diff --git a/Dockerfile b/Dockerfile index d24c5d05556..eef8a04067d 100644 --- a/Dockerfile +++ b/Dockerfile @@ -19,7 +19,6 @@ RUN apt update -y --fix-missing && \ git \ gcc-${CC} \ g++-${CXX} \ - libboost-all-dev \ tzdata && \ apt-get autoremove -y && \ apt-get clean && \ @@ -68,8 +67,8 @@ RUN if [ -f /cudf/docker/package_versions.sh ]; \ conda env create --name cudf --file /cudf/conda/environments/cudf_dev_cuda${CUDA_SHORT_VERSION}.yml ; \ fi -ENV CC=/usr/bin/gcc-${CC} -ENV CXX=/usr/bin/g++-${CXX} +ENV CC=/opts/conda/envs/rapids/bin/gcc-${CC} +ENV CXX=/opts/conda/envs/rapids/bin/g++-${CXX} # libcudf & cudf build/install RUN source activate cudf && \ diff --git a/conda/environments/cudf_dev_cuda11.0.yml b/conda/environments/cudf_dev_cuda11.0.yml index 7c9fdc318c1..a44472de7dc 100644 --- a/conda/environments/cudf_dev_cuda11.0.yml +++ b/conda/environments/cudf_dev_cuda11.0.yml @@ -47,7 +47,6 @@ dependencies: - dlpack - arrow-cpp=1.0.1 - arrow-cpp-proc * cuda - - boost-cpp>=1.72.0 - double-conversion - rapidjson - flatbuffers diff --git a/conda/environments/cudf_dev_cuda11.1.yml b/conda/environments/cudf_dev_cuda11.1.yml index e278454d371..fde8bb0c0e8 100644 --- a/conda/environments/cudf_dev_cuda11.1.yml +++ b/conda/environments/cudf_dev_cuda11.1.yml @@ -47,7 +47,6 @@ dependencies: - dlpack - arrow-cpp=1.0.1 - arrow-cpp-proc * cuda - - boost-cpp>=1.72.0 - double-conversion - rapidjson - flatbuffers diff --git a/conda/environments/cudf_dev_cuda11.2.yml b/conda/environments/cudf_dev_cuda11.2.yml index 02eb40893dc..6e8d3e58cf1 100644 --- a/conda/environments/cudf_dev_cuda11.2.yml +++ b/conda/environments/cudf_dev_cuda11.2.yml @@ -47,7 +47,6 @@ dependencies: - dlpack - arrow-cpp=1.0.1 - arrow-cpp-proc * cuda - - boost-cpp>=1.72.0 - double-conversion - rapidjson - flatbuffers diff --git a/conda/recipes/libcudf/meta.yaml b/conda/recipes/libcudf/meta.yaml index c1b94f0d317..9a0da2faee1 100644 --- a/conda/recipes/libcudf/meta.yaml +++ b/conda/recipes/libcudf/meta.yaml @@ -39,12 +39,10 @@ requirements: - cudatoolkit {{ cuda_version }}.* - arrow-cpp 1.0.1 - arrow-cpp-proc * cuda - - boost-cpp 1.72.0 - dlpack run: - {{ pin_compatible('cudatoolkit', max_pin='x.x') }} - arrow-cpp-proc * cuda - - {{ pin_compatible('boost-cpp', max_pin='x.x.x') }} - {{ pin_compatible('dlpack', max_pin='x.x') }} test: @@ -55,7 +53,7 @@ test: - test -f $PREFIX/include/cudf/ast/transform.hpp - test -f $PREFIX/include/cudf/ast/detail/linearizer.hpp - test -f $PREFIX/include/cudf/ast/detail/operators.hpp - - test -f $PREFIX/include/cudf/ast/linearizer.hpp + - test -f $PREFIX/include/cudf/ast/nodes.hpp - test -f $PREFIX/include/cudf/ast/operators.hpp - test -f $PREFIX/include/cudf/binaryop.hpp - test -f $PREFIX/include/cudf/labeling/label_bins.hpp diff --git a/cpp/CMakeLists.txt b/cpp/CMakeLists.txt index 6ae87eb3e24..d141fa0a22e 100644 --- a/cpp/CMakeLists.txt +++ b/cpp/CMakeLists.txt @@ -121,8 +121,6 @@ find_package(ZLIB REQUIRED) find_package(Threads REQUIRED) # add third party dependencies using CPM include(cmake/thirdparty/CUDF_GetCPM.cmake) -# find boost -include(cmake/thirdparty/CUDF_FindBoost.cmake) # find jitify include(cmake/thirdparty/CUDF_GetJitify.cmake) # find thrust/cub @@ -477,7 +475,6 @@ add_dependencies(cudf jitify_preprocess_run) # Specify the target module library dependencies target_link_libraries(cudf PUBLIC ZLIB::ZLIB - Boost::filesystem ${ARROW_LIBRARIES} cudf::Thrust rmm::rmm) diff --git a/cpp/cmake/cudf-build-config.cmake.in b/cpp/cmake/cudf-build-config.cmake.in index ed1926f20f0..358c4377078 100644 --- a/cpp/cmake/cudf-build-config.cmake.in +++ b/cpp/cmake/cudf-build-config.cmake.in @@ -43,8 +43,6 @@ find_dependency(ZLIB) # add third party dependencies using CPM include(@CUDF_SOURCE_DIR@/cmake/thirdparty/CUDF_GetCPM.cmake) -# find boost -include(@CUDF_SOURCE_DIR@/cmake/thirdparty/CUDF_FindBoost.cmake) # find jitify include(@CUDF_SOURCE_DIR@/cmake/thirdparty/CUDF_GetJitify.cmake) # find thrust/cub diff --git a/cpp/cmake/cudf-config.cmake.in b/cpp/cmake/cudf-config.cmake.in index 66c669851fa..86755696607 100644 --- a/cpp/cmake/cudf-config.cmake.in +++ b/cpp/cmake/cudf-config.cmake.in @@ -71,11 +71,6 @@ find_dependency(CUDAToolkit) find_dependency(Threads) find_dependency(ZLIB) -# Don't look for a Boost CMake configuration file because it adds the -# `-DBOOST_ALL_NO_LIB` and `-DBOOST_FILESYSTEM_DYN_LINK` compile defs -set(Boost_NO_BOOST_CMAKE ON) -find_dependency(Boost @CUDF_MIN_VERSION_Boost@ COMPONENTS filesystem) - find_dependency(Arrow @CUDF_VERSION_Arrow@) set(ArrowCUDA_DIR "${Arrow_DIR}") diff --git a/cpp/cmake/thirdparty/CUDF_FindBoost.cmake b/cpp/cmake/thirdparty/CUDF_FindBoost.cmake deleted file mode 100644 index fef393d7f20..00000000000 --- a/cpp/cmake/thirdparty/CUDF_FindBoost.cmake +++ /dev/null @@ -1,38 +0,0 @@ -#============================================================================= -# Copyright (c) 2020-2021, NVIDIA CORPORATION. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -#============================================================================= - -# Min version set to newest boost in Ubuntu bionic apt repositories -set(CUDF_MIN_VERSION_Boost 1.65.0) - -# Don't look for a Boost CMake configuration file because it adds the -# `-DBOOST_ALL_NO_LIB` and `-DBOOST_FILESYSTEM_DYN_LINK` compile defs -set(Boost_NO_BOOST_CMAKE ON) - -# TODO: Use CPMFindPackage to add or build Boost - -find_package(Boost ${CUDF_MIN_VERSION_Boost} QUIET MODULE COMPONENTS filesystem) - -message(VERBOSE "CUDF: Boost_FOUND: ${Boost_FOUND}") - -if(NOT Boost_FOUND) - message(FATAL_ERROR "CUDF: Boost not found, please check your settings.") -endif() - -message(VERBOSE "CUDF: Boost_LIBRARIES: ${Boost_LIBRARIES}") -message(VERBOSE "CUDF: Boost_INCLUDE_DIRS: ${Boost_INCLUDE_DIRS}") - -list(APPEND CUDF_CXX_DEFINITIONS BOOST_NO_CXX14_CONSTEXPR) -list(APPEND CUDF_CUDA_DEFINITIONS BOOST_NO_CXX14_CONSTEXPR) diff --git a/cpp/cmake/thrust.patch b/cpp/cmake/thrust.patch index 3f876f7ffb7..3cedff8b80d 100644 --- a/cpp/cmake/thrust.patch +++ b/cpp/cmake/thrust.patch @@ -42,3 +42,25 @@ index 1ffeef0..5e80800 100644 for (int ITEM = 1; ITEM < ITEMS_PER_THREAD; ++ITEM) { if (ITEMS_PER_THREAD * tid + ITEM < num_remaining) +diff --git a/thrust/system/cuda/detail/scan_by_key.h b/thrust/system/cuda/detail/scan_by_key.h +index fe4b321c..b3974c69 100644 +--- a/thrust/system/cuda/detail/scan_by_key.h ++++ b/thrust/system/cuda/detail/scan_by_key.h +@@ -513,7 +513,7 @@ namespace __scan_by_key { + scan_op(scan_op_) + { + int tile_idx = blockIdx.x; +- Size tile_base = ITEMS_PER_TILE * tile_idx; ++ Size tile_base = ITEMS_PER_TILE * static_cast(tile_idx); + Size num_remaining = num_items - tile_base; + + if (num_remaining > ITEMS_PER_TILE) +@@ -734,7 +734,7 @@ namespace __scan_by_key { + ScanOp scan_op, + AddInitToScan add_init_to_scan) + { +- int num_items = static_cast(thrust::distance(keys_first, keys_last)); ++ size_t num_items = static_cast(thrust::distance(keys_first, keys_last)); + size_t storage_size = 0; + cudaStream_t stream = cuda_cub::stream(policy); + bool debug_sync = THRUST_DEBUG_SYNC_FLAG; diff --git a/cpp/include/cudf/ast/detail/linearizer.hpp b/cpp/include/cudf/ast/detail/linearizer.hpp index 68319a24e5d..166a0408703 100644 --- a/cpp/include/cudf/ast/detail/linearizer.hpp +++ b/cpp/include/cudf/ast/detail/linearizer.hpp @@ -83,10 +83,7 @@ class linearizer; * This class is a part of a "visitor" pattern with the `linearizer` class. * Nodes inheriting from this class can accept visitors. */ -class node { - friend class detail::linearizer; - - private: +struct node { virtual cudf::size_type accept(detail::linearizer& visitor) const = 0; }; @@ -102,10 +99,6 @@ class node { * resolved into intermediate data storage in shared memory. */ class linearizer { - friend class literal; - friend class column_reference; - friend class expression; - public: /** * @brief Construct a new linearizer object diff --git a/cpp/include/cudf/ast/detail/operators.hpp b/cpp/include/cudf/ast/detail/operators.hpp index 27bcb0d320b..8ae60f96997 100644 --- a/cpp/include/cudf/ast/detail/operators.hpp +++ b/cpp/include/cudf/ast/detail/operators.hpp @@ -753,43 +753,6 @@ struct operator_functor { } }; -#if 0 -/** - * @brief Functor used to double-type-dispatch binary operators. - * - * This functor's `operator()` is templated to validate calls to its operators based on the input - * type, as determined by the `is_valid_binary_op` trait. - * - * @tparam OperatorFunctor Binary operator functor. - */ -template -struct double_dispatch_binary_operator_types { - template >* = nullptr> - CUDA_HOST_DEVICE_CALLABLE void operator()(F&& f, Ts&&... args) - { - f.template operator()(std::forward(args)...); - } - - template >* = nullptr> - CUDA_HOST_DEVICE_CALLABLE void operator()(F&& f, Ts&&... args) - { -#ifndef __CUDA_ARCH__ - CUDF_FAIL("Invalid binary operation."); -#else - cudf_assert(false && "Invalid binary operation."); -#endif - } -}; -#endif - /** * @brief Functor used to single-type-dispatch binary operators. * @@ -856,16 +819,6 @@ struct type_dispatch_binary_op { F&& f, Ts&&... args) { -#if 0 - // Double dispatch - /* - double_type_dispatcher(lhs_type, - rhs_type, - detail::double_dispatch_binary_operator_types>{}, - std::forward(f), - std::forward(args)...); - */ -#endif // Single dispatch (assume lhs_type == rhs_type) type_dispatcher(lhs_type, detail::single_dispatch_binary_operator_types>{}, diff --git a/cpp/include/cudf/ast/detail/transform.cuh b/cpp/include/cudf/ast/detail/transform.cuh index f9d7426e2e4..f69927a3601 100644 --- a/cpp/include/cudf/ast/detail/transform.cuh +++ b/cpp/include/cudf/ast/detail/transform.cuh @@ -15,8 +15,9 @@ */ #pragma once +#include #include -#include +#include #include #include #include @@ -25,6 +26,7 @@ #include #include #include +#include #include #include @@ -155,10 +157,11 @@ struct row_evaluator { * storing intermediates. * @param output_column The output column where results are stored. */ - __device__ row_evaluator(table_device_view const& table, - const cudf::detail::fixed_width_scalar_device_view_base* literals, - std::int64_t* thread_intermediate_storage, - mutable_column_device_view* output_column) + __device__ row_evaluator( + table_device_view const& table, + device_span literals, + std::int64_t* thread_intermediate_storage, + mutable_column_device_view* output_column) : table(table), literals(literals), thread_intermediate_storage(thread_intermediate_storage), @@ -264,7 +267,7 @@ struct row_evaluator { private: table_device_view const& table; - const cudf::detail::fixed_width_scalar_device_view_base* literals; + device_span literals; std::int64_t* thread_intermediate_storage; mutable_column_device_view* output_column; }; @@ -298,15 +301,15 @@ __device__ void row_output::resolve_output(detail::device_data_reference device_ * @param num_operators Number of operators. * @param row_index Row index of data column(s). */ -__device__ void evaluate_row_expression(detail::row_evaluator const& evaluator, - const detail::device_data_reference* data_references, - const ast_operator* operators, - const cudf::size_type* operator_source_indices, - cudf::size_type num_operators, - cudf::size_type row_index) +__device__ void evaluate_row_expression( + detail::row_evaluator const& evaluator, + device_span data_references, + device_span operators, + device_span operator_source_indices, + cudf::size_type row_index) { - auto operator_source_index = cudf::size_type(0); - for (cudf::size_type operator_index(0); operator_index < num_operators; operator_index++) { + auto operator_source_index = static_cast(0); + for (cudf::size_type operator_index = 0; operator_index < operators.size(); operator_index++) { // Execute operator auto const op = operators[operator_index]; auto const arity = ast_operator_arity(op); @@ -336,41 +339,79 @@ __device__ void evaluate_row_expression(detail::row_evaluator const& evaluator, } } +/** + * @brief The AST plan creates a device buffer of data needed to execute an AST. + * + * On construction, an AST plan creates a single "packed" host buffer of all necessary data arrays, + * and copies that to the device with a single host-device memory copy. Because the plan tends to be + * small, this is the most efficient approach for low latency. + * + */ struct ast_plan { - public: - ast_plan() : sizes(), data_pointers() {} + ast_plan(linearizer const& expr_linearizer, + rmm::cuda_stream_view stream, + rmm::mr::device_memory_resource* mr) + : _sizes{}, _data_pointers{} + { + add_to_plan(expr_linearizer.data_references()); + add_to_plan(expr_linearizer.literals()); + add_to_plan(expr_linearizer.operators()); + add_to_plan(expr_linearizer.operator_source_indices()); + + // Create device buffer + auto const buffer_size = std::accumulate(_sizes.cbegin(), _sizes.cend(), 0); + auto buffer_offsets = std::vector(_sizes.size()); + thrust::exclusive_scan(_sizes.cbegin(), _sizes.cend(), buffer_offsets.begin(), 0); + + auto h_data_buffer = std::make_unique(buffer_size); + for (unsigned int i = 0; i < _data_pointers.size(); ++i) { + std::memcpy(h_data_buffer.get() + buffer_offsets[i], _data_pointers[i], _sizes[i]); + } - using buffer_type = std::pair, int>; + _device_data_buffer = rmm::device_buffer(h_data_buffer.get(), buffer_size, stream, mr); + + stream.synchronize(); + + // Create device pointers to components of plan + auto device_data_buffer_ptr = static_cast(_device_data_buffer.data()); + _device_data_references = device_span( + reinterpret_cast(device_data_buffer_ptr + + buffer_offsets[0]), + expr_linearizer.data_references().size()); + _device_literals = device_span( + reinterpret_cast( + device_data_buffer_ptr + buffer_offsets[1]), + expr_linearizer.literals().size()); + _device_operators = device_span( + reinterpret_cast(device_data_buffer_ptr + buffer_offsets[2]), + expr_linearizer.operators().size()); + _device_operator_source_indices = device_span( + reinterpret_cast(device_data_buffer_ptr + buffer_offsets[3]), + expr_linearizer.operator_source_indices().size()); + } + /** + * @brief Helper function for adding components (operators, literals, etc) to AST plan + * + * @tparam T The underlying type of the input `std::vector` + * @param v The `std::vector` containing components (operators, literals, etc) + */ template void add_to_plan(std::vector const& v) { auto const data_size = sizeof(T) * v.size(); - sizes.push_back(data_size); - data_pointers.push_back(v.data()); + _sizes.push_back(data_size); + _data_pointers.push_back(v.data()); } - buffer_type get_host_data_buffer() const - { - auto const total_size = std::accumulate(sizes.cbegin(), sizes.cend(), 0); - auto host_data_buffer = std::make_unique(total_size); - auto const offsets = get_offsets(); - for (unsigned int i = 0; i < data_pointers.size(); ++i) { - std::memcpy(host_data_buffer.get() + offsets[i], data_pointers[i], sizes[i]); - } - return std::make_pair(std::move(host_data_buffer), total_size); - } + std::vector _sizes; + std::vector _data_pointers; - std::vector get_offsets() const - { - auto offsets = std::vector(sizes.size()); - thrust::exclusive_scan(sizes.cbegin(), sizes.cend(), offsets.begin(), 0); - return offsets; - } - - private: - std::vector sizes; - std::vector data_pointers; + rmm::device_buffer _device_data_buffer; + device_span _device_data_references; + device_span _device_literals; + device_span _device_operators; + device_span _device_operator_source_indices; }; /** diff --git a/cpp/include/cudf/ast/linearizer.hpp b/cpp/include/cudf/ast/nodes.hpp similarity index 90% rename from cpp/include/cudf/ast/linearizer.hpp rename to cpp/include/cudf/ast/nodes.hpp index e5ccb2e8069..70dda58816e 100644 --- a/cpp/include/cudf/ast/linearizer.hpp +++ b/cpp/include/cudf/ast/nodes.hpp @@ -38,17 +38,10 @@ enum class table_reference { OUTPUT // Column index in the output table }; -// Forward declaration -class literal; -class column_reference; -class expression; - /** * @brief A literal value used in an abstract syntax tree. */ class literal : public detail::node { - friend class detail::linearizer; - public: /** * @brief Construct a new literal object. @@ -90,7 +83,6 @@ class literal : public detail::node { */ cudf::data_type get_data_type() const { return get_value().type(); } - private: /** * @brief Get the value object. * @@ -106,6 +98,7 @@ class literal : public detail::node { */ cudf::size_type accept(detail::linearizer& visitor) const override; + private: const cudf::detail::fixed_width_scalar_device_view_base value; }; @@ -113,8 +106,6 @@ class literal : public detail::node { * @brief A node referring to data from a column in a table. */ class column_reference : public detail::node { - friend class detail::linearizer; - public: /** * @brief Construct a new column reference object @@ -175,7 +166,6 @@ class column_reference : public detail::node { return table.column(get_column_index()).type(); } - private: /** * @brief Accepts a visitor class. * @@ -184,6 +174,7 @@ class column_reference : public detail::node { */ cudf::size_type accept(detail::linearizer& visitor) const override; + private: cudf::size_type column_index; table_reference table_source; }; @@ -192,8 +183,6 @@ class column_reference : public detail::node { * @brief An expression node holds an operator and zero or more operands. */ class expression : public detail::node { - friend class detail::linearizer; - public: /** * @brief Construct a new unary expression object. @@ -208,11 +197,6 @@ class expression : public detail::node { } } - /** - * @brief `expression` doesn't accept r-value references for expression nodes - */ - expression(ast_operator op, node&& input) = delete; - /** * @brief Construct a new binary expression object. * @@ -227,19 +211,11 @@ class expression : public detail::node { } } - /** - * @brief `expression` doesn't accept r-value references for expression nodes - */ - expression(ast_operator op, node&& left, node&& right) = delete; - - /** - * @brief `expression` doesn't accept r-value references for expression nodes - */ + // expression only stores references to nodes, so it does not accept r-value + // references: the calling code must own the nodes. + expression(ast_operator op, node&& input) = delete; + expression(ast_operator op, node&& left, node&& right) = delete; expression(ast_operator op, node&& left, node const& right) = delete; - - /** - * @brief `expression` doesn't accept r-value references for expression nodes - */ expression(ast_operator op, node const& left, node&& right) = delete; /** @@ -256,7 +232,6 @@ class expression : public