-
Notifications
You must be signed in to change notification settings - Fork 919
/
Copy pathreader_impl.cu
858 lines (770 loc) · 34.1 KB
/
reader_impl.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
/*
* Copyright (c) 2019, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file reader_impl.cu
* @brief cuDF-IO ORC reader class implementation
**/
#include "reader_impl.hpp"
#include "timezone.h"
#include <io/comp/gpuinflate.h>
#include <cudf/table/table.hpp>
#include <cudf/utilities/error.hpp>
#include <cudf/utilities/traits.hpp>
#include <rmm/thrust_rmm_allocator.h>
#include <rmm/device_buffer.hpp>
#include <algorithm>
#include <array>
namespace cudf {
namespace io {
namespace detail {
namespace orc {
// Import functionality that's independent of legacy code
using namespace cudf::io::orc;
using namespace cudf::io;
namespace {
/**
* @brief Function that translates ORC data kind to cuDF type enum
**/
constexpr type_id to_type_id(const orc::SchemaType &schema,
bool use_np_dtypes,
type_id timestamp_type_id,
bool decimals_as_float)
{
switch (schema.kind) {
case orc::BOOLEAN: return type_id::BOOL8;
case orc::BYTE: return type_id::INT8;
case orc::SHORT: return type_id::INT16;
case orc::INT: return type_id::INT32;
case orc::LONG: return type_id::INT64;
case orc::FLOAT: return type_id::FLOAT32;
case orc::DOUBLE: return type_id::FLOAT64;
case orc::STRING:
case orc::BINARY:
case orc::VARCHAR:
case orc::CHAR:
// Variable-length types can all be mapped to STRING
return type_id::STRING;
case orc::TIMESTAMP:
return (timestamp_type_id != type_id::EMPTY) ? timestamp_type_id
: type_id::TIMESTAMP_NANOSECONDS;
case orc::DATE:
// There isn't a (DAYS -> np.dtype) mapping
return (use_np_dtypes) ? type_id::TIMESTAMP_MILLISECONDS : type_id::TIMESTAMP_DAYS;
case orc::DECIMAL:
// There isn't an arbitrary-precision type in cuDF, so map as float or int
return (decimals_as_float) ? type_id::FLOAT64 : type_id::INT64;
default: break;
}
return type_id::EMPTY;
}
/**
* @brief Function that translates cuDF time unit to ORC clock frequency
**/
constexpr int32_t to_clockrate(type_id timestamp_type_id)
{
switch (timestamp_type_id) {
case type_id::TIMESTAMP_SECONDS: return 1;
case type_id::TIMESTAMP_MILLISECONDS: return 1000;
case type_id::TIMESTAMP_MICROSECONDS: return 1000000;
case type_id::TIMESTAMP_NANOSECONDS: return 1000000000;
default: return 0;
}
}
constexpr std::pair<gpu::StreamIndexType, uint32_t> get_index_type_and_pos(
const orc::StreamKind kind, uint32_t skip_count, bool non_child)
{
switch (kind) {
case orc::DATA:
skip_count += 1;
skip_count |= (skip_count & 0xff) << 8;
return std::make_pair(gpu::CI_DATA, skip_count);
case orc::LENGTH:
case orc::SECONDARY:
skip_count += 1;
skip_count |= (skip_count & 0xff) << 16;
return std::make_pair(gpu::CI_DATA2, skip_count);
case orc::DICTIONARY_DATA: return std::make_pair(gpu::CI_DICTIONARY, skip_count);
case orc::PRESENT:
skip_count += (non_child ? 1 : 0);
return std::make_pair(gpu::CI_PRESENT, skip_count);
case orc::ROW_INDEX: return std::make_pair(gpu::CI_INDEX, skip_count);
default:
// Skip this stream as it's not strictly required
return std::make_pair(gpu::CI_NUM_STREAMS, 0);
}
}
} // namespace
/**
* @brief A helper class for ORC file metadata. Provides some additional
* convenience methods for initializing and accessing metadata.
