
+TYPED_TEST(StableSort, SingleColumnWithNull)
+{
+ using T = TypeParam;
+ // 0 1 2 3 4 5 6 7 8 9
+ cudf::test::fixed_width_column_wrapper col{{7, 1, -2, 5, 1, 0, 1, -2, 0, 5},
+ {1, 1, 0, 0, 1, 0, 1, 0, 1, 0}};
+ cudf::table_view input{{col}};
+ std::vector column_order{cudf::order::ASCENDING};
+ std::vector null_precedence{cudf::null_order::BEFORE};
+ auto expected =
+ std::is_same_v
+ ? cudf::test::fixed_width_column_wrapper{{5, 2, 3, 7, 9, 8, 0, 1, 4, 6}}
+ : std::is_unsigned_v
+ ? cudf::test::fixed_width_column_wrapper{{5, 3, 9, 2, 7, 8, 1, 4, 6, 0}}
+ : cudf::test::fixed_width_column_wrapper{{2, 7, 5, 3, 9, 8, 1, 4, 6, 0}};
+ run_stable_sort_test(input, expected, column_order, {}, false);
+ run_stable_sort_test(input, expected, column_order, {}, true);
}
TYPED_TEST(StableSort, WithNullMin)
@@ -117,32 +144,19 @@ TYPED_TEST(StableSort, WithNullMin)
cudf::test::fixed_width_column_wrapper col3{{10, 40, 70, 10, 2}, {1, 1, 0, 1, 1}};
cudf::table_view input{{col1, col2, col3}};
- cudf::test::fixed_width_column_wrapper expected{{2, 1, 0, 3, 4}};
std::vector column_order{
cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::DESCENDING};
+ auto expected = std::is_same_v
+ // All the bools are true, and therefore don't affect sort order,
+ // so this is just the sort order of the string column
+ ? cudf::test::fixed_width_column_wrapper{{2, 0, 3, 1, 4}}
+ : cudf::test::fixed_width_column_wrapper{{2, 1, 0, 3, 4}};
+ auto got = cudf::stable_sorted_order(input, column_order);
- auto got = cudf::stable_sorted_order(input, column_order);
+ CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, got->view());
- if (!std::is_same_v) {
- CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, got->view());
-
- run_stable_sort_test(input, expected, column_order);
- } else {
- // for bools only validate that the null element landed at the front, since
- // the rest of the values are equivalent and yields random sorted order.
- auto to_host = [](cudf::column_view const& col) {
- thrust::host_vector h_data(col.size());
- CUDF_CUDA_TRY(cudaMemcpy(
- h_data.data(), col.data(), h_data.size() * sizeof(int32_t), cudaMemcpyDefault));
- return h_data;
- };
- thrust::host_vector h_exp = to_host(expected);
- thrust::host_vector h_got = to_host(got->view());
- EXPECT_EQ(h_exp.front(), h_got.front());
-
- cudf::test::fixed_width_column_wrapper expected_for_bool{{2, 0, 3, 1, 4}};
- run_stable_sort_test(input, expected_for_bool, column_order);
- }
+ run_stable_sort_test(input, expected, column_order, {}, false);
+ run_stable_sort_test(input, expected, column_order, {}, true);
}
TYPED_TEST(StableSort, WithAllValid)
@@ -154,22 +168,19 @@ TYPED_TEST(StableSort, WithAllValid)
cudf::test::fixed_width_column_wrapper col3{{10, 40, 70, 10, 2}};
cudf::table_view input{{col1, col2, col3}};
- cudf::test::fixed_width_column_wrapper expected{{2, 1, 0, 3, 4}};
std::vector column_order{
cudf::order::ASCENDING, cudf::order::ASCENDING, cudf::order::DESCENDING};
+ auto expected = std::is_same_v
+ // All the bools are true, and therefore don't affect sort order,
+ // so this is just the sort order of the string column
+ ? cudf::test::fixed_width_column_wrapper{{2, 0, 3, 1, 4}}
+ : cudf::test::fixed_width_column_wrapper{{2, 1, 0, 3, 4}};
+ auto got = cudf::stable_sorted_order(input, column_order);
- auto got = cudf::stable_sorted_order(input, column_order);
-
- // Skip validating bools order. Valid true bools are all
- // equivalent, and yield random order after thrust::sort
- if (!std::is_same_v) {
- CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, got->view());
+ CUDF_TEST_EXPECT_COLUMNS_EQUAL(expected, got->view());
- run_stable_sort_test(input, expected, column_order);
- } else {
- cudf::test::fixed_width_column_wrapper expected_for_bool{{2, 0, 3, 1, 4}};
- run_stable_sort_test(input, expected_for_bool, column_order);
- }
+ run_stable_sort_test(input, expected, column_order, {}, false);
+ run_stable_sort_test(input, expected, column_order, {}, true);
}
TYPED_TEST(StableSort, MisMatchInColumnOrderSize)
diff --git a/python/cudf/cudf/_lib/pylibcudf/column.pyx b/python/cudf/cudf/_lib/pylibcudf/column.pyx
index 2a7215099d5..62a83efa3e2 100644
--- a/python/cudf/cudf/_lib/pylibcudf/column.pyx
+++ b/python/cudf/cudf/_lib/pylibcudf/column.pyx
@@ -1,14 +1,18 @@
# Copyright (c) 2023-2024, NVIDIA CORPORATION.
+from cython.operator cimport dereference
from libcpp.memory cimport unique_ptr
from libcpp.utility cimport move
from rmm._lib.device_buffer cimport DeviceBuffer
from cudf._lib.cpp.column.column cimport column, column_contents
+from cudf._lib.cpp.column.column_factories cimport make_column_from_scalar
+from cudf._lib.cpp.scalar.scalar cimport scalar
from cudf._lib.cpp.types cimport size_type
from .gpumemoryview cimport gpumemoryview
+from .scalar cimport Scalar
from .types cimport DataType, type_id
from .utils cimport int_to_bitmask_ptr, int_to_void_ptr
@@ -196,6 +200,28 @@ cdef class Column:
children,
)
+ @staticmethod
+ def from_scalar(Scalar slr, size_type size):
+ """Create a Column from a Scalar.
+
+ Parameters
+ ----------
+ slr : Scalar
+ The scalar to create a column from.
+ size : size_type
+ The number of elements in the column.
+
+ Returns
+ -------
+ Column
+ A Column containing the scalar repeated `size` times.
+ """
+ cdef const scalar* c_scalar = slr.get()
+ cdef unique_ptr[column] c_result
+ with nogil:
+ c_result = move(make_column_from_scalar(dereference(c_scalar), size))
+ return Column.from_libcudf(move(c_result))
+
cpdef DataType type(self):
"""The type of data in the column."""
return self._data_type