detail::node { */ std::vector> get_operands() const { return operands; } - private: /** * @brief Accepts a visitor class. * @@ -265,6 +240,7 @@ class expression : public detail::node { */ cudf::size_type accept(detail::linearizer& visitor) const override; + private: const ast_operator op; const std::vector> operands; }; diff --git a/cpp/include/cudf/ast/transform.hpp b/cpp/include/cudf/ast/transform.hpp index 513f92ea251..59697e5f75c 100644 --- a/cpp/include/cudf/ast/transform.hpp +++ b/cpp/include/cudf/ast/transform.hpp @@ -15,7 +15,7 @@ */ #pragma once -#include +#include #include namespace cudf { diff --git a/cpp/include/cudf/detail/utilities/vector_factories.hpp b/cpp/include/cudf/detail/utilities/vector_factories.hpp index db8e6e4a156..1e735719400 100644 --- a/cpp/include/cudf/detail/utilities/vector_factories.hpp +++ b/cpp/include/cudf/detail/utilities/vector_factories.hpp @@ -47,7 +47,7 @@ namespace detail { template rmm::device_uvector make_zeroed_device_uvector_async( std::size_t size, - rmm::cuda_stream_view stream = rmm::cuda_stream_default, + rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource()) { rmm::device_uvector ret(size, stream, mr); @@ -93,7 +93,7 @@ rmm::device_uvector make_zeroed_device_uvector_sync( template rmm::device_uvector make_device_uvector_async( host_span source_data, - rmm::cuda_stream_view stream = rmm::cuda_stream_default, + rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource()) { rmm::device_uvector ret(source_data.size(), stream, mr); @@ -124,7 +124,7 @@ template >::value>* = nullptr> rmm::device_uvector make_device_uvector_async( Container const& c, - rmm::cuda_stream_view stream = rmm::cuda_stream_default, + rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource()) { return make_device_uvector_async(host_span{c}, stream, mr); @@ -177,7 +177,7 @@ template < nullptr> rmm::device_uvector make_device_uvector_async( Container const& c, - rmm::cuda_stream_view stream = rmm::cuda_stream_default, + rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource()) { return make_device_uvector_async( @@ -281,6 +281,16 @@ rmm::device_uvector make_device_uvector_sync( return make_device_uvector_sync(device_span{c}, stream, mr); } +// Utility function template to allow copying to either a thrust::host_vector or std::vector +template +OutContainer make_vector_async(device_span v, rmm::cuda_stream_view stream) +{ + OutContainer result(v.size()); + CUDA_TRY(cudaMemcpyAsync( + result.data(), v.data(), v.size() * sizeof(T), cudaMemcpyDeviceToHost, stream.value())); + return result; +} + /** * @brief Asynchronously construct a `std::vector` containing a copy of data from a * `device_span` @@ -293,13 +303,9 @@ rmm::device_uvector make_device_uvector_sync( * @return The data copied to the host */ template -std::vector make_std_vector_async(device_span v, - rmm::cuda_stream_view stream = rmm::cuda_stream_default) +std::vector make_std_vector_async(device_span v, rmm::cuda_stream_view stream) { - std::vector result(v.size()); - CUDA_TRY(cudaMemcpyAsync( - result.data(), v.data(), v.size() * sizeof(T), cudaMemcpyDeviceToHost, stream.value())); - return result; + return make_vector_async>(v, stream); } /** @@ -319,8 +325,8 @@ template < std::enable_if_t< std::is_convertible>::value>* = nullptr> -std::vector make_std_vector_async( - Container const& c, rmm::cuda_stream_view stream = rmm::cuda_stream_default) +std::vector make_std_vector_async(Container const& c, + rmm::cuda_stream_view stream) { return make_std_vector_async(device_span{c}, stream); } @@ -337,8 +343,7 @@ std::vector make_std_vector_async( * @return The data copied to the host */ template -std::vector make_std_vector_sync(device_span v, - rmm::cuda_stream_view stream = rmm::cuda_stream_default) +std::vector make_std_vector_sync(device_span v, rmm::cuda_stream_view stream) { auto result = make_std_vector_async(v, stream); stream.synchronize(); @@ -368,6 +373,89 @@ std::vector make_std_vector_sync( return make_std_vector_sync(device_span{c}, stream); } +/** + * @brief Asynchronously construct a `thrust::host_vector` containing a copy of data from a + * `device_span` + * + * @note This function does not synchronize `stream`. + * + * @tparam T The type of the data to copy + * @param source_data The device data to copy + * @param stream The stream on which to perform the copy + * @return The data copied to the host + */ +template +thrust::host_vector make_host_vector_async(device_span v, rmm::cuda_stream_view stream) +{ + return make_vector_async>(v, stream); +} + +/** + * @brief Asynchronously construct a `std::vector` containing a copy of data from a device + * container + * + * @note This function synchronizes `stream`. + * + * @tparam Container The type of the container to copy from + * @tparam T The type of the data to copy + * @param c The input device container from which to copy + * @param stream The stream on which to perform the copy + * @return The data copied to the host + */ +template < + typename Container, + std::enable_if_t< + std::is_convertible>::value>* = + nullptr> +thrust::host_vector make_host_vector_async( + Container const& c, rmm::cuda_stream_view stream) +{ + return make_host_vector_async(device_span{c}, stream); +} + +/** + * @brief Synchronously construct a `std::vector` containing a copy of data from a + * `device_span` + * + * @note This function does a synchronize on `stream`. + * + * @tparam T The type of the data to copy + * @param source_data The device data to copy + * @param stream The stream on which to perform the copy + * @return The data copied to the host + */ +template +thrust::host_vector make_host_vector_sync( + device_span v, rmm::cuda_stream_view stream = rmm::cuda_stream_default) +{ + auto result = make_host_vector_async(v, stream); + stream.synchronize(); + return result; +} + +/** + * @brief Synchronously construct a `std::vector` containing a copy of data from a device + * container + * + * @note This function synchronizes `stream`. + * + * @tparam Container The type of the container to copy from + * @tparam T The type of the data to copy + * @param c The input device container from which to copy + * @param stream The stream on which to perform the copy + * @return The data copied to the host + */ +template < + typename Container, + std::enable_if_t< + std::is_convertible>::value>* = + nullptr> +thrust::host_vector make_host_vector_sync( + Container const& c, rmm::cuda_stream_view stream = rmm::cuda_stream_default) +{ + return make_host_vector_sync(device_span{c}, stream); +} + } // namespace detail } // namespace cudf diff --git a/cpp/include/cudf/lists/list_device_view.cuh b/cpp/include/cudf/lists/list_device_view.cuh index 4f207474526..802639f2393 100644 --- a/cpp/include/cudf/lists/list_device_view.cuh +++ b/cpp/include/cudf/lists/list_device_view.cuh @@ -40,10 +40,10 @@ class list_device_view { cudf_assert(row_index >= 0 && row_index < lists_column.size() && row_index < offsets.size() && "row_index out of bounds"); - begin_offset = offsets.element(row_index); + begin_offset = offsets.element(row_index + lists_column.offset()); cudf_assert(begin_offset >= 0 && begin_offset <= lists_column.child().size() && "begin_offset out of bounds."); - _size = offsets.element(row_index + 1) - begin_offset; + _size = offsets.element(row_index + 1 + lists_column.offset()) - begin_offset; } ~list_device_view() = default; diff --git a/cpp/include/cudf/lists/lists_column_device_view.cuh b/cpp/include/cudf/lists/lists_column_device_view.cuh index 187b9c2cf6a..d8f082c9a42 100644 --- a/cpp/include/cudf/lists/lists_column_device_view.cuh +++ b/cpp/include/cudf/lists/lists_column_device_view.cuh @@ -75,6 +75,12 @@ class lists_column_device_view { */ CUDA_DEVICE_CALLABLE bool is_null(size_type idx) const { return underlying.is_null(idx); } + /** + * @brief Fetches the offset of the underlying column_device_view, + * in case it is a sliced/offset column. + */ + CUDA_DEVICE_CALLABLE size_type offset() const { return underlying.offset(); } + private: column_device_view underlying; }; diff --git a/cpp/include/cudf/utilities/span.hpp b/cpp/include/cudf/utilities/span.hpp index 2f3577623a9..52ad0648e23 100644 --- a/cpp/include/cudf/utilities/span.hpp +++ b/cpp/include/cudf/utilities/span.hpp @@ -120,6 +120,11 @@ struct is_host_span_supported_container< // thrust::host_vector> : std::true_type { }; +template +struct is_host_span_supported_container< // + std::basic_string, Alloc>> : std::true_type { +}; + template struct host_span : public cudf::detail::span_base> { using base = cudf::detail::span_base>; diff --git a/cpp/include/cudf_test/type_lists.hpp b/cpp/include/cudf_test/type_lists.hpp index 71c2b74b37b..a344173144d 100644 --- a/cpp/include/cudf_test/type_lists.hpp +++ b/cpp/include/cudf_test/type_lists.hpp @@ -25,6 +25,8 @@ #include #include +#include + #include #include @@ -79,10 +81,10 @@ constexpr auto types_to_ids() template typename std::enable_if() && !cudf::is_timestamp_t::value, - std::vector>::type + thrust::host_vector>::type make_type_param_vector(std::initializer_list const& init_list) { - std::vector vec(init_list.size()); + thrust::host_vector vec(init_list.size()); std::transform(std::cbegin(init_list), std::cend(init_list), std::begin(vec), [](auto const& e) { if (std::is_unsigned::value) return static_cast(std::abs(e)); @@ -93,10 +95,11 @@ make_type_param_vector(std::initializer_list const& init_list) } template -typename std::enable_if::value, std::vector>::type +typename std::enable_if::value, + thrust::host_vector>::type make_type_param_vector(std::initializer_list const& init_list) { - std::vector vec(init_list.size()); + thrust::host_vector vec(init_list.size()); std::transform(std::cbegin(init_list), std::cend(init_list), std::begin(vec), [](auto const& e) { return TypeParam{typename TypeParam::duration{e}}; }); diff --git a/cpp/src/ast/linearizer.cpp b/cpp/src/ast/linearizer.cpp index cc70845e1ff..66a32ead35e 100644 --- a/cpp/src/ast/linearizer.cpp +++ b/cpp/src/ast/linearizer.cpp @@ -14,7 +14,7 @@ * limitations under the License. */ #include -#include +#include #include #include #include diff --git a/cpp/src/ast/transform.cu b/cpp/src/ast/transform.cu index bc055d46869..43d3bde97c2 100644 --- a/cpp/src/ast/transform.cu +++ b/cpp/src/ast/transform.cu @@ -15,7 +15,7 @@ */ #include -#include +#include #include #include #include @@ -61,27 +61,25 @@ namespace detail { * each thread. */ template -__launch_bounds__(max_block_size) __global__ - void compute_column_kernel(table_device_view const table, - const cudf::detail::fixed_width_scalar_device_view_base* literals, - mutable_column_device_view output_column, - const detail::device_data_reference* data_references, - const ast_operator* operators, - const cudf::size_type* operator_source_indices, - cudf::size_type num_operators, - cudf::size_type num_intermediates) +__launch_bounds__(max_block_size) __global__ void compute_column_kernel( + table_device_view const table, + device_span literals, + mutable_column_device_view output_column, + device_span data_references, + device_span operators, + device_span operator_source_indices, + cudf::size_type num_intermediates) { extern __shared__ std::int64_t intermediate_storage[]; auto thread_intermediate_storage = &intermediate_storage[threadIdx.x * num_intermediates]; - auto const start_idx = cudf::size_type(threadIdx.x + blockIdx.x * blockDim.x); - auto const stride = cudf::size_type(blockDim.x * gridDim.x); - auto const num_rows = table.num_rows(); + auto const start_idx = static_cast(threadIdx.x + blockIdx.x * blockDim.x); + auto const stride = static_cast(blockDim.x * gridDim.x); auto const evaluator = cudf::ast::detail::row_evaluator(table, literals, thread_intermediate_storage, &output_column); - for (cudf::size_type row_index = start_idx; row_index < num_rows; row_index += stride) { + for (cudf::size_type row_index = start_idx; row_index < table.num_rows(); row_index += stride) { evaluate_row_expression( - evaluator, data_references, operators, operator_source_indices, num_operators, row_index); + evaluator, data_references, operators, operator_source_indices, row_index); } } @@ -90,40 +88,8 @@ std::unique_ptr compute_column(table_view const table, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) { - // Linearize the AST - auto const expr_linearizer = linearizer(expr, table); - auto const data_references = expr_linearizer.data_references(); - auto const literals = expr_linearizer.literals(); - auto const operators = expr_linearizer.operators(); - auto const num_operators = cudf::size_type(operators.size()); - auto const operator_source_indices = expr_linearizer.operator_source_indices(); - auto const expr_data_type = expr_linearizer.root_data_type(); - - // Create ast_plan and device buffer - auto plan = ast_plan(); - plan.add_to_plan(data_references); - plan.add_to_plan(literals); - plan.add_to_plan(operators); - plan.add_to_plan(operator_source_indices); - auto const host_data_buffer = plan.get_host_data_buffer(); - auto const buffer_offsets = plan.get_offsets(); - auto const buffer_size = host_data_buffer.second; - auto device_data_buffer = - rmm::device_buffer(host_data_buffer.first.get(), buffer_size, stream, mr); - // To reduce overhead, we don't call a stream sync here. - // The stream is synced later when the table_device_view is created. - - // Create device pointers to components of plan - auto const device_data_buffer_ptr = static_cast(device_data_buffer.data()); - auto const device_data_references = reinterpret_cast( - device_data_buffer_ptr + buffer_offsets[0]); - auto const device_literals = - reinterpret_cast( - device_data_buffer_ptr + buffer_offsets[1]); - auto const device_operators = - reinterpret_cast(device_data_buffer_ptr + buffer_offsets[2]); - auto const device_operator_source_indices = - reinterpret_cast(device_data_buffer_ptr + buffer_offsets[3]); + auto const expr_linearizer = linearizer(expr, table); // Linearize the AST + auto const plan = ast_plan{expr_linearizer, stream, mr}; // Create ast_plan // Create table device view auto table_device = table_device_view::create(table, stream); @@ -131,7 +97,7 @@ std::unique_ptr compute_column(table_view const table, // Prepare output column auto output_column = cudf::make_fixed_width_column( - expr_data_type, table_num_rows, mask_state::UNALLOCATED, stream, mr); + expr_linearizer.root_data_type(), table_num_rows, mask_state::UNALLOCATED, stream, mr); auto mutable_output_device = cudf::mutable_column_device_view::create(output_column->mutable_view(), stream); @@ -155,12 +121,11 @@ std::unique_ptr compute_column(table_view const table, cudf::ast::detail::compute_column_kernel <<>>( *table_device, - device_literals, + plan._device_literals, *mutable_output_device, - device_data_references, - device_operators, - device_operator_source_indices, - num_operators, + plan._device_data_references, + plan._device_operators, + plan._device_operator_source_indices, num_intermediates); CHECK_CUDA(stream.value()); return output_column; diff --git a/cpp/src/copying/concatenate.cu b/cpp/src/copying/concatenate.cu index e87cadbffe8..6ba10bef396 100644 --- a/cpp/src/copying/concatenate.cu +++ b/cpp/src/copying/concatenate.cu @@ -57,9 +57,6 @@ auto create_device_views(host_span views, rmm::cuda_stream_vi column_device_view::create(std::declval(), std::declval())); auto device_view_owners = std::vector(views.size()); std::transform(views.begin(), views.end(), device_view_owners.begin(), [stream](auto const& col) { - // TODO creating this device view can invoke null count computation - // even though it isn't used. See this issue: - // https://github.com/rapidsai/cudf/issues/4368 return column_device_view::create(col, stream); }); @@ -70,10 +67,8 @@ auto create_device_views(host_span views, rmm::cuda_stream_vi device_view_owners.cend(), std::back_inserter(device_views), [](auto const& col) { return *col; }); - // TODO each of these device vector copies invoke stream synchronization - // which appears to add unnecessary overhead. See this issue: - // https://github.com/rapidsai/rmm/issues/120 - auto d_views = make_device_uvector_async(device_views); + + auto d_views = make_device_uvector_async(device_views, stream); // Compute the partition offsets auto offsets = thrust::host_vector(views.size() + 1); @@ -84,7 +79,7 @@ auto create_device_views(host_span views, rmm::cuda_stream_vi std::next(offsets.begin()), [](auto const& col) { return col.size(); }, thrust::plus{}); - auto d_offsets = make_device_uvector_async(offsets); + auto d_offsets = make_device_uvector_async(offsets, stream); auto const output_size = offsets.back(); return std::make_tuple( diff --git a/cpp/src/jit/cache.cpp b/cpp/src/jit/cache.cpp index f86018276e7..37b5f58da22 100644 --- a/cpp/src/jit/cache.cpp +++ b/cpp/src/jit/cache.cpp @@ -17,29 +17,29 @@ #include #include -#include #include #include +#include namespace cudf { namespace jit { // Get the directory in home to use for storing the cache -boost::filesystem::path get_user_home_cache_dir() +std::filesystem::path get_user_home_cache_dir() { auto home_dir = std::getenv("HOME"); if (home_dir != nullptr) { - return boost::filesystem::path(home_dir) / ".cudf"; + return std::filesystem::path(home_dir) / ".cudf"; } else { - return boost::filesystem::path(); + return std::filesystem::path(); } } // Default `LIBCUDF_KERNEL_CACHE_PATH` to `$HOME/.cudf/$CUDF_VERSION`. // This definition can be overridden at compile time by specifying a // `-DLIBCUDF_KERNEL_CACHE_PATH=/kernel/cache/path` CMake argument. -// Use `boost::filesystem` for cross-platform path resolution and dir +// Use `std::filesystem` for cross-platform path resolution and dir // creation. This path is used in the `getCacheDir()` function below. #if !defined(LIBCUDF_KERNEL_CACHE_PATH) #define LIBCUDF_KERNEL_CACHE_PATH get_user_home_cache_dir() @@ -59,12 +59,12 @@ boost::filesystem::path get_user_home_cache_dir() * are used and if $HOME is not defined, returns an empty path and file * caching is not used. */ -boost::filesystem::path get_cache_dir() +std::filesystem::path get_cache_dir() { // The environment variable always overrides the // default/compile-time value of `LIBCUDF_KERNEL_CACHE_PATH` auto kernel_cache_path_env = std::getenv("LIBCUDF_KERNEL_CACHE_PATH"); - auto kernel_cache_path = boost::filesystem::path( + auto kernel_cache_path = std::filesystem::path( kernel_cache_path_env != nullptr ? kernel_cache_path_env : LIBCUDF_KERNEL_CACHE_PATH); // Cache path could be empty when env HOME is unset or