diff --git a/python/cudf/cudf/tests/test_scalar.py b/python/cudf/cudf/tests/test_scalar.py index 05a91a8fea3..195231e9960 100644 --- a/python/cudf/cudf/tests/test_scalar.py +++ b/python/cudf/cudf/tests/test_scalar.py @@ -8,6 +8,7 @@ import pandas as pd import pyarrow as pa import pytest +from packaging import version import rmm @@ -253,6 +254,22 @@ def test_generic_null_scalar_construction_fails(value): cudf.Scalar(value) +@pytest.mark.parametrize( + "value, dtype", [(1000, "uint8"), (2**30, "int16"), (-1, "uint16")] +) +@pytest.mark.filterwarnings("ignore::DeprecationWarning") +def test_scalar_out_of_bounds_pyint_fails(value, dtype): + # Test that we align with NumPy on scalar creation behavior from + # Python integers. + if version.parse(np.__version__) >= version.parse("2.0"): + with pytest.raises(OverflowError): + cudf.Scalar(value, dtype) + else: + # NumPy allowed this, but it gives a DeprecationWarning on newer + # versions (which cudf did not used to do). + assert cudf.Scalar(value, dtype).value == np.dtype(dtype).type(value) + + @pytest.mark.parametrize( "dtype", NUMERIC_TYPES + DATETIME_TYPES + TIMEDELTA_TYPES + ["object"] ) diff --git a/python/cudf/cudf/tests/test_unaops.py b/python/cudf/cudf/tests/test_unaops.py index dbbf4fba3a6..5f5d79c1dce 100644 --- a/python/cudf/cudf/tests/test_unaops.py +++ b/python/cudf/cudf/tests/test_unaops.py @@ -81,7 +81,10 @@ def generate_valid_scalar_unaop_combos(): @pytest.mark.parametrize("slr,dtype,op", generate_valid_scalar_unaop_combos()) def test_scalar_unary_operations(slr, dtype, op): slr_host = np.array([slr])[0].astype(cudf.dtype(dtype)) - slr_device = cudf.Scalar(slr, dtype=dtype) + # The scalar may be out of bounds, so go via array force-cast + # NOTE: This is a change in behavior + slr = np.array(slr).astype(dtype)[()] + slr_device = cudf.Scalar(slr) expect = op(slr_host) got = op(slr_device) diff --git a/python/cudf/cudf/utils/dtypes.py b/python/cudf/cudf/utils/dtypes.py index 2aa3129ab30..0dec857ea96 100644 --- a/python/cudf/cudf/utils/dtypes.py +++ b/python/cudf/cudf/utils/dtypes.py @@ -253,16 +253,18 @@ def to_cudf_compatible_scalar(val, dtype=None): elif isinstance(val, datetime.timedelta): val = np.timedelta64(val) - val = _maybe_convert_to_default_type( - cudf.api.types.pandas_dtype(type(val)) - ).type(val) - if dtype is not None: - if isinstance(val, str) and np.dtype(dtype).kind == "M": + dtype = np.dtype(dtype) + if isinstance(val, str) and dtype.kind == "M": # pd.Timestamp can handle str, but not np.str_ val = pd.Timestamp(str(val)).to_datetime64().astype(dtype) else: - val = val.astype(dtype) + # At least datetimes cannot be converted to scalar via dtype.type: + val = np.array(val, dtype)[()] + else: + val = _maybe_convert_to_default_type( + cudf.api.types.pandas_dtype(type(val)) + ).type(val) if val.dtype.type is np.datetime64: time_unit, _ = np.datetime_data(val.dtype)