**/
class metadata {
using OrcStripeInfo = std::pair<const StripeInformation *, const StripeFooter *>;
public:
explicit metadata(datasource *const src) : source(src)
{
const auto len = source->size();
const auto max_ps_size = std::min(len, static_cast<size_t>(256));
// Read uncompressed postscript section (max 255 bytes + 1 byte for length)
auto buffer = source->host_read(len - max_ps_size, max_ps_size);
const size_t ps_length = buffer->data()[max_ps_size - 1];
const uint8_t *ps_data = &buffer->data()[max_ps_size - ps_length - 1];
ProtobufReader pb;
pb.init(ps_data, ps_length);
CUDF_EXPECTS(pb.read(&ps, ps_length), "Cannot read postscript");
CUDF_EXPECTS(ps.footerLength + ps_length < len, "Invalid footer length");
// If compression is used, all the rest of the metadata is compressed
// If no compressed is used, the decompressor is simply a pass-through
decompressor = std::make_unique<OrcDecompressor>(ps.compression, ps.compressionBlockSize);
// Read compressed filefooter section
buffer = source->host_read(len - ps_length - 1 - ps.footerLength, ps.footerLength);
size_t ff_length = 0;
auto ff_data = decompressor->Decompress(buffer->data(), ps.footerLength, &ff_length);
pb.init(ff_data, ff_length);
CUDF_EXPECTS(pb.read(&ff, ff_length), "Cannot read filefooter");
CUDF_EXPECTS(get_num_columns() > 0, "No columns found");
}
/**
* @brief Filters and reads the info of only a selection of stripes
*
* @param[in] stripes Indices of individual stripes
* @param[in] row_start Starting row of the selection
* @param[in,out] row_count Total number of rows selected
*
* @return List of stripe info and total number of selected rows
**/
auto select_stripes(const std::vector<size_type> &stripes,
size_type &row_start,
size_type &row_count)
{
std::vector<OrcStripeInfo> selection;
if (!stripes.empty()) {
size_t stripe_rows = 0;
for (const auto &stripe_idx : stripes) {
CUDF_EXPECTS(stripe_idx >= 0 && stripe_idx < get_num_stripes(), "Invalid stripe index");
selection.emplace_back(&ff.stripes[stripe_idx], nullptr);
stripe_rows += ff.stripes[stripe_idx].numberOfRows;
}
row_count = static_cast<size_type>(stripe_rows);
} else {
row_start = std::max(row_start, 0);
if (row_count < 0) {
row_count = static_cast<size_type>(
std::min<size_t>(get_total_rows(), std::numeric_limits<size_type>::max()));
}
CUDF_EXPECTS(row_count >= 0, "Invalid row count");
CUDF_EXPECTS(static_cast<size_t>(row_start) <= get_total_rows(), "Invalid row start");
size_type stripe_skip_rows = 0;
for (size_t i = 0, count = 0; i < ff.stripes.size(); ++i) {
count += ff.stripes[i].numberOfRows;
if (count > static_cast<size_t>(row_start)) {
if (selection.size() == 0) {
stripe_skip_rows =
static_cast<size_type>(row_start - (count - ff.stripes[i].numberOfRows));
}
selection.emplace_back(&ff.stripes[i], nullptr);
}
if (count >= static_cast<size_t>(row_start) + static_cast<size_t>(row_count)) { break; }
}
row_start = stripe_skip_rows;
}
// Read each stripe's stripefooter metadata
if (not selection.empty()) {
orc::ProtobufReader pb;
stripefooters.resize(selection.size());
for (size_t i = 0; i < selection.size(); ++i) {
const auto stripe = selection[i].first;
const auto sf_comp_offset = stripe->offset + stripe->indexLength + stripe->dataLength;
const auto sf_comp_length = stripe->footerLength;
CUDF_EXPECTS(sf_comp_offset + sf_comp_length < source->size(),