LIBCUDF_KERNEL_CACHE_PATH is defined to be @@ -86,10 +86,10 @@ boost::filesystem::path get_cache_dir() try { // `mkdir -p` the kernel cache path if it doesn't exist - boost::filesystem::create_directories(kernel_cache_path); + std::filesystem::create_directories(kernel_cache_path); } catch (const std::exception& e) { // if directory creation fails for any reason, return empty path - return boost::filesystem::path(); + return std::filesystem::path(); } } return kernel_cache_path; diff --git a/cpp/src/lists/combine/concatenate_rows.cu b/cpp/src/lists/combine/concatenate_rows.cu index fd0bd182672..e31a835a569 100644 --- a/cpp/src/lists/combine/concatenate_rows.cu +++ b/cpp/src/lists/combine/concatenate_rows.cu @@ -224,8 +224,8 @@ struct compute_string_sizes_and_concatenate_lists_fn { start_byte; auto const output_ptr = d_chars + d_offsets[write_idx]; thrust::copy(thrust::seq, input_ptr, input_ptr + end_byte - start_byte, output_ptr); - write_idx += end_str_idx - start_str_idx; } + write_idx += end_str_idx - start_str_idx; } }); } diff --git a/cpp/tests/CMakeLists.txt b/cpp/tests/CMakeLists.txt index 755906a3338..4fb8cedf5b0 100644 --- a/cpp/tests/CMakeLists.txt +++ b/cpp/tests/CMakeLists.txt @@ -342,7 +342,7 @@ ConfigureTest(STRINGS_TEST strings/fixed_point_tests.cpp strings/floats_tests.cpp strings/hash_string.cu - strings/integers_tests.cu + strings/integers_tests.cpp strings/ipv4_tests.cpp strings/json_tests.cpp strings/pad_tests.cpp @@ -375,7 +375,7 @@ ConfigureTest(TEXT_TEST ConfigureTest(BITMASK_TEST bitmask/valid_if_tests.cu bitmask/set_nullmask_tests.cu - bitmask/bitmask_tests.cu + bitmask/bitmask_tests.cpp bitmask/is_element_valid_tests.cpp) diff --git a/cpp/tests/ast/transform_tests.cpp b/cpp/tests/ast/transform_tests.cpp index 8f4a46e2a54..74937d4deea 100644 --- a/cpp/tests/ast/transform_tests.cpp +++ b/cpp/tests/ast/transform_tests.cpp @@ -18,6 +18,7 @@ #include #include #include +#include #include #include #include @@ -30,6 +31,8 @@ #include #include +#include + #include #include @@ -55,6 +58,22 @@ TEST_F(TransformTest, BasicAddition) cudf::test::expect_columns_equal(expected, result->view(), true); } +TEST_F(TransformTest, BasicAdditionLarge) +{ + auto a = thrust::make_counting_iterator(0); + auto col = column_wrapper(a, a + 2000); + auto table = cudf::table_view{{col, col}}; + + auto col_ref = cudf::ast::column_reference(0); + auto expression = cudf::ast::expression(cudf::ast::ast_operator::ADD, col_ref, col_ref); + + auto b = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2; }); + auto expected = column_wrapper(b, b + 2000); + auto result = cudf::ast::compute_column(table, expression); + + cudf::test::expect_columns_equal(expected, result->view(), true); +} + TEST_F(TransformTest, LessComparator) { auto c_0 = column_wrapper{3, 20, 1, 50}; @@ -71,6 +90,25 @@ TEST_F(TransformTest, LessComparator) cudf::test::expect_columns_equal(expected, result->view(), true); } +TEST_F(TransformTest, LessComparatorLarge) +{ + auto a = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2; }); + auto b = thrust::make_counting_iterator(500); + auto c_0 = column_wrapper(a, a + 2000); + auto c_1 = column_wrapper(b, b + 2000); + auto table = cudf::table_view{{c_0, c_1}}; + + auto col_ref_0 = cudf::ast::column_reference(0); + auto col_ref_1 = cudf::ast::column_reference(1); + auto expression = cudf::ast::expression(cudf::ast::ast_operator::LESS, col_ref_0, col_ref_1); + + auto c = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i < 500; }); + auto expected = column_wrapper(c, c + 2000); + auto result = cudf::ast::compute_column(table, expression); + + cudf::test::expect_columns_equal(expected, result->view(), true); +} + TEST_F(TransformTest, MultiLevelTreeArithmetic) { auto c_0 = column_wrapper{3, 20, 1, 50}; @@ -97,6 +135,34 @@ TEST_F(TransformTest, MultiLevelTreeArithmetic) cudf::test::expect_columns_equal(expected, result->view(), true); } +TEST_F(TransformTest, MultiLevelTreeArithmeticLarge) +{ + using namespace cudf::ast; + + auto a = thrust::make_counting_iterator(0); + auto b = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i + 1; }); + auto c = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return i * 2; }); + auto c_0 = column_wrapper(a, a + 2000); + auto c_1 = column_wrapper(b, b + 2000); + auto c_2 = column_wrapper(c, c + 2000); + auto table = cudf::table_view{{c_0, c_1, c_2}}; + + auto col_ref_0 = column_reference(0); + auto col_ref_1 = column_reference(1); + auto col_ref_2 = column_reference(2); + + auto expr_left_subtree = expression(cudf::ast::ast_operator::MUL, col_ref_0, col_ref_1); + auto expr_right_subtree = expression(cudf::ast::ast_operator::ADD, col_ref_2, col_ref_0); + auto expr_tree = expression(ast_operator::SUB, expr_left_subtree, expr_right_subtree); + + auto result = cudf::ast::compute_column(table, expr_tree); + auto calc = [](auto i) { return (i * (i + 1)) - (i + (i * 2)); }; + auto d = cudf::detail::make_counting_transform_iterator(0, [&](auto i) { return calc(i); }); + auto expected = column_wrapper(d, d + 2000); + + cudf::test::expect_columns_equal(expected, result->view(), true); +} + TEST_F(TransformTest, ImbalancedTreeArithmetic) { auto c_0 = column_wrapper{0.15, 0.37, 4.2, 21.3}; diff --git a/cpp/tests/bitmask/bitmask_tests.cu b/cpp/tests/bitmask/bitmask_tests.cpp similarity index 73% rename from cpp/tests/bitmask/bitmask_tests.cu rename to cpp/tests/bitmask/bitmask_tests.cpp index 2f820da687e..3fb12efcc93 100644 --- a/cpp/tests/bitmask/bitmask_tests.cu +++ b/cpp/tests/bitmask/bitmask_tests.cpp @@ -15,6 +15,7 @@ */ #include #include +#include #include #include #include @@ -23,9 +24,9 @@ #include #include -#include -#include #include +#include "rmm/cuda_stream_view.hpp" +#include "rmm/device_uvector.hpp" struct BitmaskUtilitiesTest : public cudf::test::BaseFixture { }; @@ -76,161 +77,177 @@ TEST_F(CountBitmaskTest, NullMask) } } +// Utility to construct a mask vector. If fill_valid is false (default), it is initialized to all +// null. Otherwise it is initialized to all valid. +rmm::device_uvector make_mask(cudf::size_type size, bool fill_valid = false) +{ + if (!fill_valid) { + return cudf::detail::make_zeroed_device_uvector_sync(size); + } else { + auto ret = rmm::device_uvector(size, rmm::cuda_stream_default); + CUDA_TRY(cudaMemsetAsync(ret.data(), + ~cudf::bitmask_type{0}, + size * sizeof(cudf::bitmask_type), + rmm::cuda_stream_default.value())); + return ret; + } +} + TEST_F(CountBitmaskTest, NegativeStart) { - thrust::device_vector mask(1, 0); - EXPECT_THROW(cudf::count_set_bits(mask.data().get(), -1, 32), cudf::logic_error); + auto mask = make_mask(1); + EXPECT_THROW(cudf::count_set_bits(mask.data(), -1, 32), cudf::logic_error); std::vector indices = {0, 16, -1, 32}; - EXPECT_THROW(cudf::segmented_count_set_bits(mask.data().get(), indices), cudf::logic_error); + EXPECT_THROW(cudf::segmented_count_set_bits(mask.data(), indices), cudf::logic_error); } TEST_F(CountBitmaskTest, StartLargerThanStop) { - thrust::device_vector mask(1, 0); - EXPECT_THROW(cudf::count_set_bits(mask.data().get(), 32, 31), cudf::logic_error); + auto mask = make_mask(1); + EXPECT_THROW(cudf::count_set_bits(mask.data(), 32, 31), cudf::logic_error); std::vector indices = {0, 16, 31, 30}; - EXPECT_THROW(cudf::segmented_count_set_bits(mask.data().get(), indices), cudf::logic_error); + EXPECT_THROW(cudf::segmented_count_set_bits(mask.data(), indices), cudf::logic_error); } TEST_F(CountBitmaskTest, EmptyRange) { - thrust::device_vector mask(1, 0); - EXPECT_EQ(0, cudf::count_set_bits(mask.data().get(), 17, 17)); + auto mask = make_mask(1); + EXPECT_EQ(0, cudf::count_set_bits(mask.data(), 17, 17)); std::vector indices = {0, 0, 17, 17}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{0, 0})); } TEST_F(CountBitmaskTest, SingleWordAllZero) { - thrust::device_vector mask(1, 0); - EXPECT_EQ(0, cudf::count_set_bits(mask.data().get(), 0, 32)); + auto mask = make_mask(1); + EXPECT_EQ(0, cudf::count_set_bits(mask.data(), 0, 32)); std::vector indices = {0, 32, 0, 32}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{0, 0})); } TEST_F(CountBitmaskTest, SingleBitAllZero) { - thrust::device_vector mask(1, 0); - EXPECT_EQ(0, cudf::count_set_bits(mask.data().get(), 17, 18)); + auto mask = make_mask(1); + EXPECT_EQ(0, cudf::count_set_bits(mask.data(), 17, 18)); std::vector indices = {17, 18, 7, 8}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{0, 0})); } TEST_F(CountBitmaskTest, SingleBitAllSet) { - thrust::device_vector mask(1, ~cudf::bitmask_type{0}); - EXPECT_EQ(1, cudf::count_set_bits(mask.data().get(), 13, 14)); + auto mask = make_mask(1, true); + EXPECT_EQ(1, cudf::count_set_bits(mask.data(), 13, 14)); std::vector indices = {13, 14, 0, 1}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{1, 1})); } TEST_F(CountBitmaskTest, SingleWordAllBitsSet) { - thrust::device_vector mask(1, ~cudf::bitmask_type{0}); - EXPECT_EQ(32, cudf::count_set_bits(mask.data().get(), 0, 32)); + auto mask = make_mask(1, true); + EXPECT_EQ(32, cudf::count_set_bits(mask.data(), 0, 32)); std::vector indices = {0, 32, 0, 32}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{32, 32})); } TEST_F(CountBitmaskTest, SingleWordPreSlack) { - thrust::device_vector mask(1, ~cudf::bitmask_type{0}); - EXPECT_EQ(25, cudf::count_set_bits(mask.data().get(), 7, 32)); + auto mask = make_mask(1, true); + EXPECT_EQ(25, cudf::count_set_bits(mask.data(), 7, 32)); std::vector indices = {7, 32, 8, 32}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{25, 24})); } TEST_F(CountBitmaskTest, SingleWordPostSlack) { - thrust::device_vector mask(1, ~cudf::bitmask_type{0}); - EXPECT_EQ(17, cudf::count_set_bits(mask.data().get(), 0, 17)); + auto mask = make_mask(1, true); + EXPECT_EQ(17, cudf::count_set_bits(mask.data(), 0, 17)); std::vector indices = {0, 17, 0, 18}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{17, 18})); } TEST_F(CountBitmaskTest, SingleWordSubset) { - thrust::device_vector mask(1, ~cudf::bitmask_type{0}); - EXPECT_EQ(30, cudf::count_set_bits(mask.data().get(), 1, 31)); + auto mask = make_mask(1, true); + EXPECT_EQ(30, cudf::count_set_bits(mask.data(), 1, 31)); std::vector indices = {1, 31, 7, 17}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{30, 10})); } TEST_F(CountBitmaskTest, SingleWordSubset2) { - thrust::device_vector mask(1, ~cudf::bitmask_type{0}); - EXPECT_EQ(28, cudf::count_set_bits(mask.data().get(), 2, 30)); + auto mask = make_mask(1, true); + EXPECT_EQ(28, cudf::count_set_bits(mask.data(), 2, 30)); std::vector indices = {4, 16, 2, 30}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{12, 28})); } TEST_F(CountBitmaskTest, MultipleWordsAllBits) { - thrust::device_vector mask(10, ~cudf::bitmask_type{0}); - EXPECT_EQ(320, cudf::count_set_bits(mask.data().get(), 0, 320)); + auto mask = make_mask(10, true); + EXPECT_EQ(320, cudf::count_set_bits(mask.data(), 0, 320)); std::vector indices = {0, 320, 0, 320}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{320, 320})); } TEST_F(CountBitmaskTest, MultipleWordsSubsetWordBoundary) { - thrust::device_vector mask(10, ~cudf::bitmask_type{0}); - EXPECT_EQ(256, cudf::count_set_bits(mask.data().get(), 32, 288)); + auto mask = make_mask(10, true); + EXPECT_EQ(256, cudf::count_set_bits(mask.data(), 32, 288)); std::vector indices = {32, 192, 32, 288}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{160, 256})); } TEST_F(CountBitmaskTest, MultipleWordsSplitWordBoundary) { - thrust::device_vector mask(10, ~cudf::bitmask_type{0}); - EXPECT_EQ(2, cudf::count_set_bits(mask.data().get(), 31, 33)); + auto mask = make_mask(10, true); + EXPECT_EQ(2, cudf::count_set_bits(mask.data(), 31, 33)); std::vector indices = {31, 33, 60, 67}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{2, 7})); } TEST_F(CountBitmaskTest, MultipleWordsSubset) { - thrust::device_vector mask(10, ~cudf::bitmask_type{0}); - EXPECT_EQ(226, cudf::count_set_bits(mask.data().get(), 67, 293)); + auto mask = make_mask(10, true); + EXPECT_EQ(226, cudf::count_set_bits(mask.data(), 67, 293)); std::vector indices = {67, 293, 37, 319}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{226, 282})); } TEST_F(CountBitmaskTest, MultipleWordsSingleBit) { - thrust::device_vector mask(10, ~cudf::bitmask_type{0}); - EXPECT_EQ(1, cudf::count_set_bits(mask.data().get(), 67, 68)); + auto mask = make_mask(10, true); + EXPECT_EQ(1, cudf::count_set_bits(mask.data(), 67, 68)); std::vector indices = {67, 68, 31, 32, 192, 193}; - auto counts = cudf::segmented_count_set_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_set_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{1, 1, 1})); } @@ -238,11 +255,11 @@ using CountUnsetBitsTest = CountBitmaskTest; TEST_F(CountUnsetBitsTest, SingleBitAllSet) { - thrust::device_vector mask(1, ~cudf::bitmask_type{0}); - EXPECT_EQ(0, cudf::count_unset_bits(mask.data().get(), 13, 14)); + auto mask = make_mask(1, true); + EXPECT_EQ(0, cudf::count_unset_bits(mask.data(), 13, 14)); std::vector indices = {13, 14, 31, 32}; - auto counts = cudf::segmented_count_unset_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_unset_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{0, 0})); } @@ -258,101 +275,101 @@ TEST_F(CountUnsetBitsTest, NullMask) TEST_F(CountUnsetBitsTest, SingleWordAllBits) { - thrust::device_vector mask(1, cudf::bitmask_type{0}); - EXPECT_EQ(32, cudf::count_unset_bits(mask.data().get(), 0, 32)); + auto mask = make_mask(1); + EXPECT_EQ(32, cudf::count_unset_bits(mask.data(), 0, 32)); std::vector indices = {0, 32, 0, 32}; - auto counts = cudf::segmented_count_unset_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_unset_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{32, 32})); } TEST_F(CountUnsetBitsTest, SingleWordPreSlack) { - thrust::device_vector mask(1, cudf::bitmask_type{0}); - EXPECT_EQ(25, cudf::count_unset_bits(mask.data().get(), 7, 32)); + auto mask = make_mask(1); + EXPECT_EQ(25, cudf::count_unset_bits(mask.data(), 7, 32)); std::vector indices = {7, 32, 8, 32}; - auto counts = cudf::segmented_count_unset_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_unset_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{25, 24})); } TEST_F(CountUnsetBitsTest, SingleWordPostSlack) { - thrust::device_vector mask(1, cudf::bitmask_type{0}); - EXPECT_EQ(17, cudf::count_unset_bits(mask.data().get(), 0, 17)); + auto mask = make_mask(1); + EXPECT_EQ(17, cudf::count_unset_bits(mask.data(), 0, 17)); std::vector indices = {0, 17, 0, 18}; - auto counts = cudf::segmented_count_unset_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_unset_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{17, 18})); } TEST_F(CountUnsetBitsTest, SingleWordSubset) { - thrust::device_vector mask(1, cudf::bitmask_type{0}); - EXPECT_EQ(30, cudf::count_unset_bits(mask.data().get(), 1, 31)); + auto mask = make_mask(1); + EXPECT_EQ(30, cudf::count_unset_bits(mask.data(), 1, 31)); std::vector indices = {1, 31, 7, 17}; - auto counts = cudf::segmented_count_unset_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_unset_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{30, 10})); } TEST_F(CountUnsetBitsTest, SingleWordSubset2) { - thrust::device_vector mask(1, cudf::bitmask_type{0}); - EXPECT_EQ(28, cudf::count_unset_bits(mask.data().get(), 2, 30)); + auto mask = make_mask(1); + EXPECT_EQ(28, cudf::count_unset_bits(mask.data(), 2, 30)); std::vector indices = {4, 16, 2, 30}; - auto counts = cudf::segmented_count_unset_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_unset_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{12, 28})); } TEST_F(CountUnsetBitsTest, MultipleWordsAllBits) { - thrust::device_vector mask(10, cudf::bitmask_type{0}); - EXPECT_EQ(320, cudf::count_unset_bits(mask.data().get(), 0, 320)); + auto mask = make_mask(10); + EXPECT_EQ(320, cudf::count_unset_bits(mask.data(), 0, 320)); std::vector indices = {0, 320, 0, 320}; - auto counts = cudf::segmented_count_unset_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_unset_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{320, 320})); } TEST_F(CountUnsetBitsTest, MultipleWordsSubsetWordBoundary) { - thrust::device_vector mask(10, cudf::bitmask_type{0}); - EXPECT_EQ(256, cudf::count_unset_bits(mask.data().get(), 32, 288)); + auto mask = make_mask(10); + EXPECT_EQ(256, cudf::count_unset_bits(mask.data(), 32, 288)); std::vector indices = {32, 192, 32, 288}; - auto counts = cudf::segmented_count_unset_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_unset_bits(mask.data(), indices); EXPECT_THAT(counts, testing::ContainerEq(std::vector{160, 256})); } TEST_F(CountUnsetBitsTest, MultipleWordsSplitWordBoundary) { - thrust::device_vector mask(10, cudf::bitmask_type{0}); - EXPECT_EQ(2, cudf::count_unset_bits(mask.data().get(), 31, 33)); + auto mask = make_mask(10); + EXPECT_EQ(2, cudf::count_unset_bits(mask.data(), 31, 33)); std::vector indices = {31, 33, 60, 67}; - auto counts = cudf::segmented_count_unset_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_unset_bits(mask.data(), indices); EXPECT_THAT(counts, ::testing::ContainerEq(std::vector{2, 7})); } TEST_F(CountUnsetBitsTest, MultipleWordsSubset) { - thrust::device_vector mask(10, cudf::bitmask_type{0}); - EXPECT_EQ(226, cudf::count_unset_bits(mask.data().get(), 67, 293)); + auto mask = make_mask(10); + EXPECT_EQ(226, cudf::count_unset_bits(mask.data(), 67, 293)); std::vector indices = {67, 293, 37, 319}; - auto counts = cudf::segmented_count_unset_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_unset_bits(mask.data(), indices); EXPECT_THAT(counts, ::testing::ContainerEq(std::vector{226, 282})); } TEST_F(CountUnsetBitsTest, MultipleWordsSingleBit) { - thrust::device_vector mask(10, cudf::bitmask_type{0}); - EXPECT_EQ(1, cudf::count_unset_bits(mask.data().get(), 67, 68)); + auto mask = make_mask(10); + EXPECT_EQ(1, cudf::count_unset_bits(mask.data(), 67, 68)); std::vector indices = {67, 68, 31, 32, 192, 193}; - auto counts = cudf::segmented_count_unset_bits(mask.data().get(), indices); + auto counts = cudf::segmented_count_unset_bits(mask.data(), indices); EXPECT_THAT(counts, ::testing::ContainerEq(std::vector{1, 1, 1})); } @@ -362,7 +379,7 @@ struct CopyBitmaskTest : public cudf::test::BaseFixture, cudf::test::UniformRand void cleanEndWord(rmm::device_buffer &mask, int begin_bit, int end_bit) { - thrust::device_ptr ptr(static_cast(mask.data())); + auto ptr = static_cast(mask.data()); auto number_of_mask_words = cudf::num_bitmask_words(static_cast(end_bit - begin_bit)); auto number_of_bits = end_bit - begin_bit; @@ -374,20 +391,20 @@ void cleanEndWord(rmm::device_buffer &mask, int begin_bit, int end_bit) TEST_F(CopyBitmaskTest, NegativeStart) { - thrust::device_vector mask(1, 0); - EXPECT_THROW(cudf::copy_bitmask(mask.data().get(), -1, 32), cudf::logic_error); + auto mask = make_mask(1); + EXPECT_THROW(cudf::copy_bitmask(mask.data(), -1, 32), cudf::logic_error); } TEST_F(CopyBitmaskTest, StartLargerThanStop) { - thrust::device_vector mask(1, 0); - EXPECT_THROW(cudf::copy_bitmask(mask.data().get(), 32, 31), cudf::logic_error); + auto mask = make_mask(1); + EXPECT_THROW(cudf::copy_bitmask(mask.data(), 32, 31), cudf::logic_error); } TEST_F(CopyBitmaskTest, EmptyRange) { - thrust::device_vector mask(1, 0); - auto buff = cudf::copy_bitmask(mask.data().get(), 17, 17); + auto mask = make_mask(1); + auto buff = cudf::copy_bitmask(mask.data(), 17, 17); EXPECT_EQ(0, static_cast(buff.size())); } @@ -399,7 +416,7 @@ TEST_F(CopyBitmaskTest, NullPtr) TEST_F(CopyBitmaskTest, TestZeroOffset) { - thrust::host_vector validity_bit(1000); + std::vector validity_bit(1000); for (auto &m : validity_bit) { m = this->generate(); } auto input_mask = cudf::test::detail::make_null_mask(validity_bit.begin(), validity_bit.end()); @@ -419,7 +436,7 @@ TEST_F(CopyBitmaskTest, TestZeroOffset) TEST_F(CopyBitmaskTest, TestNonZeroOffset) { - thrust::host_vector validity_bit(1000); + std::vector validity_bit(1000); for (auto &m : validity_bit) { m = this->generate(); } auto input_mask = cudf::test::detail::make_null_mask(validity_bit.begin(), validity_bit.end()); @@ -441,7 +458,7 @@ TEST_F(CopyBitmaskTest, TestCopyColumnViewVectorContiguous) { cudf::data_type t{cudf::type_id::INT32}; cudf::size_type num_elements = 1001; - thrust::host_vector validity_bit(num_elements); + std::vector validity_bit(num_elements); for (auto &m : validity_bit) { m = this->generate(); } auto gold_mask = cudf::test::detail::make_null_mask(validity_bit.begin(), validity_bit.end()); @@ -476,7 +493,7 @@ TEST_F(CopyBitmaskTest, TestCopyColumnViewVectorDiscontiguous) { cudf::data_type t{cudf::type_id::INT32}; cudf::size_type num_elements = 1001; - thrust::host_vector validity_bit(num_elements); + std::vector validity_bit(num_elements); for (auto &m : validity_bit) { m = this->generate(); } auto gold_mask = cudf::test::detail::make_null_mask(validity_bit.begin(), validity_bit.end()); std::vector split{0, 104, 128, 152, 311, 491, 583, 734, 760, num_elements}; diff --git a/cpp/tests/bitmask/set_nullmask_tests.cu b/cpp/tests/bitmask/set_nullmask_tests.cu index ae4896827fd..235aec7ddf8 100644 --- a/cpp/tests/bitmask/set_nullmask_tests.cu +++ b/cpp/tests/bitmask/set_nullmask_tests.cu @@ -1,5 +1,5 @@ /* - * Copyright (c) 2020, NVIDIA CORPORATION. + * Copyright (c) 2020-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -18,11 +18,15 @@ #include +#include #include +#include + +#include +#include +#include -#include #include -#include struct valid_bit_functor { cudf::bitmask_type const* _null_mask; @@ -41,12 +45,18 @@ std::ostream& operator<<(std::ostream& stream, thrust::host_vector const& struct SetBitmaskTest : public cudf::test::BaseFixture { void expect_bitmask_equal(cudf::bitmask_type const* bitmask, // Device Ptr cudf::size_type start_bit, - thrust::host_vector const& expect) + thrust::host_vector const& expect, + rmm::cuda_stream_view stream = rmm::cuda_stream_default) { - auto itb_dev = thrust::make_transform_iterator(thrust::counting_iterator{0}, - valid_bit_functor{bitmask}); - thrust::device_vector result(itb_dev + start_bit, itb_dev + start_bit + expect.size()); - thrust::host_vector host_result(result); + rmm::device_uvector result(expect.size(), stream); + auto counting_iter = thrust::counting_iterator{0}; + thrust::transform(rmm::exec_policy(stream), + counting_iter + start_bit, + counting_iter + start_bit + expect.size(), + result.begin(), + valid_bit_functor{bitmask}); + + auto host_result = cudf::detail::make_host_vector_sync(result, stream); EXPECT_THAT(host_result, testing::ElementsAreArray(expect)); } diff --git a/cpp/tests/column/compound_test.cu b/cpp/tests/column/compound_test.cu index 97a6dbb0c22..0df1cfaeccc 100644 --- a/cpp/tests/column/compound_test.cu +++ b/cpp/tests/column/compound_test.cu @@ -1,5 +1,5 @@ /* - * Copyright (c) 2019-2020, NVIDIA CORPORATION. + * Copyright (c) 2019-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -21,10 +21,13 @@ #include #include -#include -#include +#include +#include +#include + #include #include + #include struct CompoundColumnTest : public cudf::test::BaseFixture { @@ -61,13 +64,13 @@ struct checker_for_level2 { TEST_F(CompoundColumnTest, ChildrenLevel1) { - thrust::device_vector data(1000); - thrust::sequence(thrust::device, data.begin(), data.end(), 1); + rmm::device_uvector data(1000, rmm::cuda_stream_default); + thrust::sequence(rmm::exec_policy(), data.begin(), data.end(), 1); auto null_mask = cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED); - rmm::device_buffer data1(data.data().get() + 100, 100 * sizeof(int32_t)); - rmm::device_buffer data2(data.data().get() + 200, 100 * sizeof(int32_t)); - rmm::device_buffer data3(data.data().get() + 300, 100 * sizeof(int32_t)); + rmm::device_buffer data1(data.data() + 100, 100 * sizeof(int32_t)); + rmm::device_buffer data2(data.data() + 200, 100 * sizeof(int32_t)); + rmm::device_buffer data3(data.data() + 300, 100 * sizeof(int32_t)); auto child1 = std::make_unique(cudf::data_type{cudf::type_id::INT32}, 100, data1, null_mask, 0); auto child2 = @@ -89,14 +92,14 @@ TEST_F(CompoundColumnTest, ChildrenLevel1) { auto column = cudf::column_device_view::create(parent->view()); - EXPECT_TRUE(thrust::any_of(thrust::device, + EXPECT_TRUE(thrust::any_of(rmm::exec_policy(), thrust::make_counting_iterator(0), thrust::make_counting_iterator(100), checker_for_level1{*column})); } { auto column = cudf::mutable_column_device_view::create(parent->mutable_view()); - EXPECT_TRUE(thrust::any_of(thrust::device, + EXPECT_TRUE(thrust::any_of(rmm::exec_policy(), thrust::make_counting_iterator(0), thrust::make_counting_iterator(100), checker_for_level1{*column})); @@ -105,16 +108,16 @@ TEST_F(CompoundColumnTest, ChildrenLevel1) TEST_F(CompoundColumnTest, ChildrenLevel2) { - thrust::device_vector data(1000); - thrust::sequence(thrust::device, data.begin(), data.end(), 1); + rmm::device_uvector data(1000, rmm::cuda_stream_default); + thrust::sequence(rmm::exec_policy(), data.begin(), data.end(), 1); auto null_mask = cudf::create_null_mask(100, cudf::mask_state::UNALLOCATED); - rmm::device_buffer data11(data.data().get() + 100, 100 * sizeof(int32_t)); - rmm::device_buffer data12(data.data().get() + 200, 100 * sizeof(int32_t)); - rmm::device_buffer data13(data.data().get() + 300, 100 * sizeof(int32_t)); - rmm::device_buffer data21(data.data().get() + 400, 100 * sizeof(int32_t)); - rmm::device_buffer data22(data.data().get() + 500, 100 * sizeof(int32_t)); - rmm::device_buffer data23(data.data().get() + 600, 100 * sizeof(int32_t)); + rmm::device_buffer data11(data.data() + 100, 100 * sizeof(int32_t)); + rmm::device_buffer data12(data.data() + 200, 100 * sizeof(int32_t)); + rmm::device_buffer data13(data.data() + 300, 100 * sizeof(int32_t)); + rmm::device_buffer data21(data.data() + 400, 100 * sizeof(int32_t)); + rmm::device_buffer data22(data.data() + 500, 100 * sizeof(int32_t)); + rmm::device_buffer data23(data.data() + 600, 100 * sizeof(int32_t)); auto gchild11 = std::make_unique( cudf::data_type{cudf::type_id::INT32}, 100, data11, null_mask, 0); auto gchild12 = std::make_unique( @@ -162,14 +165,14 @@ TEST_F(CompoundColumnTest, ChildrenLevel2) { auto column = cudf::column_device_view::create(parent->view()); - EXPECT_TRUE(thrust::any_of(thrust::device, + EXPECT_TRUE(thrust::any_of(rmm::exec_policy(), thrust::make_counting_iterator(0), thrust::make_counting_iterator(100), checker_for_level2{*column})); } { auto column = cudf::mutable_column_device_view::create(parent->mutable_view()); - EXPECT_TRUE(thrust::any_of(thrust::device, + EXPECT_TRUE(thrust::any_of(rmm::exec_policy(), thrust::make_counting_iterator(0), thrust::make_counting_iterator(100), checker_for_level2{*column})); diff --git a/cpp/tests/copying/scatter_list_tests.cpp b/cpp/tests/copying/scatter_list_tests.cpp index 64fdf6d00d5..b60f875fdd9 100644 --- a/cpp/tests/copying/scatter_list_tests.cpp +++ b/cpp/tests/copying/scatter_list_tests.cpp @@ -18,6 +18,7 @@ #include #include +#include #include #include #include @@ -62,6 +63,41 @@ TYPED_TEST(TypedScatterListsTest, ListsOfFixedWidth) {8, 8, 8}, {1, 1}, {9, 9, 9, 9}, {3, 3}, {4, 4}, {5, 5}, {6, 6}}); } +TYPED_TEST(TypedScatterListsTest, SlicedInputLists) +{ + using namespace cudf::test; + using T = TypeParam; + + auto src_list_column = + lists_column_wrapper{{0, 0, 0, 0}, {9, 9, 9, 9}, {8, 8, 8}, {7, 7, 7}}.release(); + auto src_sliced = + cudf::detail::slice(src_list_column->view(), {1, 3}, rmm::cuda_stream_default).front(); + + auto target_list_column = + lists_column_wrapper{{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}} + .release(); + + auto scatter_map = fixed_width_column_wrapper{2, 0}; + + auto ret_1 = cudf::scatter( + cudf::table_view({src_sliced}), scatter_map, cudf::table_view({target_list_column->view()})); + + CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT( + ret_1->get_column(0), + lists_column_wrapper{ + {8, 8, 8}, {1, 1}, {9, 9, 9, 9}, {3, 3}, {4, 4}, {5, 5}, {6, 6}}); + + auto target_sliced = + cudf::detail::slice(target_list_column->view(), {1, 6}, rmm::cuda_stream_default); + + auto ret_2 = + cudf::scatter(cudf::table_view({src_sliced}), scatter_map, cudf::table_view({target_sliced})); + + CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT( + ret_2->get_column(0), + lists_column_wrapper{{8, 8, 8}, {2, 2}, {9, 9, 9, 9}, {4, 4}, {5, 5}}); +} + TYPED_TEST(TypedScatterListsTest, EmptyListsOfFixedWidth) { using namespace cudf::test; diff --git a/cpp/tests/device_atomics/device_atomics_test.cu b/cpp/tests/device_atomics/device_atomics_test.cu index 1cdfd6ad8ef..aa53877f27d 100644 --- a/cpp/tests/device_atomics/device_atomics_test.cu +++ b/cpp/tests/device_atomics/device_atomics_test.cu @@ -1,5 +1,5 @@ /* - * Copyright (c) 2019, NVIDIA CORPORATION. + * Copyright (c) 2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -14,16 +14,19 @@ * limitations under the License. */ -#include +#include +#include #include #include -#include - #include #include #include +#include + +#include + template __global__ void gpu_atomic_test(T* result, T* data, size_t size) { @@ -89,13 +92,13 @@ __global__ void gpu_atomicCAS_test(T* result, T* data, size_t size) } template -typename std::enable_if_t(), T> accumulate(std::vector const& xs) +typename std::enable_if_t(), T> accumulate(cudf::host_span xs) { return std::accumulate(xs.begin(), xs.end(), T{0}); } template -typename std::enable_if_t(), T> accumulate(std::vector const& xs) +typename std::enable_if_t(), T> accumulate(cudf::host_span xs) { auto ys = std::vector(xs.size()); std::transform( @@ -112,8 +115,8 @@ struct AtomicsTest : public cudf::test::BaseFixture { { size_t vec_size = v_input.size(); - // use transform from std::vector instead. - std::vector v(vec_size); + // use transform from thrust::host_vector instead. + thrust::host_vector v(vec_size); std::transform(v_input.begin(), v_input.end(), v.begin(), [](int x) { T t = cudf::test::make_type_param_scalar(x); return t; @@ -124,7 +127,7 @@ struct AtomicsTest : public cudf::test::BaseFixture { exact[1] = *(std::min_element(v.begin(), v.end())); exact[2] = *(std::max_element(v.begin(), v.end())); - std::vector result_init(9); // +3 padding for int8 tests + thrust::host_vector result_init(9); // +3 padding for int8 tests result_init[0] = cudf::test::make_type_param_scalar(0); result_init[1] = std::numeric_limits::max(); result_init[2] = std::numeric_limits::min(); @@ -132,22 +135,20 @@ struct AtomicsTest : public cudf::test::BaseFixture { result_init[4] = result_init[1]; result_init[5] = result_init[2]; - thrust::device_vector dev_data(v); - thrust::device_vector dev_result(result_init); + auto dev_data = cudf::detail::make_device_uvector_sync(v); + auto dev_result = cudf::detail::make_device_uvector_sync(result_init); if (block_size == 0) { block_size = vec_size; } if (is_cas_test) { - gpu_atomicCAS_test<<>>( - dev_result.data().get(), dev_data.data().get(), vec_size); + gpu_atomicCAS_test<<>>(dev_result.data(), dev_data.data(), vec_size); } else { - gpu_atomic_test<<>>( - dev_result.data().get(), dev_data.data().get(), vec_size); + gpu_atomic_test<<>>(dev_result.data(), dev_data.data(), vec_size); } - thrust::host_vector host_result(dev_result); - CUDA_TRY(cudaDeviceSynchronize()); - CHECK_CUDA(0); + auto host_result = cudf::detail::make_host_vector_sync(dev_result); + + CHECK_CUDA(rmm::cuda_stream_default.value()); if (!is_timestamp_sum()) { EXPECT_EQ(host_result[0], exact[0]) << "atomicAdd test failed"; @@ -272,15 +273,10 @@ struct AtomicsBitwiseOpTest : public cudf::test::BaseFixture { return t; }); - std::vector identity = {T(~0ull), - T(0), - T(0), - T(~0ull), - T(0), - T(0), - T(0), - T(0), - T(0)}; // +3 elements padding for int8 tests + thrust::host_vector identity(9, T{0}); // +3 elements padding for int8 tests + identity[0] = T(~0ull); + identity[3] = T(~0ull); + T exact[3]; exact[0] = std::accumulate( v.begin(), v.end(), identity[0], [](T acc, uint64_t i) { return acc & T(i); }); @@ -289,22 +285,20 @@ struct AtomicsBitwiseOpTest : public cudf::test::BaseFixture { exact[2] = std::accumulate( v.begin(), v.end(), identity[2], [](T acc, uint64_t i) { return acc ^ T(i); }); - thrust::device_vector dev_result(identity); - thrust::device_vector dev_data(v); + auto dev_result = cudf::detail::make_device_uvector_sync(identity); + auto dev_data = cudf::detail::make_device_uvector_sync(v); if (block_size == 0) { block_size = vec_size; } - gpu_atomic_bitwiseOp_test - <<>>(reinterpret_cast(dev_result.data().get()), - reinterpret_cast(dev_data.data().get()), - vec_size); + gpu_atomic_bitwiseOp_test<<>>( + reinterpret_cast(dev_result.data()), reinterpret_cast(dev_data.data()), vec_size); + + auto host_result = cudf::detail::make_host_vector_sync(dev_result); - thrust::host_vector host_result(dev_result); - CUDA_TRY(cudaDeviceSynchronize()); - CHECK_CUDA(0); + CHECK_CUDA(rmm::cuda_stream_default.value()); - print_exact(exact, "exact"); - print_exact(host_result.data(), "result"); + // print_exact(exact, "exact"); + // print_exact(host_result.data(), "result"); EXPECT_EQ(host_result[0], exact[0]) << "atomicAnd test failed"; EXPECT_EQ(host_result[1], exact[1]) << "atomicOr test failed"; @@ -314,7 +308,7 @@ struct AtomicsBitwiseOpTest : public cudf::test::BaseFixture { EXPECT_EQ(host_result[5], exact[2]) << "atomicXor test(2) failed"; } - void print_exact(const T* v, const char* msg) + [[maybe_unused]] void print_exact(const T* v, const char* msg) { std::cout << std::hex << std::showbase; std::cout << "The " << msg << " = {" << +v[0] << ", " << +v[1] << ", " << +v[2] << "}" diff --git a/cpp/tests/fixed_point/fixed_point_tests.cu b/cpp/tests/fixed_point/fixed_point_tests.cu index 5f74e459bb1..124d9339ebf 100644 --- a/cpp/tests/fixed_point/fixed_point_tests.cu +++ b/cpp/tests/fixed_point/fixed_point_tests.cu @@ -35,6 +35,8 @@ #include #include #include +#include "cudf/detail/utilities/vector_factories.hpp" +#include "rmm/cuda_stream_view.hpp" using namespace numeric; @@ -507,37 +509,39 @@ TEST_F(FixedPointTest, DecimalXXThrustOnDevice) { using decimal32 = fixed_point; - thrust::device_vector vec1(1000, decimal32{1, scale_type{-2}}); + std::vector vec1(1000, decimal32{1, scale_type{-2}}); + auto d_vec1 = cudf::detail::make_device_uvector_sync(vec1); auto const sum = thrust::reduce( - rmm::exec_policy(), std::cbegin(vec1), std::cend(vec1), decimal32{0, scale_type{-2}}); + rmm::exec_policy(), std::cbegin(d_vec1), std::cend(d_vec1), decimal32{0, scale_type{-2}}); EXPECT_EQ(static_cast(sum), 1000); // TODO: Once nvbugs/1990211 is fixed (ExclusiveSum initial_value = 0 bug) // change inclusive scan to run on device (avoid copying to host) - thrust::host_vector vec1_host = vec1; + thrust::inclusive_scan(std::cbegin(vec1), std::cend(vec1), std::begin(vec1)); - thrust::inclusive_scan(std::cbegin(vec1_host), std::cend(vec1_host), std::begin(vec1_host)); - - vec1 = vec1_host; + d_vec1 = cudf::detail::make_device_uvector_sync(vec1); std::vector vec2(1000); std::iota(std::begin(vec2), std::end(vec2), 1); auto const res1 = thrust::reduce( - rmm::exec_policy(), std::cbegin(vec1), std::cend(vec1), decimal32{0, scale_type{-2}}); + rmm::exec_policy(), std::cbegin(d_vec1), std::cend(d_vec1), decimal32{0, scale_type{-2}}); auto const res2 = std::accumulate(std::cbegin(vec2), std::cend(vec2), 0); EXPECT_EQ(static_cast(res1), res2); - thrust::device_vector vec3(1000); + rmm::device_uvector d_vec3(1000, rmm::cuda_stream_default); - thrust::transform( - rmm::exec_policy(), std::cbegin(vec1), std::cend(vec1), std::begin(vec3), cast_to_int32_fn{}); + thrust::transform(rmm::exec_policy(), + std::cbegin(d_vec1), + std::cend(d_vec1), + std::begin(d_vec3), + cast_to_int32_fn{}); - thrust::host_vector vec3_host = vec3; + auto vec3 = cudf::detail::make_std_vector_sync(d_vec3); EXPECT_EQ(vec2, vec3); } diff --git a/cpp/tests/hash_map/map_test.cu b/cpp/tests/hash_map/map_test.cu index 49cfda078b1..a747646d894 100644 --- a/cpp/tests/hash_map/map_test.cu +++ b/cpp/tests/hash_map/map_test.cu @@ -1,5 +1,5 @@ /* - * Copyright (c) 2018-2020, NVIDIA CORPORATION. + * Copyright (c) 2018-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -14,24 +14,25 @@ * limitations under the License. */ +#include +#include + #include #include -#include #include -#include +#include #include -#include - #include #include #include #include #include #include +#include "rmm/exec_policy.hpp" template struct key_value_types { @@ -53,13 +54,13 @@ struct InsertTest : public cudf::test::BaseFixture { // prevent overflow of small types const size_t input_size = std::min(static_cast(size), std::numeric_limits::max()); - pairs.resize(input_size); + pairs.resize(input_size, rmm::cuda_stream_default); map = std::move(map_type::create(compute_hash_table_size(size))); rmm::cuda_stream_default.synchronize(); } const cudf::size_type size{10000}; - rmm::device_vector pairs; + rmm::device_uvector pairs{static_cast(size), rmm::cuda_stream_default}; std::unique_ptr> map; }; @@ -137,53 +138,78 @@ TYPED_TEST(InsertTest, UniqueKeysUniqueValues) { using map_type = typename TypeParam::map_type; using pair_type = typename