diff --git a/python/cudf_polars/cudf_polars/dsl/ir.py b/python/cudf_polars/cudf_polars/dsl/ir.py index 0a6deb5698c..d18e0141c7e 100644 --- a/python/cudf_polars/cudf_polars/dsl/ir.py +++ b/python/cudf_polars/cudf_polars/dsl/ir.py @@ -282,13 +282,18 @@ def evaluate(self, *, cache: MutableMapping[int, DataFrame]) -> DataFrame: pdf = pl.DataFrame._from_pydf(self.df) if self.projection is not None: pdf = pdf.select(self.projection) - # TODO: goes away when libcudf supports large strings table = pdf.to_arrow() schema = table.schema for i, field in enumerate(schema): + # TODO: Nested types if field.type == pa.large_string(): - # TODO: Nested types + # TODO: goes away when libcudf supports large strings schema = schema.set(i, pa.field(field.name, pa.string())) + elif isinstance(field.type, pa.LargeListType): + # TODO: goes away when libcudf supports large lists + schema = schema.set( + i, pa.field(field.name, pa.list_(field.type.field(0))) + ) table = table.cast(schema) df = DataFrame.from_table( plc.interop.from_arrow(table), list(self.schema.keys()) @@ -846,9 +851,10 @@ class MapFunction(IR): _NAMES: ClassVar[frozenset[str]] = frozenset( [ - "drop_nulls", "rechunk", - "merge_sorted", + # libcudf merge is not stable wrt order of inputs, since + # it uses a priority queue to manage the tables it produces. + # "merge_sorted", "rename", "explode", ] @@ -865,46 +871,13 @@ def __post_init__(self) -> None: # polars requires that all to-explode columns have the # same sub-shapes raise NotImplementedError("Explode with more than one column") - elif self.name == "merge_sorted": - assert isinstance(self.df, Union) - (key_column,) = self.options - if key_column not in self.df.dfs[0].schema: - raise ValueError(f"Key column {key_column} not found") def evaluate(self, *, cache: MutableMapping[int, DataFrame]) -> DataFrame: """Evaluate and return a dataframe.""" - if self.name == "merge_sorted": - # merge_sorted operates on Union inputs - # but if we evaluate the Union then we can't unpick the - # pieces, so we dive inside and evaluate the pieces by hand - assert isinstance(self.df, Union) - first, *rest = (c.evaluate(cache=cache) for c in self.df.dfs) - (key_column,) = self.options - if not all(first.column_names == r.column_names for r in rest): - raise ValueError("DataFrame shapes/column names don't match") - # Already validated that key_column is in column names - index = first.column_names.index(key_column) - return DataFrame.from_table( - plc.merge.merge_sorted( - [first.table, *(df.table for df in rest)], - [index], - [plc.types.Order.ASCENDING], - [plc.types.NullOrder.BEFORE], - ), - first.column_names, - ).sorted_like(first, subset={key_column}) - elif self.name == "rechunk": + if self.name == "rechunk": # No-op in our data model - return self.df.evaluate(cache=cache) - elif self.name == "drop_nulls": - df = self.df.evaluate(cache=cache) - (subset,) = self.options - subset = set(subset) - indices = [i for i, name in enumerate(df.column_names) if name in subset] - return DataFrame.from_table( - plc.stream_compaction.drop_nulls(df.table, indices, len(indices)), - df.column_names, - ).sorted_like(df) + # Don't think this appears in a plan tree from python + return self.df.evaluate(cache=cache) # pragma: no cover elif self.name == "rename": df = self.df.evaluate(cache=cache) # final tag is "swapping" which is useful for the @@ -920,7 +893,7 @@ def evaluate(self, *, cache: MutableMapping[int, DataFrame]) -> DataFrame: plc.lists.explode_outer(df.table, index), df.column_names ).sorted_like(df, subset=subset) else: - raise AssertionError("Should never be reached") + raise AssertionError("Should never be reached") # pragma: no cover @dataclasses.dataclass(slots=True) diff --git a/python/cudf_polars/tests/test_mapfunction.py b/python/cudf_polars/tests/test_mapfunction.py new file mode 100644 index 00000000000..ec6b3f3fc0a --- /dev/null +++ b/python/cudf_polars/tests/test_mapfunction.py @@ -0,0 +1,43 @@ +# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. +# SPDX-License-Identifier: Apache-2.0 +from __future__ import annotations + +import pytest + +import polars as pl + +from cudf_polars import translate_ir +from cudf_polars.testing.asserts import assert_gpu_result_equal + + +def test_merge_sorted_raises(): + df1 = pl.LazyFrame({"a": [1, 6, 9], "b": [1, -10, 4]}) + df2 = pl.LazyFrame({"a": [-1, 5, 11, 20], "b": [2, 7, -4, None]}) + df3 = pl.LazyFrame({"a": [-10, 20, 21], "b": [1, 2, 3]}) + + q = df1.merge_sorted(df2, key="a").merge_sorted(df3, key="a") + + with pytest.raises(NotImplementedError): + _ = translate_ir(q._ldf.visit()) + + +def test_explode_multiple_raises(): + df = pl.LazyFrame({"a": [[1, 2], [3, 4]], "b": [[5, 6], [7, 8]]}) + q = df.explode("a", "b") + + with pytest.raises(NotImplementedError): + _ = translate_ir(q._ldf.visit()) + + +@pytest.mark.parametrize("column", ["a", "b"]) +def test_explode_single(column): + df = pl.LazyFrame( + { + "a": [[1, 2], [3, 4], None], + "b": [[5, 6], [7, 8], [9, 10]], + "c": [None, 11, 12], + } + ) + q = df.explode(column) + + assert_gpu_result_equal(q)