"Invalid stripe information");
const auto buffer = source->host_read(sf_comp_offset, sf_comp_length);
size_t sf_length = 0;
auto sf_data = decompressor->Decompress(buffer->data(), sf_comp_length, &sf_length);
pb.init(sf_data, sf_length);
CUDF_EXPECTS(pb.read(&stripefooters[i], sf_length), "Cannot read stripefooter");
selection[i].second = &stripefooters[i];
}
}
return selection;
}
/**
* @brief Filters and reduces down to a selection of columns
*
* @param[in] use_names List of column names to select
* @param[out] has_timestamp_column Whether there is a orc::TIMESTAMP column
*
* @return List of ORC column indexes
**/
auto select_columns(std::vector<std::string> use_names, bool &has_timestamp_column)
{
std::vector<int> selection;
if (not use_names.empty()) {
int index = 0;
for (const auto &use_name : use_names) {
for (int i = 0; i < get_num_columns(); ++i, ++index) {
if (index >= get_num_columns()) { index = 0; }
if (ff.GetColumnName(index) == use_name) {
selection.emplace_back(index);
if (ff.types[index].kind == orc::TIMESTAMP) { has_timestamp_column = true; }
index++;
break;
}
}
}
} else {
// For now, only select all leaf nodes
for (int i = 0; i < get_num_columns(); ++i) {
if (ff.types[i].subtypes.size() == 0) {
selection.emplace_back(i);
if (ff.types[i].kind == orc::TIMESTAMP) { has_timestamp_column = true; }
}
}
}
CUDF_EXPECTS(selection.size() > 0, "Filtered out all columns");
return selection;
}
inline size_t get_total_rows() const { return ff.numberOfRows; }
inline int get_num_stripes() const { return ff.stripes.size(); }
inline int get_num_columns() const { return ff.types.size(); }
inline int get_row_index_stride() const { return ff.rowIndexStride; }
public:
PostScript ps;
FileFooter ff;
std::vector<StripeFooter> stripefooters;
std::unique_ptr<OrcDecompressor> decompressor;
private:
datasource *const source;
};
namespace {
/**
* @brief Struct that maps ORC streams to columns
**/
struct orc_stream_info {
orc_stream_info() = default;
explicit orc_stream_info(
uint64_t offset_, size_t dst_pos_, uint32_t length_, uint32_t gdf_idx_, uint32_t stripe_idx_)
: offset(offset_),
dst_pos(dst_pos_),
length(length_),
gdf_idx(gdf_idx_),
stripe_idx(stripe_idx_)
{
}
uint64_t offset; // offset in file
size_t dst_pos; // offset in memory relative to start of compressed stripe data
uint32_t length; // length in file
uint32_t gdf_idx; // column index
uint32_t stripe_idx; // stripe index
};
/**
* @brief Function that populates column descriptors stream/chunk
**/
size_t gather_stream_info(const size_t stripe_index,
const orc::StripeInformation *stripeinfo,
const orc::StripeFooter *stripefooter,
const std::vector<int> &orc2gdf,
const std::vector<int> &gdf2orc,
const std::vector<orc::SchemaType> types,
bool use_index,
size_t *num_dictionary_entries,
hostdevice_vector<gpu::ColumnDesc> &chunks,
std::vector<orc_stream_info> &stream_info)
{
const auto num_columns = gdf2orc.size();
uint64_t src_offset = 0;
uint64_t dst_offset = 0;
for (const auto &stream : stripefooter->streams) {
if (stream.column >= orc2gdf.size()) {
dst_offset += stream.length;
continue;
}
auto col = orc2gdf[stream.column];
if (col == -1) {
// A struct-type column has no data itself, but rather child columns
// for each of its fields. There is only a PRESENT stream, which
// needs to be included for the reader.