TypeParam::pair_type; - thrust::tabulate(this->pairs.begin(), this->pairs.end(), unique_pair_generator{}); + thrust::tabulate( + rmm::exec_policy(), this->pairs.begin(), this->pairs.end(), unique_pair_generator{}); // All pairs should be new inserts - EXPECT_TRUE(thrust::all_of( - this->pairs.begin(), this->pairs.end(), insert_pair{*this->map})); + EXPECT_TRUE(thrust::all_of(rmm::exec_policy(), + this->pairs.begin(), + this->pairs.end(), + insert_pair{*this->map})); // All pairs should be present in the map - EXPECT_TRUE(thrust::all_of( - this->pairs.begin(), this->pairs.end(), find_pair{*this->map})); + EXPECT_TRUE(thrust::all_of(rmm::exec_policy(), + this->pairs.begin(), + this->pairs.end(), + find_pair{*this->map})); } TYPED_TEST(InsertTest, IdenticalKeysIdenticalValues) { using map_type = typename TypeParam::map_type; using pair_type = typename TypeParam::pair_type; - thrust::tabulate(this->pairs.begin(), this->pairs.end(), identical_pair_generator{}); + thrust::tabulate(rmm::exec_policy(), + this->pairs.begin(), + this->pairs.end(), + identical_pair_generator{}); // Insert a single pair - EXPECT_TRUE(thrust::all_of( - this->pairs.begin(), this->pairs.begin() + 1, insert_pair{*this->map})); + EXPECT_TRUE(thrust::all_of(rmm::exec_policy(), + this->pairs.begin(), + this->pairs.begin() + 1, + insert_pair{*this->map})); // Identical inserts should all return false (no new insert) - EXPECT_FALSE(thrust::all_of( - this->pairs.begin(), this->pairs.end(), insert_pair{*this->map})); + EXPECT_FALSE(thrust::all_of(rmm::exec_policy(), + this->pairs.begin(), + this->pairs.end(), + insert_pair{*this->map})); // All pairs should be present in the map - EXPECT_TRUE(thrust::all_of( - this->pairs.begin(), this->pairs.end(), find_pair{*this->map})); + EXPECT_TRUE(thrust::all_of(rmm::exec_policy(), + this->pairs.begin(), + this->pairs.end(), + find_pair{*this->map})); } TYPED_TEST(InsertTest, IdenticalKeysUniqueValues) { using map_type = typename TypeParam::map_type; using pair_type = typename TypeParam::pair_type; - thrust::tabulate(this->pairs.begin(), this->pairs.end(), identical_key_generator{}); + thrust::tabulate(rmm::exec_policy(), + this->pairs.begin(), + this->pairs.end(), + identical_key_generator{}); // Insert a single pair - EXPECT_TRUE(thrust::all_of( - this->pairs.begin(), this->pairs.begin() + 1, insert_pair{*this->map})); + EXPECT_TRUE(thrust::all_of(rmm::exec_policy(), + this->pairs.begin(), + this->pairs.begin() + 1, + insert_pair{*this->map})); // Identical key inserts should all return false (no new insert) - EXPECT_FALSE(thrust::all_of( - this->pairs.begin() + 1, this->pairs.end(), insert_pair{*this->map})); + EXPECT_FALSE(thrust::all_of(rmm::exec_policy(), + this->pairs.begin() + 1, + this->pairs.end(), + insert_pair{*this->map})); // Only first pair is present in map - EXPECT_TRUE(thrust::all_of( - this->pairs.begin(), this->pairs.begin() + 1, find_pair{*this->map})); - - EXPECT_FALSE(thrust::all_of( - this->pairs.begin() + 1, this->pairs.end(), find_pair{*this->map})); + EXPECT_TRUE(thrust::all_of(rmm::exec_policy(), + this->pairs.begin(), + this->pairs.begin() + 1, + find_pair{*this->map})); + + EXPECT_FALSE(thrust::all_of(rmm::exec_policy(), + this->pairs.begin() + 1, + this->pairs.end(), + find_pair{*this->map})); } CUDF_TEST_PROGRAM_MAIN() diff --git a/cpp/tests/hash_map/multimap_test.cu b/cpp/tests/hash_map/multimap_test.cu index 7fd69e90efd..21135746227 100644 --- a/cpp/tests/hash_map/multimap_test.cu +++ b/cpp/tests/hash_map/multimap_test.cu @@ -1,5 +1,5 @@ /* - * Copyright (c) 2018-2020, NVIDIA CORPORATION. + * Copyright (c) 2018-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -14,21 +14,17 @@ * limitations under the License. */ +#include +#include + #include #include -#include - #include -#include - #include -#include -#include #include -#include // This is necessary to do a parametrized typed-test over multiple template // arguments diff --git a/cpp/tests/iterator/iterator_tests.cuh b/cpp/tests/iterator/iterator_tests.cuh index 69a905386e2..06ac472d6d5 100644 --- a/cpp/tests/iterator/iterator_tests.cuh +++ b/cpp/tests/iterator/iterator_tests.cuh @@ -1,5 +1,5 @@ /* - * Copyright (c) 2019-2020, NVIDIA CORPORATION. + * Copyright (c) 2019-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -14,27 +14,30 @@ */ #pragma once -#include // include iterator header -#include //for meanvar - -#include -#include -#include -#include -#include - #include #include #include +#include // include iterator header +#include //for meanvar +#include + +#include +#include +#include + #include #include #include -// for reduction tests -#include #include +#include +#include +#include +#include +#include + // Base Typed test fixture for iterator test template struct IteratorTest : public cudf::test::BaseFixture { @@ -43,7 +46,7 @@ struct IteratorTest : public cudf::test::BaseFixture { void iterator_test_cub(T_output expected, InputIterator d_in, int num_items) { T_output init = cudf::test::make_type_param_scalar(0); - thrust::device_vector dev_result(1, init); + rmm::device_uvector dev_result(1, rmm::cuda_stream_default); // Get temporary storage size size_t temp_storage_bytes = 0; @@ -72,57 +75,41 @@ struct IteratorTest : public cudf::test::BaseFixture { // iterator test case which uses thrust template - void iterator_test_thrust(thrust::host_vector& expected, + void iterator_test_thrust(thrust::host_vector const& expected, InputIterator d_in, int num_items) { InputIterator d_in_last = d_in + num_items; EXPECT_EQ(thrust::distance(d_in, d_in_last), num_items); - thrust::device_vector dev_expected(expected); + auto dev_expected = cudf::detail::make_device_uvector_sync(expected); // Can't use this because time_point make_pair bug in libcudacxx // bool result = thrust::equal(thrust::device, d_in, d_in_last, dev_expected.begin()); bool result = thrust::transform_reduce( - thrust::device, + rmm::exec_policy(), thrust::make_zip_iterator(thrust::make_tuple(d_in, dev_expected.begin())), thrust::make_zip_iterator(thrust::make_tuple(d_in_last, dev_expected.end())), [] __device__(auto it) { - return static_cast(thrust::get<0>(it)) == - T_output(thrust::get<1>(it)); + return static_cast(thrust::get<0>(it)) == T_output(thrust::get<1>(it)); }, true, thrust::logical_and()); -#ifndef NDEBUG - thrust::device_vector vec(expected.size(), false); - thrust::transform( - thrust::device, - thrust::make_zip_iterator(thrust::make_tuple(d_in, dev_expected.begin())), - thrust::make_zip_iterator(thrust::make_tuple(d_in_last, dev_expected.end())), - vec.begin(), - [] __device__(auto it) { return (thrust::get<0>(it)) == T_output(thrust::get<1>(it)); }); - thrust::copy(vec.begin(), vec.end(), std::ostream_iterator(std::cout, " ")); - std::cout << std::endl; -#endif EXPECT_TRUE(result) << "thrust test"; } template void evaluate(T_output expected, - thrust::device_vector& dev_result, + rmm::device_uvector const& dev_result, const char* msg = nullptr) { - thrust::host_vector hos_result(dev_result); + auto host_result = cudf::detail::make_host_vector_sync(dev_result); - EXPECT_EQ(expected, hos_result[0]) << msg; - // std::cout << "Done: expected <" << msg - // << "> = " - // //<< hos_result[0] //TODO uncomment after time_point ostream operator<< - // << std::endl; + EXPECT_EQ(expected, host_result[0]) << msg; } template - void values_equal_test(thrust::host_vector& expected, + void values_equal_test(thrust::host_vector const& expected, const cudf::column_device_view& col) { if (col.nullable()) { diff --git a/cpp/tests/iterator/optional_iterator_test_numeric.cu b/cpp/tests/iterator/optional_iterator_test_numeric.cu index 90dc33ba628..313fd1358f6 100644 --- a/cpp/tests/iterator/optional_iterator_test_numeric.cu +++ b/cpp/tests/iterator/optional_iterator_test_numeric.cu @@ -1,5 +1,5 @@ /* - * Copyright (c) 2020, NVIDIA CORPORATION. + * Copyright (c) 2020-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. diff --git a/cpp/tests/iterator/value_iterator_test.cuh b/cpp/tests/iterator/value_iterator_test.cuh index f8dab90b2b5..3a7ef075a41 100644 --- a/cpp/tests/iterator/value_iterator_test.cuh +++ b/cpp/tests/iterator/value_iterator_test.cuh @@ -13,13 +13,14 @@ * the License. */ #include +#include "cudf/detail/utilities/vector_factories.hpp" // tests for non-null iterator (pointer of device array) template void non_null_iterator(IteratorTest& testFixture) { auto host_array = cudf::test::make_type_param_vector({0, 6, 0, -14, 13, 64, -13, -20, 45}); - thrust::device_vector dev_array(host_array); + auto dev_array = cudf::detail::make_device_uvector_sync(host_array); // calculate the expected value by CPU. thrust::host_vector replaced_array(host_array); diff --git a/cpp/tests/iterator/value_iterator_test_strings.cu b/cpp/tests/iterator/value_iterator_test_strings.cu index 2d343bf7cdd..f28067649fd 100644 --- a/cpp/tests/iterator/value_iterator_test_strings.cu +++ b/cpp/tests/iterator/value_iterator_test_strings.cu @@ -13,6 +13,9 @@ * the License. */ #include +#include "cudf/detail/utilities/vector_factories.hpp" +#include "rmm/cuda_stream_view.hpp" +#include "rmm/device_uvector.hpp" auto strings_to_string_views(std::vector& input_strings) { @@ -21,15 +24,14 @@ auto strings_to_string_views(std::vector& input_strings) std::vector offsets; std::tie(chars, offsets) = cudf::test::detail::make_chars_and_offsets( input_strings.begin(), input_strings.end(), all_valid); - thrust::device_vector dev_chars(chars); - char* c_start = thrust::raw_pointer_cast(dev_chars.data()); + auto dev_chars = cudf::detail::make_device_uvector_sync(chars); // calculate the expected value by CPU. (but contains device pointers) - std::vector replaced_array(input_strings.size()); + thrust::host_vector replaced_array(input_strings.size()); std::transform(thrust::counting_iterator(0), thrust::counting_iterator(replaced_array.size()), replaced_array.begin(), - [c_start, offsets](auto i) { + [c_start = dev_chars.begin(), offsets](auto i) { return cudf::string_view(c_start + offsets[i], offsets[i + 1] - offsets[i]); }); return std::make_tuple(std::move(dev_chars), replaced_array); @@ -41,11 +43,10 @@ struct StringIteratorTest : public IteratorTest { TEST_F(StringIteratorTest, string_view_null_iterator) { using T = cudf::string_view; - // T init = T{"", 0}; std::string zero("zero"); // the char data has to be in GPU - thrust::device_vector initmsg(zero.begin(), zero.end()); - T init = T{initmsg.data().get(), int(initmsg.size())}; + auto initmsg = cudf::detail::make_device_uvector_sync(zero); + T init = T{initmsg.data(), int(initmsg.size())}; // data and valid arrays std::vector host_values( @@ -60,9 +61,7 @@ TEST_F(StringIteratorTest, string_view_null_iterator) replaced_strings.begin(), [zero](auto s, auto b) { return b ? s : zero; }); - thrust::device_vector dev_chars; - thrust::host_vector replaced_array(host_values.size()); - std::tie(dev_chars, replaced_array) = strings_to_string_views(replaced_strings); + auto [dev_chars, replaced_array] = strings_to_string_views(replaced_strings); // create a column with bool vector cudf::test::strings_column_wrapper w_col( @@ -81,16 +80,14 @@ TEST_F(StringIteratorTest, string_view_no_null_iterator) // T init = T{"", 0}; std::string zero("zero"); // the char data has to be in GPU - thrust::device_vector initmsg(zero.begin(), zero.end()); - T init = T{initmsg.data().get(), int(initmsg.size())}; + auto initmsg = cudf::detail::make_device_uvector_sync(zero); + T init = T{initmsg.data(), int(initmsg.size())}; // data array std::vector host_values( {"one", "two", "three", "four", "five", "six", "eight", "nine"}); - thrust::device_vector dev_chars; - thrust::host_vector all_array(host_values.size()); - std::tie(dev_chars, all_array) = strings_to_string_views(host_values); + auto [dev_chars, all_array] = strings_to_string_views(host_values); // create a column with bool vector cudf::test::strings_column_wrapper w_col(host_values.begin(), host_values.end()); @@ -107,15 +104,13 @@ TEST_F(StringIteratorTest, string_scalar_iterator) // T init = T{"", 0}; std::string zero("zero"); // the char data has to be in GPU - thrust::device_vector initmsg(zero.begin(), zero.end()); - T init = T{initmsg.data().get(), int(initmsg.size())}; + auto initmsg = cudf::detail::make_device_uvector_sync(zero); + T init = T{initmsg.data(), int(initmsg.size())}; // data array std::vector host_values(100, zero); - thrust::device_vector dev_chars; - thrust::host_vector all_array(host_values.size()); - std::tie(dev_chars, all_array) = strings_to_string_views(host_values); + auto [dev_chars, all_array] = strings_to_string_views(host_values); // calculate the expected value by CPU. thrust::host_vector> value_and_validity(host_values.size()); diff --git a/cpp/tests/lists/combine/concatenate_rows_tests.cpp b/cpp/tests/lists/combine/concatenate_rows_tests.cpp index f1b630f83c3..3e085af7740 100644 --- a/cpp/tests/lists/combine/concatenate_rows_tests.cpp +++ b/cpp/tests/lists/combine/concatenate_rows_tests.cpp @@ -286,6 +286,44 @@ TEST_F(ListConcatenateRowsTest, SimpleInputStringsColumnsWithNulls) } } +TEST_F(ListConcatenateRowsTest, SimpleInputStringsColumnsWithEmptyLists) +{ + auto const col1 = + StrListsCol{StrListsCol{{"" /*NULL*/}, null_at(0)}, StrListsCol{"One"}}.release(); + auto const col2 = StrListsCol{ + StrListsCol{{"Tomato", "" /*NULL*/, "Apple"}, null_at(1)}, + StrListsCol{ + "Two"}}.release(); + auto const col3 = + StrListsCol{{StrListsCol{"Lemon", "Peach"}, StrListsCol{"Three"} /*NULL*/}, null_at(1)} + .release(); + + // Ignore null list elements + { + auto const results = + cudf::lists::concatenate_rows(TView{{col1->view(), col2->view(), col3->view()}}); + auto const expected = StrListsCol{ + StrListsCol{{"" /*NULL*/, "Tomato", "" /*NULL*/, "Apple", "Lemon", "Peach"}, null_at({0, 2})}, + StrListsCol{"One", + "Two"}}.release(); + CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, print_all); + } + + // Null list rows result in null list rows + { + auto const results = + cudf::lists::concatenate_rows(TView{{col1->view(), col2->view(), col3->view()}}, + cudf::lists::concatenate_null_policy::NULLIFY_OUTPUT_ROW); + auto const expected = + StrListsCol{{StrListsCol{{"" /*NULL*/, "Tomato", "" /*NULL*/, "Apple", "Lemon", "Peach"}, + null_at({0, 2})}, + StrListsCol{""} /*NULL*/}, + null_at(1)} + .release(); + CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(*expected, *results, print_all); + } +} + TYPED_TEST(ListConcatenateRowsTypedTest, SlicedColumnsInputNoNull) { using ListsCol = cudf::test::lists_column_wrapper; diff --git a/cpp/tests/lists/contains_tests.cpp b/cpp/tests/lists/contains_tests.cpp index 7f8ae436a27..73194271a32 100644 --- a/cpp/tests/lists/contains_tests.cpp +++ b/cpp/tests/lists/contains_tests.cpp @@ -16,6 +16,7 @@ */ #include +#include #include #include #include @@ -154,6 +155,55 @@ TYPED_TEST(TypedContainsTest, ListContainsScalarWithNullLists) CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result, *actual_result); } +TYPED_TEST(TypedContainsTest, SlicedLists) +{ + // Test sliced List columns. + + using namespace cudf; + + using T = TypeParam; + using bools = fixed_width_column_wrapper; + + auto search_space = lists_column_wrapper{ + {{0, 1, 2}, + {3, 4, 5}, + {6, 7, 8}, + {}, + {9, 0, 1}, + {2, 3, 4}, + {5, 6, 7}, + {8, 9, 0}, + {}, + {1, 2, 3}, + {}}, + cudf::detail::make_counting_transform_iterator(0, [](auto i) { + return (i != 3) && (i != 10); + })}.release(); + + auto sliced_column_1 = cudf::detail::slice(search_space->view(), {1, 8}).front(); + + auto search_key_one = create_scalar_search_key(1); + auto result_1 = lists::contains(sliced_column_1, *search_key_one); + + auto expected_result_1 = bools{ + {0, 0, 0, 1, 0, 0, 0}, cudf::detail::make_counting_transform_iterator(0, [](auto i) { + return (i != 2); + })}.release(); + + CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_1->view(), result_1->view()); + + auto sliced_column_2 = cudf::detail::slice(search_space->view(), {3, 10}).front(); + + auto result_2 = lists::contains(sliced_column_2, *search_key_one); + + auto expected_result_2 = bools{ + {0, 1, 0, 0, 0, 0, 1}, cudf::detail::make_counting_transform_iterator(0, [](auto i) { + return (i != 0); + })}.release(); + + CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(expected_result_2->view(), result_2->view()); +} + TYPED_TEST(TypedContainsTest, ListContainsScalarNonNullListsWithNullValues) { // Test List columns that have no NULL list rows, but NULL elements in some list rows. diff --git a/cpp/tests/reductions/reduction_tests.cpp b/cpp/tests/reductions/reduction_tests.cpp index fce9e77dc55..9c66ccd4623 100644 --- a/cpp/tests/reductions/reduction_tests.cpp +++ b/cpp/tests/reductions/reduction_tests.cpp @@ -27,7 +27,6 @@ #include #include -#include #include #include diff --git a/cpp/tests/replace/clamp_test.cpp b/cpp/tests/replace/clamp_test.cpp index 47599035709..499745c7dc4 100644 --- a/cpp/tests/replace/clamp_test.cpp +++ b/cpp/tests/replace/clamp_test.cpp @@ -135,8 +135,8 @@ TEST_F(ClampEmptyCaseTest, EmptyInput) template struct ClampTestNumeric : public cudf::test::BaseFixture { - std::unique_ptr run_clamp(std::vector input, - std::vector input_validity, + std::unique_ptr run_clamp(cudf::host_span input, + cudf::host_span input_validity, T lo, bool lo_validity, T hi, diff --git a/cpp/tests/replace/replace_nulls_tests.cpp b/cpp/tests/replace/replace_nulls_tests.cpp index f6937c29d04..cd19b0a70f3 100644 --- a/cpp/tests/replace/replace_nulls_tests.cpp +++ b/cpp/tests/replace/replace_nulls_tests.cpp @@ -267,10 +267,11 @@ void ReplaceNullsScalar(cudf::test::fixed_width_column_wrapper input, TYPED_TEST(ReplaceNullsTest, ReplaceColumn) { - std::vector inputColumn = + auto const inputColumn = cudf::test::make_type_param_vector({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}); - std::vector inputValid{0, 0, 0, 0, 0, 1, 1, 1, 1, 1}; - std::vector replacementColumn = + auto const inputValid = + cudf::test::make_type_param_vector({0, 0, 0, 0, 0, 1, 1, 1, 1, 1}); + auto const replacementColumn = cudf::test::make_type_param_vector({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}); ReplaceNullsColumn(cudf::test::fixed_width_column_wrapper( @@ -290,10 +291,11 @@ TYPED_TEST(ReplaceNullsTest, ReplaceColumn_Empty) TYPED_TEST(ReplaceNullsTest, ReplaceScalar) { - std::vector inputColumn = + auto const inputColumn = cudf::test::make_type_param_vector({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}); - std::vector inputValid{0, 0, 0, 0, 0, 1, 1, 1, 1, 1}; - std::vector expectedColumn = + auto const inputValid = + cudf::test::make_type_param_vector({0, 0, 0, 0, 0, 1, 1, 1, 1, 1}); + auto const expectedColumn = cudf::test::make_type_param_vector({1, 1, 1, 1, 1, 5, 6, 7, 8, 9}); cudf::numeric_scalar replacement(1); @@ -308,13 +310,16 @@ TYPED_TEST(ReplaceNullsTest, ReplacementHasNulls) { using T = TypeParam; - std::vector input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); - std::vector replace_column = cudf::test::make_type_param_vector({4, 5, 6, 7, 8, 9, 0, 1}); - std::vector result_column = cudf::test::make_type_param_vector({4, 5, 6, 3, 1, 2, 8, 4}); + auto const input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); + auto const replace_column = cudf::test::make_type_param_vector({4, 5, 6, 7, 8, 9, 0, 1}); + auto const result_column = cudf::test::make_type_param_vector({4, 5, 6, 3, 1, 2, 8, 4}); - std::vector input_valid{0, 0, 1, 1, 1, 1, 1, 1}; - std::vector replace_valid{1, 0, 1, 1, 1, 1, 1, 1}; - std::vector result_valid{1, 0, 1, 1, 1, 1, 1, 1}; + auto const input_valid = + cudf::test::make_type_param_vector({0, 0, 1, 1, 1, 1, 1, 1}); + auto const replace_valid = + cudf::test::make_type_param_vector({1, 0, 1, 1, 1, 1, 1, 1}); + auto const result_valid = + cudf::test::make_type_param_vector({1, 0, 1, 1, 1, 1, 1, 1}); ReplaceNullsColumn(cudf::test::fixed_width_column_wrapper( input_column.begin(), input_column.end(), input_valid.begin()), @@ -375,11 +380,9 @@ void TestReplaceNullsWithPolicy(cudf::test::fixed_width_column_wrapper input, TYPED_TEST(ReplaceNullsPolicyTest, PrecedingFill) { - std::vector col = - cudf::test::make_type_param_vector({42, 2, 1, -10, 20, -30}); - std::vector mask = - cudf::test::make_type_param_vector({1, 0, 0, 1, 0, 1}); - std::vector expect_col = + auto const col = cudf::test::make_type_param_vector({42, 2, 1, -10, 20, -30}); + auto const mask = cudf::test::make_type_param_vector({1, 0, 0, 1, 0, 1}); + auto const expect_col = cudf::test::make_type_param_vector({42, 42, 42, -10, -10, -30}); TestReplaceNullsWithPolicy( @@ -391,11 +394,9 @@ TYPED_TEST(ReplaceNullsPolicyTest, PrecedingFill) TYPED_TEST(ReplaceNullsPolicyTest, FollowingFill) { - std::vector col = - cudf::test::make_type_param_vector({42, 2, 1, -10, 20, -30}); - std::vector mask = - cudf::test::make_type_param_vector({1, 0, 0, 1, 0, 1}); - std::vector expect_col = + auto const col = cudf::test::make_type_param_vector({42, 2, 1, -10, 20, -30}); + auto const mask = cudf::test::make_type_param_vector({1, 0, 0, 1, 0, 1}); + auto const expect_col = cudf::test::make_type_param_vector({42, -10, -10, -10, -30, -30}); TestReplaceNullsWithPolicy( @@ -407,13 +408,10 @@ TYPED_TEST(ReplaceNullsPolicyTest, FollowingFill) TYPED_TEST(ReplaceNullsPolicyTest, PrecedingFillLeadingNulls) { - std::vector col = cudf::test::make_type_param_vector({1, 2, 3, 4, 5}); - std::vector mask = - cudf::test::make_type_param_vector({0, 0, 1, 0, 1}); - std::vector expect_col = - cudf::test::make_type_param_vector({1, 2, 3, 3, 5}); - std::vector expect_mask = - cudf::test::make_type_param_vector({0, 0, 1, 1, 1}); + auto const col = cudf::test::make_type_param_vector({1, 2, 3, 4, 5}); + auto const mask = cudf::test::make_type_param_vector({0, 0, 1, 0, 1}); + auto const expect_col = cudf::test::make_type_param_vector({1, 2, 3, 3, 5}); + auto const expect_mask = cudf::test::make_type_param_vector({0, 0, 1, 1, 1}); TestReplaceNullsWithPolicy( cudf::test::fixed_width_column_wrapper(col.begin(), col.end(), mask.begin()), @@ -424,13 +422,10 @@ TYPED_TEST(ReplaceNullsPolicyTest, PrecedingFillLeadingNulls) TYPED_TEST(ReplaceNullsPolicyTest, FollowingFillTrailingNulls) { - std::vector col = cudf::test::make_type_param_vector({1, 2, 3, 4, 5}); - std::vector mask = - cudf::test::make_type_param_vector({1, 0, 1, 0, 0}); - std::vector expect_col = - cudf::test::make_type_param_vector({1, 3, 3, 4, 5}); - std::vector expect_mask = - cudf::test::make_type_param_vector({1, 1, 1, 0, 0}); + auto const col = cudf::test::make_type_param_vector({1, 2, 3, 4, 5}); + auto const mask = cudf::test::make_type_param_vector({1, 0, 1, 0, 0}); + auto const expect_col = cudf::test::make_type_param_vector({1, 3, 3, 4, 5}); + auto const expect_mask = cudf::test::make_type_param_vector({1, 1, 1, 0, 0}); TestReplaceNullsWithPolicy( cudf::test::fixed_width_column_wrapper(col.begin(), col.end(), mask.begin()), diff --git a/cpp/tests/replace/replace_tests.cpp b/cpp/tests/replace/replace_tests.cpp index 32ddf11f16d..58ef08f6052 100644 --- a/cpp/tests/replace/replace_tests.cpp +++ b/cpp/tests/replace/replace_tests.cpp @@ -25,17 +25,17 @@ #include #include +#include #include #include -#include "cudf/fixed_point/fixed_point.hpp" -#include #include #include #include #include #include +#include "cudf/types.hpp" struct ReplaceErrorTest : public cudf::test::BaseFixture { }; @@ -315,13 +315,12 @@ struct ReplaceTest : cudf::test::BaseFixture { * @param print Optionally print the set of columns for debug */ template -void test_replace( - std::vector const& input_column, - std::vector const& values_to_replace_column, - std::vector const& replacement_values_column, - std::vector const& input_column_valid = std::vector{}, - std::vector const& replacement_values_valid = std::vector{}, - bool print = false) +void test_replace(cudf::host_span input_column, + cudf::host_span values_to_replace_column, + cudf::host_span replacement_values_column, + cudf::host_span input_column_valid = {}, + cudf::host_span replacement_values_valid = {}, + bool print = false) { cudf::test::fixed_width_column_wrapper _input_column(input_column.begin(), input_column.end()); if (input_column_valid.size() > 0) { @@ -346,9 +345,10 @@ void test_replace( _input_column, _values_to_replace_column, _replacement_values_column)); /* computing the expected result */ - std::vector reference_result(input_column); - std::vector isReplaced(reference_result.size(), false); - std::vector expected_valid(input_column_valid); + thrust::host_vector reference_result(input_column.begin(), input_column.end()); + thrust::host_vector isReplaced(reference_result.size(), false); + thrust::host_vector expected_valid(input_column_valid.begin(), + input_column_valid.end()); if (replacement_values_valid.size() > 0 && 0 == input_column_valid.size()) { expected_valid.assign(input_column.size(), true); } @@ -396,10 +396,10 @@ TYPED_TEST_CASE(ReplaceTest, Types); // Simple test, replacing all even replacement_values_column TYPED_TEST(ReplaceTest, ReplaceEvenPosition) { - using T = TypeParam; - std::vector input_column = cudf::test::make_type_param_vector({1, 2, 3, 4, 5, 6, 7, 8}); - std::vector values_to_replace_column = cudf::test::make_type_param_vector({2, 6, 4, 8}); - std::vector replacement_values_column = cudf::test::make_type_param_vector({0, 4, 2, 6}); + using T = TypeParam; + auto const input_column = cudf::test::make_type_param_vector({1, 2, 3, 4, 5, 6, 7, 8}); + auto const values_to_replace_column = cudf::test::make_type_param_vector({2, 6, 4, 8}); + auto const replacement_values_column = cudf::test::make_type_param_vector({0, 4, 2, 6}); test_replace(input_column, values_to_replace_column, replacement_values_column); } @@ -407,10 +407,10 @@ TYPED_TEST(ReplaceTest, ReplaceEvenPosition) // Similar test as ReplaceEvenPosition, but with unordered data TYPED_TEST(ReplaceTest, Unordered) { - using T = TypeParam; - std::vector input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); - std::vector values_to_replace_column = cudf::test::make_type_param_vector({2, 6, 4, 8}); - std::vector replacement_values_column = cudf::test::make_type_param_vector({0, 4, 2, 6}); + using T = TypeParam; + auto const input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); + auto const values_to_replace_column = cudf::test::make_type_param_vector({2, 6, 4, 8}); + auto const replacement_values_column = cudf::test::make_type_param_vector({0, 4, 2, 6}); test_replace(input_column, values_to_replace_column, replacement_values_column); } @@ -418,10 +418,10 @@ TYPED_TEST(ReplaceTest, Unordered) // Testing with Nothing To Replace TYPED_TEST(ReplaceTest, NothingToReplace) { - using T = TypeParam; - std::vector input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); - std::vector values_to_replace_column = cudf::test::make_type_param_vector({10, 11, 12}); - std::vector replacement_values_column = cudf::test::make_type_param_vector({15, 16, 17}); + using T = TypeParam; + auto const input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); + auto const values_to_replace_column = cudf::test::make_type_param_vector({10, 11, 12}); + auto const replacement_values_column = cudf::test::make_type_param_vector({15, 16, 17}); test_replace(input_column, values_to_replace_column, replacement_values_column); } @@ -430,9 +430,9 @@ TYPED_TEST(ReplaceTest, NothingToReplace) TYPED_TEST(ReplaceTest, EmptyData) { using T = TypeParam; - std::vector input_column{{}}; - std::vector values_to_replace_column = cudf::test::make_type_param_vector({10, 11, 12}); - std::vector replacement_values_column = cudf::test::make_type_param_vector({15, 16, 17}); + thrust::host_vector input_column{{}}; + auto const values_to_replace_column = cudf::test::make_type_param_vector({10, 11, 12}); + auto const replacement_values_column = cudf::test::make_type_param_vector({15, 16, 17}); test_replace(input_column, values_to_replace_column, replacement_values_column); } @@ -440,10 +440,10 @@ TYPED_TEST(ReplaceTest, EmptyData) // Testing with empty Replace TYPED_TEST(ReplaceTest, EmptyReplace) { - using T = TypeParam; - std::vector input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); - std::vector values_to_replace_column{}; - std::vector replacement_values_column{}; + using T = TypeParam; + auto const input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); + thrust::host_vector values_to_replace_column{}; + thrust::host_vector replacement_values_column{}; test_replace(input_column, values_to_replace_column, replacement_values_column); } @@ -451,11 +451,12 @@ TYPED_TEST(ReplaceTest, EmptyReplace) // Testing with input column containing nulls TYPED_TEST(ReplaceTest, NullsInData) { - using T = TypeParam; - std::vector input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); - std::vector input_column_valid{1, 1, 1, 0, 0, 1, 1, 1}; - std::vector values_to_replace_column = cudf::test::make_type_param_vector({2, 6, 4, 8}); - std::vector replacement_values_column = cudf::test::make_type_param_vector({0, 4, 2, 6}); + using T = TypeParam; + auto const input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); + auto const input_column_valid = + cudf::test::make_type_param_vector({1, 1, 1, 0, 0, 1, 1, 1}); + auto const values_to_replace_column = cudf::test::make_type_param_vector({2, 6, 4, 8}); + auto const replacement_values_column = cudf::test::make_type_param_vector({0, 4, 2, 6}); test_replace( input_column, values_to_replace_column, replacement_values_column, input_column_valid); @@ -464,11 +465,12 @@ TYPED_TEST(ReplaceTest, NullsInData) // Testing with replacement column containing nulls TYPED_TEST(ReplaceTest, NullsInNewValues) { - using T = TypeParam; - std::vector input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); - std::vector values_to_replace_column = cudf::test::make_type_param_vector({2, 6, 4, 8}); - std::vector replacement_values_column = cudf::test::make_type_param_vector({0, 4, 2, 6}); - std::vector replacement_values_valid{0, 1, 1, 1}; + using T = TypeParam; + auto const input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); + auto const values_to_replace_column = cudf::test::make_type_param_vector({2, 6, 4, 8}); + auto const replacement_values_column = cudf::test::make_type_param_vector({0, 4, 2, 6}); + auto const replacement_values_valid = + cudf::test::make_type_param_vector({0, 1, 1, 1}); test_replace(input_column, values_to_replace_column, @@ -480,12 +482,14 @@ TYPED_TEST(ReplaceTest, NullsInNewValues) // Testing with both replacement and input column containing nulls TYPED_TEST(ReplaceTest, NullsInBoth) { - using T = TypeParam; - std::vector input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); - std::vector input_column_valid{1, 1, 1, 0, 0, 1, 1, 1}; - std::vector values_to_replace_column = cudf::test::make_type_param_vector({2, 6, 4, 8}); - std::vector replacement_values_column = cudf::test::make_type_param_vector({0, 4, 2, 6}); - std::vector replacement_values_valid{1, 1, 0, 1}; + using T = TypeParam; + auto const input_column = cudf::test::make_type_param_vector({7, 5, 6, 3, 1, 2, 8, 4}); + auto const input_column_valid = + cudf::test::make_type_param_vector({1, 1, 1, 0, 0, 1, 1, 1}); + auto const values_to_replace_column = cudf::test::make_type_param_vector({2, 6, 4, 8}); + auto const replacement_values_column = cudf::test::make_type_param_vector({0, 4, 2, 6}); + auto const replacement_values_valid = + cudf::test::make_type_param_vector({1, 1, 0, 1}); test_replace(input_column, values_to_replace_column, diff --git a/cpp/tests/rolling/rolling_test.cpp b/cpp/tests/rolling/rolling_test.cpp index 33171b269ce..c22acf6b022 100644 --- a/cpp/tests/rolling/rolling_test.cpp +++ b/cpp/tests/rolling/rolling_test.cpp @@ -603,8 +603,7 @@ TYPED_TEST_CASE(RollingTest, cudf::test::FixedWidthTypesWithoutFixedPoint); TYPED_TEST(RollingTest, SimpleStatic) { // https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html - const std::vector col_data = - cudf::test::make_type_param_vector({0, 1, 2, 0, 4}); + auto const col_data = cudf::test::make_type_param_vector({0, 1, 2, 0, 4}); const std::vector col_mask = {1, 1, 1, 0, 1}; fixed_width_column_wrapper input(col_data.begin(), col_data.end(), col_mask.begin()); @@ -632,8 +631,7 @@ TYPED_TEST(RollingTest, NegativeWindowSizes) TYPED_TEST(RollingTest, SimpleDynamic) { // https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rolling.html - const std::vector col_data = - cudf::test::make_type_param_vector({0, 1, 2, 0, 4}); + auto const col_data = cudf::test::make_type_param_vector({0, 1, 2, 0, 4}); const std::vector col_mask = {1, 1, 1, 0, 1}; fixed_width_column_wrapper input(col_data.begin(), col_data.end(), col_mask.begin()); @@ -647,8 +645,7 @@ TYPED_TEST(RollingTest, SimpleDynamic) // this is a special test to check the volatile count variable issue (see rolling.cu for detail) TYPED_TEST(RollingTest, VolatileCount) { - const std::vector col_data = - cudf::test::make_type_param_vector({8, 70, 45, 20, 59, 80}); + auto const col_data = cudf::test::make_type_param_vector({8, 70, 45, 20, 59, 80}); const std::vector col_mask = {1, 1, 0, 0, 1, 0}; fixed_width_column_wrapper input(col_data.begin(), col_data.end(), col_mask.begin()); diff --git a/cpp/tests/scalar/scalar_device_view_test.cu b/cpp/tests/scalar/scalar_device_view_test.cu index c501071ccbe..d0b6b0db44a 100644 --- a/cpp/tests/scalar/scalar_device_view_test.cu +++ b/cpp/tests/scalar/scalar_device_view_test.cu @@ -14,6 +14,7 @@ * limitations under the License. */ +#include #include #include #include @@ -24,8 +25,6 @@ #include #include -#include - #include #include @@ -126,10 +125,9 @@ TEST_F(StringScalarDeviceViewTest, Value) auto scalar_device_view = cudf::get_scalar_device_view(s); rmm::device_scalar result; - rmm::device_vector value_v(value.begin(), value.end()); + auto value_v = cudf::detail::make_device_uvector_sync(value); - test_string_value<<<1, 1>>>( - scalar_device_view, value_v.data().get(), value.size(), result.data()); + test_string_value<<<1, 1>>>(scalar_device_view, value_v.data(), value.size(), result.data()); CHECK_CUDA(0); EXPECT_TRUE(result.value()); diff --git a/cpp/tests/stream_compaction/drop_duplicates_tests.cpp b/cpp/tests/stream_compaction/drop_duplicates_tests.cpp index ee4a4df38e8..373cd50fb1f 100644 --- a/cpp/tests/stream_compaction/drop_duplicates_tests.cpp +++ b/cpp/tests/stream_compaction/drop_duplicates_tests.cpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2019, NVIDIA CORPORATION. + * Copyright (c) 2019-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -41,7 +41,7 @@ TYPED_TEST(DistinctCountCommon, NoNull) { using T = TypeParam; - std::vector input = cudf::test::make_type_param_vector( + auto const input = cudf::test::make_type_param_vector( {1, 3, 3, 4, 31, 1, 8, 2, 0, 4, 1, 4, 10, 40, 31, 42, 0, 42, 8, 5, 4}); cudf::test::fixed_width_column_wrapper input_col(input.begin(), input.end()); @@ -55,9 +55,9 @@ TYPED_TEST(DistinctCountCommon, TableNoNull) { using T = TypeParam; - std::vector input1 = cudf::test::make_type_param_vector( + auto const input1 = cudf::test::make_type_param_vector( {1, 3, 3, 4, 31, 1, 8, 2, 0, 4, 1, 4, 10, 40, 31, 42, 0, 42, 8, 5, 4}); - std::vector input2 = cudf::test::make_type_param_vector( + auto const input2 = cudf::test::make_type_param_vector( {3, 3, 4, 31, 1, 8, 5, 0, 4, 1, 4, 10, 40, 31, 42, 0, 42, 8, 5, 4, 1}); std::vector> pair_input; diff --git a/cpp/tests/strings/array_tests.cu b/cpp/tests/strings/array_tests.cu index 2d1ae1a862d..a4d8ecb2bec 100644 --- a/cpp/tests/strings/array_tests.cu +++ b/cpp/tests/strings/array_tests.cu @@ -14,10 +14,16 @@ * limitations under the License. */ +#include +#include +#include +#include + #include #include #include #include +#include #include #include #include @@ -27,10 +33,7 @@ #include #include -#include -#include -#include -#include +#include #include @@ -192,9 +195,8 @@ TEST_F(StringsColumnTest, Scatter) thrust::make_transform_iterator(h_strings2.begin(), [](auto str) { return str != nullptr; })); auto source = cudf::strings_column_view(strings2); - rmm::device_vector scatter_map; - scatter_map.push_back(4); - scatter_map.push_back(1); + std::vector h_scatter_map({4, 1}); + auto scatter_map = cudf::detail::make_device_uvector_sync(h_scatter_map); auto source_column = cudf::column_device_view::create(source.parent()); auto begin = @@ -220,9 +222,8 @@ TEST_F(StringsColumnTest, ScatterScalar) thrust::make_transform_iterator(h_strings1.begin(), [](auto str) { return str != nullptr; })); auto target = cudf::strings_column_view(strings1); - rmm::device_vector scatter_map; - scatter_map.push_back(0); - scatter_map.push_back(5); + std::vector h_scatter_map({0, 5}); + auto scatter_map = cudf::detail::make_device_uvector_sync(h_scatter_map); cudf::string_scalar scalar("__"); auto begin = thrust::make_constant_iterator(cudf::string_view(scalar.data(), scalar.size())); @@ -246,7 +247,7 @@ TEST_F(StringsColumnTest, ScatterZeroSizeStringsColumn) cudf::column_view values(cudf::data_type{cudf::type_id::STRING}, 0, nullptr, nullptr, 0); auto target = cudf::strings_column_view(values); - rmm::device_vector scatter_map; + rmm::device_uvector