const auto schema_type = types[stream.column];
if (schema_type.subtypes.size() != 0) {
if (schema_type.kind == orc::STRUCT && stream.kind == orc::PRESENT) {
for (const auto &idx : schema_type.subtypes) {
auto child_idx = (idx < orc2gdf.size()) ? orc2gdf[idx] : -1;
if (child_idx >= 0) {
col = child_idx;
auto &chunk = chunks[stripe_index * num_columns + col];
chunk.strm_id[gpu::CI_PRESENT] = stream_info.size();
chunk.strm_len[gpu::CI_PRESENT] = stream.length;
}
}
}
}
}
if (col != -1) {
if (src_offset >= stripeinfo->indexLength || use_index) {
// NOTE: skip_count field is temporarily used to track index ordering
auto &chunk = chunks[stripe_index * num_columns + col];
const auto idx =
get_index_type_and_pos(stream.kind, chunk.skip_count, col == orc2gdf[stream.column]);
if (idx.first < gpu::CI_NUM_STREAMS) {
chunk.strm_id[idx.first] = stream_info.size();
chunk.strm_len[idx.first] = stream.length;
chunk.skip_count = idx.second;
if (idx.first == gpu::CI_DICTIONARY) {
chunk.dictionary_start = *num_dictionary_entries;
chunk.dict_len = stripefooter->columns[stream.column].dictionarySize;
*num_dictionary_entries += stripefooter->columns[stream.column].dictionarySize;
}
}
}
stream_info.emplace_back(
stripeinfo->offset + src_offset, dst_offset, stream.length, col, stripe_index);
dst_offset += stream.length;
}
src_offset += stream.length;
}
return dst_offset;
}
} // namespace
rmm::device_buffer reader::impl::decompress_stripe_data(
hostdevice_vector<gpu::ColumnDesc> &chunks,
const std::vector<rmm::device_buffer> &stripe_data,
const OrcDecompressor *decompressor,
std::vector<orc_stream_info> &stream_info,
size_t num_stripes,
rmm::device_vector<gpu::RowGroup> &row_groups,
size_t row_index_stride,
cudaStream_t stream)
{
// Parse the columns' compressed info
hostdevice_vector<gpu::CompressedStreamInfo> compinfo(0, stream_info.size(), stream);
for (const auto &info : stream_info) {
compinfo.insert(gpu::CompressedStreamInfo(
static_cast<const uint8_t *>(stripe_data[info.stripe_idx].data()) + info.dst_pos,
info.length));
}
CUDA_TRY(cudaMemcpyAsync(compinfo.device_ptr(),
compinfo.host_ptr(),
compinfo.memory_size(),
cudaMemcpyHostToDevice,
stream));
CUDA_TRY(gpu::ParseCompressedStripeData(compinfo.device_ptr(),
compinfo.size(),
decompressor->GetBlockSize(),
decompressor->GetLog2MaxCompressionRatio(),
stream));
CUDA_TRY(cudaMemcpyAsync(compinfo.host_ptr(),
compinfo.device_ptr(),
compinfo.memory_size(),
cudaMemcpyDeviceToHost,
stream));
CUDA_TRY(cudaStreamSynchronize(stream));
// Count the exact number of compressed blocks
size_t num_compressed_blocks = 0;
size_t num_uncompressed_blocks = 0;
size_t total_decomp_size = 0;
for (size_t i = 0; i < compinfo.size(); ++i) {
num_compressed_blocks += compinfo[i].num_compressed_blocks;
num_uncompressed_blocks += compinfo[i].num_uncompressed_blocks;
total_decomp_size += compinfo[i].max_uncompressed_size;
}
CUDF_EXPECTS(total_decomp_size > 0, "No decompressible data found");
rmm::device_buffer decomp_data(total_decomp_size, stream);
rmm::device_vector<gpu_inflate_input_s> inflate_in(num_compressed_blocks +
num_uncompressed_blocks);