scatter_map(0, rmm::cuda_stream_default); cudf::string_scalar scalar(""); auto begin = thrust::make_constant_iterator(cudf::string_view(scalar.data(), scalar.size())); diff --git a/cpp/tests/strings/factories_test.cu b/cpp/tests/strings/factories_test.cu index be592478b13..854194d13c8 100644 --- a/cpp/tests/strings/factories_test.cu +++ b/cpp/tests/strings/factories_test.cu @@ -28,6 +28,7 @@ #include #include +#include #include #include @@ -55,7 +56,7 @@ TEST_F(StringsFactoriesTest, CreateColumnFromPair) memsize += *itr ? (cudf::size_type)strlen(*itr) : 0; cudf::size_type count = (cudf::size_type)h_test_strings.size(); thrust::host_vector h_buffer(memsize); - thrust::device_vector d_buffer(memsize); + rmm::device_uvector d_buffer(memsize, rmm::cuda_stream_default); thrust::host_vector> strings(count); thrust::host_vector h_offsets(count + 1); cudf::size_type offset = 0; @@ -69,14 +70,13 @@ TEST_F(StringsFactoriesTest, CreateColumnFromPair) } else { cudf::size_type length = (cudf::size_type)strlen(str); memcpy(h_buffer.data() + offset, str, length); - strings[idx] = - thrust::pair{d_buffer.data().get() + offset, length}; + strings[idx] = thrust::pair{d_buffer.data() + offset, length}; offset += length; } h_offsets[idx + 1] = offset; } - rmm::device_vector> d_strings(strings); - CUDA_TRY(cudaMemcpy(d_buffer.data().get(), h_buffer.data(), memsize, cudaMemcpyHostToDevice)); + auto d_strings = cudf::detail::make_device_uvector_sync(strings); + CUDA_TRY(cudaMemcpy(d_buffer.data(), h_buffer.data(), memsize, cudaMemcpyHostToDevice)); auto column = cudf::make_strings_column(d_strings); EXPECT_EQ(column->type(), cudf::data_type{cudf::type_id::STRING}); EXPECT_EQ(column->null_count(), nulls); @@ -133,11 +133,12 @@ TEST_F(StringsFactoriesTest, CreateColumnFromOffsets) null_count++; h_offsets[idx + 1] = offset; } + std::vector h_nulls{h_null_mask}; - rmm::device_vector d_buffer(h_buffer); - rmm::device_vector d_offsets(h_offsets); - rmm::device_vector d_nulls(h_nulls); - auto column = cudf::make_strings_column(d_buffer, d_offsets, d_nulls, null_count); + auto d_buffer = cudf::detail::make_device_uvector_sync(h_buffer); + auto d_offsets = cudf::detail::make_device_uvector_sync(h_offsets); + auto d_nulls = cudf::detail::make_device_uvector_sync(h_nulls); + auto column = cudf::make_strings_column(d_buffer, d_offsets, d_nulls, null_count); EXPECT_EQ(column->type(), cudf::data_type{cudf::type_id::STRING}); EXPECT_EQ(column->null_count(), null_count); EXPECT_EQ(2, column->num_children()); @@ -169,14 +170,15 @@ TEST_F(StringsFactoriesTest, CreateScalar) TEST_F(StringsFactoriesTest, EmptyStringsColumn) { - rmm::device_vector d_chars; - rmm::device_vector d_offsets(1, 0); - rmm::device_vector d_nulls; + rmm::device_uvector d_chars{0, rmm::cuda_stream_default}; + auto d_offsets = cudf::detail::make_zeroed_device_uvector_sync(1); + rmm::device_uvector d_nulls{0, rmm::cuda_stream_default}; auto results = cudf::make_strings_column(d_chars, d_offsets, d_nulls, 0); cudf::test::expect_strings_empty(results->view()); - rmm::device_vector> d_strings; + rmm::device_uvector> d_strings{ + 0, rmm::cuda_stream_default}; results = cudf::make_strings_column(d_strings); cudf::test::expect_strings_empty(results->view()); } @@ -224,7 +226,7 @@ TEST_F(StringsFactoriesTest, StringPairWithNullsAndEmpty) {0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1}); auto d_column = cudf::column_device_view::create(data); - rmm::device_vector pairs(d_column->size()); + rmm::device_uvector pairs(d_column->size(), rmm::cuda_stream_default); thrust::transform(thrust::device, d_column->pair_begin(), d_column->pair_end(), diff --git a/cpp/tests/strings/hash_string.cu b/cpp/tests/strings/hash_string.cu index 629c02a989e..023d648cfdf 100644 --- a/cpp/tests/strings/hash_string.cu +++ b/cpp/tests/strings/hash_string.cu @@ -1,5 +1,5 @@ /* - * Copyright (c) 2019, NVIDIA CORPORATION. + * Copyright (c) 2019-2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -14,15 +14,21 @@ * limitations under the License. */ +#include "./utilities.h" +#include "rmm/exec_policy.hpp" + #include #include #include +#include #include #include #include -#include "./utilities.h" -#include +#include +#include +#include + #include #include @@ -58,8 +64,8 @@ TEST_F(StringsHashTest, HashTest) auto strings_column = cudf::column_device_view::create(strings_view.parent()); auto d_view = *strings_column; - thrust::device_vector d_values(strings_view.size()); - thrust::transform(thrust::device, + rmm::device_uvector d_values(strings_view.size(), rmm::cuda_stream_default); + thrust::transform(rmm::exec_policy(), thrust::make_counting_iterator(0), thrust::make_counting_iterator(strings_view.size()), d_values.begin(), @@ -67,6 +73,6 @@ TEST_F(StringsHashTest, HashTest) uint32_t h_expected[] = { 2739798893, 2739798893, 3506676360, 1891213601, 3778137224, 0, 0, 1551088011}; - thrust::host_vector h_values(d_values); + auto h_values = cudf::detail::make_host_vector_sync(d_values); for (uint32_t idx = 0; idx < h_values.size(); ++idx) EXPECT_EQ(h_values[idx], h_expected[idx]); } diff --git a/cpp/tests/strings/integers_tests.cu b/cpp/tests/strings/integers_tests.cpp similarity index 96% rename from cpp/tests/strings/integers_tests.cu rename to cpp/tests/strings/integers_tests.cpp index f15116ae4c2..d5f17954c50 100644 --- a/cpp/tests/strings/integers_tests.cu +++ b/cpp/tests/strings/integers_tests.cpp @@ -18,11 +18,15 @@ #include #include +#include #include #include #include #include +#include +#include + #include #include @@ -287,16 +291,16 @@ TYPED_TEST_CASE(StringsIntegerConvertTest, cudf::test::IntegralTypesNotBool); TYPED_TEST(StringsIntegerConvertTest, FromToInteger) { - thrust::device_vector d_integers(255); - thrust::sequence( - thrust::device, d_integers.begin(), d_integers.end(), -(TypeParam)(d_integers.size() / 2)); - d_integers.push_back(std::numeric_limits::min()); - d_integers.push_back(std::numeric_limits::max()); + thrust::host_vector h_integers(255); + std::iota(h_integers.begin(), h_integers.end(), -(TypeParam)(h_integers.size() / 2)); + h_integers.push_back(std::numeric_limits::min()); + h_integers.push_back(std::numeric_limits::max()); + auto d_integers = cudf::detail::make_device_uvector_sync(h_integers); auto integers = cudf::make_numeric_column(cudf::data_type{cudf::type_to_id()}, (cudf::size_type)d_integers.size()); auto integers_view = integers->mutable_view(); CUDA_TRY(cudaMemcpy(integers_view.data(), - d_integers.data().get(), + d_integers.data(), d_integers.size() * sizeof(TypeParam), cudaMemcpyDeviceToDevice)); integers_view.set_null_count(0); @@ -304,7 +308,8 @@ TYPED_TEST(StringsIntegerConvertTest, FromToInteger) // convert to strings auto results_strings = cudf::strings::from_integers(integers->view()); - thrust::host_vector h_integers(d_integers); + // copy back to host + h_integers = cudf::detail::make_host_vector_sync(d_integers); std::vector h_strings; for (auto itr = h_integers.begin(); itr != h_integers.end(); ++itr) h_strings.push_back(std::to_string(*itr)); diff --git a/cpp/tests/table/table_view_tests.cu b/cpp/tests/table/table_view_tests.cu index d700892de78..1fb4b88c79e 100644 --- a/cpp/tests/table/table_view_tests.cu +++ b/cpp/tests/table/table_view_tests.cu @@ -20,6 +20,7 @@ #include #include +#include #include #include #include @@ -42,10 +43,10 @@ void row_comparison(cudf::table_view input1, auto device_table_1 = cudf::table_device_view::create(input1, stream); auto device_table_2 = cudf::table_device_view::create(input2, stream); - rmm::device_vector d_column_order(column_order); + auto d_column_order = cudf::detail::make_device_uvector_sync(column_order); auto comparator = cudf::row_lexicographic_comparator( - *device_table_1, *device_table_2, d_column_order.data().get()); + *device_table_1, *device_table_2, d_column_order.data()); thrust::transform(rmm::exec_policy(stream), thrust::make_counting_iterator(0), diff --git a/cpp/tests/transform/row_bit_count_test.cu b/cpp/tests/transform/row_bit_count_test.cu index 313113a58e0..1431710f3ca 100644 --- a/cpp/tests/transform/row_bit_count_test.cu +++ b/cpp/tests/transform/row_bit_count_test.cu @@ -45,7 +45,7 @@ TYPED_TEST(RowBitCountTyped, SimpleTypes) // expect size of the type per row auto expected = make_fixed_width_column(data_type{type_id::INT32}, 16); cudf::mutable_column_view mcv(*expected); - thrust::fill(rmm::exec_policy(rmm::cuda_stream_default), + thrust::fill(rmm::exec_policy(), mcv.begin(), mcv.end(), sizeof(device_storage_type_t) * CHAR_BIT); @@ -68,7 +68,7 @@ TYPED_TEST(RowBitCountTyped, SimpleTypesWithNulls) // expect size of the type + 1 bit per row auto expected = make_fixed_width_column(data_type{type_id::INT32}, 16); cudf::mutable_column_view mcv(*expected); - thrust::fill(rmm::exec_policy(rmm::cuda_stream_default), + thrust::fill(rmm::exec_policy(), mcv.begin(), mcv.end(), (sizeof(device_storage_type_t) * CHAR_BIT) + 1); @@ -488,7 +488,7 @@ TEST_F(RowBitCount, Table) auto expected = cudf::make_fixed_width_column(data_type{type_id::INT32}, t.num_rows()); cudf::mutable_column_view mcv(*expected); thrust::transform( - rmm::exec_policy(rmm::cuda_stream_default), + rmm::exec_policy(), thrust::make_counting_iterator(0), thrust::make_counting_iterator(0) + t.num_rows(), mcv.begin(), @@ -591,4 +591,4 @@ TEST_F(RowBitCount, EmptyTable) auto result = cudf::row_bit_count(empty); CUDF_EXPECTS(result != nullptr && result->size() == 0, "Expected an empty column"); } -} \ No newline at end of file +} diff --git a/cpp/tests/types/type_dispatcher_test.cu b/cpp/tests/types/type_dispatcher_test.cu index 3924fa1ac19..bc690e04f21 100644 --- a/cpp/tests/types/type_dispatcher_test.cu +++ b/cpp/tests/types/type_dispatcher_test.cu @@ -14,6 +14,7 @@ * limitations under the License. */ +#include #include #include #include @@ -21,7 +22,8 @@ #include #include -#include +#include +#include struct DispatcherTest : public cudf::test::BaseFixture { }; @@ -67,10 +69,10 @@ __global__ void dispatch_test_kernel(cudf::type_id id, bool* d_result) TYPED_TEST(TypedDispatcherTest, DeviceDispatch) { - thrust::device_vector result(1, false); - dispatch_test_kernel<<<1, 1>>>(cudf::type_to_id(), result.data().get()); + auto result = cudf::detail::make_zeroed_device_uvector_sync(1); + dispatch_test_kernel<<<1, 1>>>(cudf::type_to_id(), result.data()); CUDA_TRY(cudaDeviceSynchronize()); - EXPECT_EQ(true, result[0]); + EXPECT_EQ(true, result.front_element(rmm::cuda_stream_default)); } struct IdDispatcherTest : public DispatcherTest, public testing::WithParamInterface { @@ -128,11 +130,11 @@ __global__ void double_dispatch_test_kernel(cudf::type_id id1, cudf::type_id id2 TYPED_TEST(TypedDoubleDispatcherTest, DeviceDoubleDispatch) { - thrust::device_vector result(1, false); + auto result = cudf::detail::make_zeroed_device_uvector_sync(1); double_dispatch_test_kernel<<<1, 1>>>( - cudf::type_to_id(), cudf::type_to_id(), result.data().get()); + cudf::type_to_id(), cudf::type_to_id(), result.data()); CUDA_TRY(cudaDeviceSynchronize()); - EXPECT_EQ(true, result[0]); + EXPECT_EQ(true, result.front_element(rmm::cuda_stream_default)); } struct IdDoubleDispatcherTest : public DispatcherTest, diff --git a/cpp/tests/utilities/column_utilities.cu b/cpp/tests/utilities/column_utilities.cu index f17446ca1dc..8aac7370b13 100644 --- a/cpp/tests/utilities/column_utilities.cu +++ b/cpp/tests/utilities/column_utilities.cu @@ -42,6 +42,8 @@ #include #include +#include "cudf/detail/utilities/vector_factories.hpp" +#include "rmm/cuda_stream_view.hpp" namespace cudf { namespace test { @@ -170,7 +172,7 @@ class corresponding_rows_not_equivalent { }; // Stringify the inconsistent values resulted from the comparison of two columns element-wise -std::string stringify_column_differences(thrust::device_vector const& differences, +std::string stringify_column_differences(cudf::device_span differences, column_view const& lhs, column_view const& rhs, bool print_all_differences, @@ -182,10 +184,10 @@ std::string stringify_column_differences(thrust::device_vector const& diffe std::ostringstream buffer; buffer << depth_str << "differences:" << std::endl; - // thrust may crash if a device_vector is passed to fixed_width_column_wrapper, + // thrust may crash if a device vector is passed to fixed_width_column_wrapper, // thus we construct fixed_width_column_wrapper from a host_vector instead - thrust::host_vector h_differences(differences); - auto source_table = cudf::table_view({lhs, rhs}); + auto h_differences = cudf::detail::make_host_vector_sync(differences); + auto source_table = cudf::table_view({lhs, rhs}); auto diff_column = fixed_width_column_wrapper(h_differences.begin(), h_differences.end()); auto diff_table = cudf::gather(source_table, diff_column); @@ -222,16 +224,18 @@ struct column_comparator_impl { corresponding_rows_unequal, corresponding_rows_not_equivalent>; - auto differences = thrust::device_vector(lhs.size()); // worst case: everything different - auto diff_iter = thrust::copy_if(thrust::device, + auto differences = rmm::device_uvector( + lhs.size(), rmm::cuda_stream_default); // worst case: everything different + auto diff_iter = thrust::copy_if(rmm::exec_policy(), thrust::make_counting_iterator(0), thrust::make_counting_iterator(lhs.size()), differences.begin(), ComparatorType(*d_lhs, *d_rhs)); - differences.resize(thrust::distance(differences.begin(), diff_iter)); // shrink back down + differences.resize(thrust::distance(differences.begin(), diff_iter), + rmm::cuda_stream_default); // shrink back down - if (not differences.empty()) + if (not differences.is_empty()) GTEST_FAIL() << stringify_column_differences( differences, lhs, rhs, print_all_differences, depth); } @@ -256,7 +260,7 @@ struct column_comparator_impl { if (lhs_l.is_empty()) { return; } // worst case - everything is different - thrust::device_vector differences(lhs.size()); + rmm::device_uvector differences(lhs.size(), rmm::cuda_stream_default); // TODO : determine how equals/equivalency should work for columns with divergent underlying // data, but equivalent null masks. Example: @@ -307,7 +311,7 @@ struct column_comparator_impl { }); auto diff_iter = thrust::copy_if( - thrust::device, + rmm::exec_policy(), thrust::make_counting_iterator(0), thrust::make_counting_iterator(lhs_l.size() + 1), differences.begin(), @@ -323,9 +327,10 @@ struct column_comparator_impl { return lhs_offsets[index] == rhs_offsets[index] ? false : true; }); - differences.resize(thrust::distance(differences.begin(), diff_iter)); // shrink back down + differences.resize(thrust::distance(differences.begin(), diff_iter), + rmm::cuda_stream_default); // shrink back down - if (not differences.empty()) + if (not differences.is_empty()) GTEST_FAIL() << stringify_column_differences( differences, lhs, rhs, print_all_differences, depth); @@ -522,7 +527,7 @@ std::string nested_offsets_to_string(NestedColumnView const& c, std::string cons // the first offset value to normalize everything against size_type first = cudf::detail::get_value(offsets, c.offset(), rmm::cuda_stream_default); - rmm::device_vector shifted_offsets(output_size); + rmm::device_uvector shifted_offsets(output_size, rmm::cuda_stream_default); // normalize the offset values for the column offset size_type const* d_offsets = offsets.head() + c.offset(); @@ -533,7 +538,7 @@ std::string nested_offsets_to_string(NestedColumnView const& c, std::string cons shifted_offsets.begin(), [first] __device__(int32_t offset) { return static_cast(offset - first); }); - thrust::host_vector h_shifted_offsets(shifted_offsets); + auto const h_shifted_offsets = cudf::detail::make_host_vector_sync(shifted_offsets); std::ostringstream buffer; for (size_t idx = 0; idx < h_shifted_offsets.size(); idx++) { buffer << h_shifted_offsets[idx]; diff --git a/cpp/tests/wrappers/timestamps_test.cu b/cpp/tests/wrappers/timestamps_test.cu index d1c0ad5d840..64d9ad6fc3f 100644 --- a/cpp/tests/wrappers/timestamps_test.cu +++ b/cpp/tests/wrappers/timestamps_test.cu @@ -29,6 +29,8 @@ #include #include +#include +#include template struct ChronoColumnTest : public cudf::test::BaseFixture { @@ -88,9 +90,10 @@ TYPED_TEST(ChronoColumnTest, ChronoDurationsMatchPrimitiveRepresentation) auto primitive_col = fixed_width_column_wrapper(chrono_col_data.begin(), chrono_col_data.end()); - thrust::device_vector indices(this->size()); - thrust::sequence(indices.begin(), indices.end()); - EXPECT_TRUE(thrust::all_of(indices.begin(), + rmm::device_uvector indices(this->size(), rmm::cuda_stream_default); + thrust::sequence(rmm::exec_policy(), indices.begin(), indices.end()); + EXPECT_TRUE(thrust::all_of(rmm::exec_policy(), + indices.begin(), indices.end(), compare_chrono_elements_to_primitive_representation{ *cudf::column_device_view::create(primitive_col), @@ -141,10 +144,11 @@ TYPED_TEST(ChronoColumnTest, ChronosCanBeComparedInDeviceCode) auto chrono_rhs_col = generate_timestamps(this->size(), time_point_ms(start_rhs), time_point_ms(stop_rhs_)); - thrust::device_vector indices(this->size()); - thrust::sequence(indices.begin(), indices.end()); + rmm::device_uvector indices(this->size(), rmm::cuda_stream_default); + thrust::sequence(rmm::exec_policy(), indices.begin(), indices.end()); EXPECT_TRUE(thrust::all_of( + rmm::exec_policy(), indices.begin(), indices.end(), compare_chrono_elements{cudf::binary_operator::LESS, @@ -152,6 +156,7 @@ TYPED_TEST(ChronoColumnTest, ChronosCanBeComparedInDeviceCode) *cudf::column_device_view::create(chrono_rhs_col)})); EXPECT_TRUE(thrust::all_of( + rmm::exec_policy(), indices.begin(), indices.end(), compare_chrono_elements{cudf::binary_operator::GREATER, @@ -159,6 +164,7 @@ TYPED_TEST(ChronoColumnTest, ChronosCanBeComparedInDeviceCode) *cudf::column_device_view::create(chrono_lhs_col)})); EXPECT_TRUE(thrust::all_of( + rmm::exec_policy(), indices.begin(), indices.end(), compare_chrono_elements{cudf::binary_operator::LESS_EQUAL, @@ -166,6 +172,7 @@ TYPED_TEST(ChronoColumnTest, ChronosCanBeComparedInDeviceCode) *cudf::column_device_view::create(chrono_lhs_col)})); EXPECT_TRUE(thrust::all_of( + rmm::exec_policy(), indices.begin(), indices.end(), compare_chrono_elements{cudf::binary_operator::GREATER_EQUAL, diff --git a/docker_build/Dockerfile b/docker_build/Dockerfile index 0c04cab152a..696a6969778 100644 --- a/docker_build/Dockerfile +++ b/docker_build/Dockerfile @@ -34,15 +34,11 @@ RUN apt update -y --fix-missing && \ RUN apt install -y --no-install-recommends \ git \ - libboost-all-dev \ python3.8-dev \ build-essential \ autoconf \ bison \ flex \ - libboost-filesystem-dev \ - libboost-system-dev \ - libboost-regex-dev \ libjemalloc-dev \ wget \ libssl-dev \ diff --git a/docs/cudf/source/io-supported-types.rst b/docs/cudf/source/io-supported-types.rst index ce2f7a85fbf..a74f3239044 100644 --- a/docs/cudf/source/io-supported-types.rst +++ b/docs/cudf/source/io-supported-types.rst @@ -5,58 +5,62 @@ The following table lists are compatible cudf types for each supported IO format .. rst-class:: io-supported-types-table .. table:: - :widths: 15 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 + :widths: 15 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+-----------------+--------+--------+--------+--------+ - | | CSV | Parquet | JSON | ORC | AVRO | HDF | DLPack | Feather | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | Data Type | Writer | Reader | Writer | Reader | Writer | Reader | Writer | Reader | Reader | Writer | Reader | Writer | Reader | Writer | Reader | - +=======================+========+========+========+========+========+========+========+========+========+========+========+========+========+========+========+ - | int8 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | int16 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | int32 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | int64 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | uint8 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | uint16 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | uint32 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | uint64 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | float32 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | float64 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | bool | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | str | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | category | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | list | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | timedelta64[s] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | timedelta64[ms] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | timedelta64[us] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | timedelta64[ns] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | datetime64[s] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | datetime64[ms] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | datetime64[us] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | datetime64[ns] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | struct | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ - | decimal64 | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | - +-----------------------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+ + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+-------------------+--------+--------+---------+---------+ + | | CSV | Parquet | JSON | ORC | AVRO | HDF | DLPack | Feather | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | Data Type | Writer | Reader | Writer | Reader | Writer¹ | Reader | Writer | Reader | Reader | Writer¹ | Reader¹ | Writer | Reader | Writer¹ | Reader¹ | + +=======================+========+========+========+========+=========+========+========+========+========+=========+=========+========+========+=========+=========+ + | int8 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | int16 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | int32 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | int64 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | uint8 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | uint16 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | uint32 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | uint64 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | float32 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | float64 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | bool | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | str | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | category | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | list | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | timedelta64[s] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | timedelta64[ms] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | timedelta64[us] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | timedelta64[ns] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | datetime64[s] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | datetime64[ms] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | datetime64[us] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | datetime64[ns] | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | struct | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + | decimal64 | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | + +-----------------------+--------+--------+--------+--------+---------+--------+--------+--------+--------+---------+---------+--------+--------+---------+---------+ + +**Notes:** + +* [¹] - Not GPU-accelerated. diff --git a/java/LICENSE-bundled b/java/LICENSE-bundled deleted file mode 100644 index 165befcb174..00000000000 --- a/java/LICENSE-bundled +++ /dev/null @@ -1,26 +0,0 @@ -The binary distribution of this product bundles binaries of Boost -which are available under the following license: - -Boost Software License - Version 1.0 - August 17th, 2003 - -Permission is hereby granted, free of charge, to any person or organization -obtaining a copy of the software and accompanying documentation covered by -this license (the "Software") to use, reproduce, display, distribute, -execute, and transmit the Software, and to prepare derivative works of the -Software, and to permit third-parties to whom the Software is furnished to -do so, all subject to the following: - -The copyright notices in the Software and this entire statement, including -the above license grant, this restriction and the following disclaimer, -must be included in all copies of the Software, in whole or in part, and -all derivative works of the Software, unless such copies or derivative -works are solely in the form of machine-executable object code generated by -a source language processor. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT -SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE -FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, -ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER -DEALINGS IN THE SOFTWARE. diff --git a/java/README.md b/java/README.md index 7cc1fcf5aec..ed445cd764f 100644 --- a/java/README.md +++ b/java/README.md @@ -52,23 +52,7 @@ CUDA 11.0: Build the native code first, and make sure the a JDK is installed and available. -When building libcudf, make sure you install boost first: -```bash -# Install Boost C++ for Ubuntu 16.04/18.04/20.04 -sudo apt install libboost-filesystem-dev -``` -or for a smaller installation footprint (Boost is a large library), build it from the source: -```bash -wget https://dl.bintray.com/boostorg/release/1.74.0/source/boost_1_74_0.tar.bz2 -tar xvf boost_1_74_0.tar.bz2 -cd boost_1_74_0 -./bootstrap.sh --with-libraries=filesystem -./b2 cxxflags=-fPIC link=static -sudo cp stage/lib/libboost_filesystem.a /usr/local/lib/ -``` -and pass in the cmake options -`-DCUDF_USE_ARROW_STATIC=ON -DBoost_USE_STATIC_LIBS=ON` so that Apache Arrow and Boost libraries are -linked statically. +Pass in the cmake option `-DCUDF_USE_ARROW_STATIC=ON` so that Apache Arrow is linked statically. If you use the default cmake options libcudart will be dynamically linked to libcudf which is included. If you do this the resulting jar will have a classifier associated with it diff --git a/java/ci/Dockerfile.centos7 b/java/ci/Dockerfile.centos7 index 607520692d0..a030366b86a 100644 --- a/java/ci/Dockerfile.centos7 +++ b/java/ci/Dockerfile.centos7 @@ -31,17 +31,12 @@ RUN yum install -y git zlib-devel maven tar wget patch ## pre-create the CMAKE_INSTALL_PREFIX folder, set writable by any user for Jenkins RUN mkdir /usr/local/rapids && mkdir /rapids && chmod 777 /usr/local/rapids && chmod 777 /rapids -RUN cd /rapids/ && wget https://dl.bintray.com/boostorg/release/1.72.0/source/boost_1_72_0.tar.gz && \ - tar zxf boost_1_72_0.tar.gz && \ - cd boost_1_72_0 && \ - scl enable devtoolset-9 "./bootstrap.sh --prefix=/usr && ./b2 install --with-filesystem threading=multi link=static cxxflags=-fPIC; exit 0" - RUN cd /usr/local/ && wget --quiet https://github.com/Kitware/CMake/releases/download/v3.19.0/cmake-3.19.0-Linux-x86_64.tar.gz && \ tar zxf cmake-3.19.0-Linux-x86_64.tar.gz # get GDS user-space lib -RUN cd /tmp/ && wget https://developer.download.nvidia.com/gds/redist/rel-0.95.0/gds-redistrib-0.95.0.tgz && \ - tar zxf gds-redistrib-0.95.0.tgz && \ - cp -R ./gds-redistrib-0.95.0/targets/x86_64-linux/lib/* /usr/local/cuda/targets/x86_64-linux/lib && \ - cp -R ./gds-redistrib-0.95.0/targets/x86_64-linux/include/* /usr/local/cuda/targets/x86_64-linux/include && \ - rm -rf gds-redistrib-0.95.0* +RUN cd /tmp/ && wget https://developer.download.nvidia.com/gds/redist/rel-0.95.1/gds-redistrib-0.95.1.tgz && \ + tar zxf gds-redistrib-0.95.1.tgz && \ + cp -R ./gds-redistrib-0.95.1/targets/x86_64-linux/lib/* /usr/local/cuda/targets/x86_64-linux/lib && \ + cp -R ./gds-redistrib-0.95.1/targets/x86_64-linux/include/* /usr/local/cuda/targets/x86_64-linux/include && \ + rm -rf gds-redistrib-0.95.1* diff --git a/java/ci/build-in-docker.sh b/java/ci/build-in-docker.sh index 10be5b9c639..25f36f04e48 100755 --- a/java/ci/build-in-docker.sh +++ b/java/ci/build-in-docker.sh @@ -55,7 +55,7 @@ export PATH=/usr/local/cmake-3.19.0-Linux-x86_64/bin:$PATH rm -rf $WORKSPACE/cpp/build mkdir -p $WORKSPACE/cpp/build cd $WORKSPACE/cpp/build -cmake .. -DUSE_NVTX=$ENABLE_NVTX -DCUDF_USE_ARROW_STATIC=ON -DBoost_USE_STATIC_LIBS=ON -DBUILD_TESTS=$SKIP_CPP_TESTS -DPER_THREAD_DEFAULT_STREAM=$ENABLE_PTDS -DRMM_LOGGING_LEVEL=$RMM_LOGGING_LEVEL +cmake .. -DUSE_NVTX=$ENABLE_NVTX -DCUDF_USE_ARROW_STATIC=ON -DBUILD_TESTS=$SKIP_CPP_TESTS -DPER_THREAD_DEFAULT_STREAM=$ENABLE_PTDS -DRMM_LOGGING_LEVEL=$RMM_LOGGING_LEVEL make -j$PARALLEL_LEVEL make install DESTDIR=$INSTALL_PREFIX diff --git a/java/pom.xml b/java/pom.xml index d94d51944a0..206faf0a443 100755 --- a/java/pom.xml +++ b/java/pom.xml @@ -283,13 +283,6 @@ LICENSE - - ${basedir} - META-INF - - LICENSE-bundled - - ${project.build.directory}/native-deps/ diff --git a/java/src/main/java/ai/rapids/cudf/ColumnView.java b/java/src/main/java/ai/rapids/cudf/ColumnView.java index 5a5c3d3f687..90077829898 100644 --- a/java/src/main/java/ai/rapids/cudf/ColumnView.java +++ b/java/src/main/java/ai/rapids/cudf/ColumnView.java @@ -1457,23 +1457,32 @@ public ColumnView replaceChildrenWithViews(int[] indices, map.put(indices[index], views[index]); }); List newChildren = new ArrayList<>(getNumChildren()); - IntStream.range(0, getNumChildren()).forEach(i -> { - ColumnView view = map.remove(i); - ColumnView child = getChildColumnView(i); - if (view == null) { - newChildren.add(child); - } else { - if (child.getRowCount() != view.getRowCount()) { - throw new IllegalArgumentException("Child row count doesn't match the old child"); + List toClose = new ArrayList<>(getNumChildren()); + try { + IntStream.range(0, getNumChildren()).forEach(i -> { + ColumnView view = map.remove(i); + ColumnView child = getChildColumnView(i); + toClose.add(child); + if (view == null) { + newChildren.add(child); + } else { + if (child.getRowCount() != view.getRowCount()) { + throw new IllegalArgumentException("Child row count doesn't match the old child"); + } + newChildren.add(view); } - newChildren.add(view); + }); + if (!map.isEmpty()) { + throw new IllegalArgumentException("One or more invalid child indices passed to be " + + "replaced"); + } + return new ColumnView(type, getRowCount(), Optional.of(getNullCount()), getValid(), + getOffsets(), newChildren.stream().toArray(n -> new ColumnView[n])); + } finally { + for (ColumnView columnView: toClose) { + columnView.close(); } - }); - if (!map.isEmpty()) { - throw new IllegalArgumentException("One or more invalid child indices passed to be replaced"); } - return new ColumnView(type, getRowCount(), Optional.of(getNullCount()), getValid(), - getOffsets(), newChildren.stream().toArray(n -> new ColumnView[n])); } /** diff --git a/python/cudf/cudf/_lib/cpp/lists/concatenate_rows.pxd b/python/cudf/cudf/_lib/cpp/lists/concatenate_rows.pxd new file mode 100644 index 00000000000..8c4dabf5168 --- /dev/null +++ b/python/cudf/cudf/_lib/cpp/lists/concatenate_rows.pxd @@ -0,0 +1,12 @@ +# Copyright (c) 2021, NVIDIA CORPORATION. + +from libcpp.memory cimport unique_ptr + +from cudf._lib.cpp.column.column cimport column +from cudf._lib.cpp.table.table_view cimport table_view + +cdef extern from "cudf/lists/concatenate_rows.hpp" namespace \ + "cudf::lists" nogil: + cdef unique_ptr[column] concatenate_rows( + const table_view input_table + ) except + diff --git a/python/cudf/cudf/_lib/lists.pyx b/python/cudf/cudf/_lib/lists.pyx index 9bc0550bdf0..46f034dc525 100644 --- a/python/cudf/cudf/_lib/lists.pyx +++ b/python/cudf/cudf/_lib/lists.pyx @@ -16,6 +16,9 @@ from cudf._lib.cpp.lists.drop_list_duplicates cimport ( from cudf._lib.cpp.lists.sorting cimport ( sort_lists as cpp_sort_lists ) +from cudf._lib.cpp.lists.concatenate_rows cimport ( + concatenate_rows as cpp_concatenate_rows +) from cudf._lib.cpp.lists.lists_column_view cimport lists_column_view from cudf._lib.cpp.column.column_view cimport column_view from cudf._lib.cpp.column.column cimport column @@ -28,6 +31,7 @@ from cudf._lib.cpp.table.table_view cimport table_view from cudf._lib.cpp.types cimport ( size_type, null_equality, + null_policy, order, null_order, nan_equality @@ -163,3 +167,17 @@ def contains_scalar(Column col, object py_search_key): )) result = Column.from_unique_ptr(move(c_result)) return result + + +def concatenate_rows(Table tbl): + cdef unique_ptr[column] c_result + + cdef table_view c_table_view = tbl.view() + + with nogil: + c_result = move(cpp_concatenate_rows( + c_table_view, + )) + + result = Column.from_unique_ptr(move(c_result)) + return result diff --git a/python/cudf/cudf/core/column/lists.py b/python/cudf/cudf/core/column/lists.py index ea783c3737a..7ea02c0e878 100644 --- a/python/cudf/cudf/core/column/lists.py +++ b/python/cudf/cudf/core/column/lists.py @@ -8,15 +8,19 @@ import cudf from cudf._lib.copying import segmented_gather from cudf._lib.lists import ( + concatenate_rows, contains_scalar, count_elements, drop_list_duplicates, extract_element, sort_lists, ) +from cudf._lib.table import Table +from cudf._typing import BinaryOperand from cudf.core.buffer import Buffer from cudf.core.column import ColumnBase, as_column, column from cudf.core.column.methods import ColumnMethodsMixin +from cudf.core.dtypes import ListDtype from cudf.utils.dtypes import is_list_dtype, is_numerical_dtype @@ -74,6 +78,58 @@ def __sizeof__(self): def base_size(self): return len(self.base_children[0]) - 1 + def binary_operator( + self, binop: str, other: BinaryOperand, reflect: bool = False + ) -> ColumnBase: + """ + Calls a binary operator *binop* on operands *self* + and *other*. + + Parameters + ---------- + self, other : list columns + + binop : binary operator + Only "add" operator is currently being supported + for lists concatenation functions + + reflect : boolean, default False + If ``reflect`` is ``True``, swap the order of + the operands. + + Returns + ------- + Series : the output dtype is determined by the + input operands. + + Examples + -------- + >>> import cudf + >>> gdf = cudf.DataFrame({'val': [['a', 'a'], ['b'], ['c']]}) + >>> gdf + val + 0 [a, a] + 1 [b] + 2 [c] + >>> gdf['val'] + gdf['val'] + 0 [a, a, a, a] + 1 [b, b] + 2 [c, c] + Name: val, dtype: list + + """ + + if isinstance(other.dtype, ListDtype): + if binop == "add": + return concatenate_rows(Table({0: self, 1: other})) + else: + raise NotImplementedError( + "Lists concatenation for this operation is not yet" + "supported" + ) + else: + raise TypeError("can only concatenate list to list") + @property def elements(self): """ diff --git a/python/cudf/cudf/core/column/string.py b/python/cudf/cudf/core/column/string.py index 14b71ad5528..84dcad516df 100644 --- a/python/cudf/cudf/core/column/string.py +++ b/python/cudf/cudf/core/column/string.py @@ -601,10 +601,6 @@ def join( else: # If self._column is not a ListColumn, we will have to # split each row by character and create a ListColumn out of it. - - # TODO: Remove this workaround after the following - # feature request is resolved - # FEA: https://github.com/rapidsai/cudf/issues/8094 strings_column = self._split_by_character() if is_scalar(sep): @@ -641,13 +637,7 @@ def join( def _split_by_character(self): result_col = cpp_character_tokenize(self._column) - bytes_count = cpp_count_bytes(self._column) - offset_col = cudf.core.column.column_empty( - row_count=len(bytes_count) + 1, dtype="int32" - ) - offset_col[0] = 0 - offset_col[1:] = bytes_count - offset_col = offset_col._apply_scan_op("sum") + offset_col = self._column.children[0] res = cudf.core.column.ListColumn( size=len(self._column), @@ -2201,7 +2191,7 @@ def get_json_object(self, json_path): >>> import cudf >>> s = cudf.Series( [ - \"\"\" + \\"\\"\\" { "store":{ "book":[ @@ -2220,13 +2210,13 @@ def get_json_object(self, json_path): ] } } - \"\"\" + \\"\\"\\" ]) >>> s - 0 {"store": {\n "book": [\n { "cat... + 0 {"store": {\\n "book": [\\n { "cat... dtype: object >>> s.str.get_json_object("$.store.book") - 0 [\n { "category": "reference",\n ... + 0 [\\n { "category": "reference",\\n ... dtype: object """ diff --git a/python/cudf/cudf/tests/test_list.py b/python/cudf/cudf/tests/test_list.py index 9906600304b..5dcecc6c9e1 100644 --- a/python/cudf/cudf/tests/test_list.py +++ b/python/cudf/cudf/tests/test_list.py @@ -315,3 +315,20 @@ def test_contains_null_search_key(data, expect): expect = cudf.Series(expect, dtype="bool") got = sr.list.contains(cudf.Scalar(cudf.NA, sr.dtype.element_type)) assert_eq(expect, got) + + +def test_concatenate_rows_of_lists(): + pdf = pd.DataFrame({"val": [["a", "a"], ["b"], ["c"]]}) + gdf = cudf.from_pandas(pdf) + + expect = pdf["val"] + pdf["val"] + got = gdf["val"] + gdf["val"] + + assert_eq(expect, got) + + +def test_concatenate_list_with_nonlist(): + with pytest.raises(TypeError, match="can only concatenate list to list"): + gdf1 = cudf.DataFrame({"A": [["a", "c"], ["b", "d"], ["c", "d"]]}) + gdf2 = cudf.DataFrame({"A": ["a", "b", "c"]}) + gdf1["A"] + gdf2["A"]