rmm::device_vector<gpu_inflate_status_s> inflate_out(num_compressed_blocks);
// Parse again to populate the decompression input/output buffers
size_t decomp_offset = 0;
uint32_t start_pos = 0;
uint32_t start_pos_uncomp = (uint32_t)num_compressed_blocks;
for (size_t i = 0; i < compinfo.size(); ++i) {
auto dst_base = static_cast<uint8_t *>(decomp_data.data());
compinfo[i].uncompressed_data = dst_base + decomp_offset;
compinfo[i].decctl = inflate_in.data().get() + start_pos;
compinfo[i].decstatus = inflate_out.data().get() + start_pos;
compinfo[i].copyctl = inflate_in.data().get() + start_pos_uncomp;
stream_info[i].dst_pos = decomp_offset;
decomp_offset += compinfo[i].max_uncompressed_size;
start_pos += compinfo[i].num_compressed_blocks;
start_pos_uncomp += compinfo[i].num_uncompressed_blocks;
}
CUDA_TRY(cudaMemcpyAsync(compinfo.device_ptr(),
compinfo.host_ptr(),
compinfo.memory_size(),
cudaMemcpyHostToDevice,
stream));
CUDA_TRY(gpu::ParseCompressedStripeData(compinfo.device_ptr(),
compinfo.size(),
decompressor->GetBlockSize(),
decompressor->GetLog2MaxCompressionRatio(),
stream));
// Dispatch batches of blocks to decompress
if (num_compressed_blocks > 0) {
switch (decompressor->GetKind()) {
case orc::ZLIB:
CUDA_TRY(gpuinflate(
inflate_in.data().get(), inflate_out.data().get(), num_compressed_blocks, 0, stream));
break;
case orc::SNAPPY:
CUDA_TRY(gpu_unsnap(
inflate_in.data().get(), inflate_out.data().get(), num_compressed_blocks, stream));
break;
default: CUDF_EXPECTS(false, "Unexpected decompression dispatch"); break;
}
}
if (num_uncompressed_blocks > 0) {
CUDA_TRY(gpu_copy_uncompressed_blocks(
inflate_in.data().get() + num_compressed_blocks, num_uncompressed_blocks, stream));
}
CUDA_TRY(gpu::PostDecompressionReassemble(compinfo.device_ptr(), compinfo.size(), stream));
// Update the stream information with the updated uncompressed info
// TBD: We could update the value from the information we already
// have in stream_info[], but using the gpu results also updates
// max_uncompressed_size to the actual uncompressed size, or zero if
// decompression failed.
CUDA_TRY(cudaMemcpyAsync(compinfo.host_ptr(),
compinfo.device_ptr(),
compinfo.memory_size(),
cudaMemcpyDeviceToHost,
stream));
CUDA_TRY(cudaStreamSynchronize(stream));
const size_t num_columns = chunks.size() / num_stripes;
for (size_t i = 0; i < num_stripes; ++i) {
for (size_t j = 0; j < num_columns; ++j) {
auto &chunk = chunks[i * num_columns + j];
for (int k = 0; k < gpu::CI_NUM_STREAMS; ++k) {
if (chunk.strm_len[k] > 0 && chunk.strm_id[k] < compinfo.size()) {
chunk.streams[k] = compinfo[chunk.strm_id[k]].uncompressed_data;
chunk.strm_len[k] = compinfo[chunk.strm_id[k]].max_uncompressed_size;
}
}
}
}
if (not row_groups.empty()) {
CUDA_TRY(cudaMemcpyAsync(chunks.device_ptr(),
chunks.host_ptr(),
chunks.memory_size(),
cudaMemcpyHostToDevice,
stream));
CUDA_TRY(gpu::ParseRowGroupIndex(row_groups.data().get(),
compinfo.device_ptr(),
chunks.device_ptr(),
num_columns,
num_stripes,
row_groups.size() / num_columns,
row_index_stride,
stream));
}
return decomp_data;
}
void reader::impl::decode_stream_data(hostdevice_vector<gpu::ColumnDesc> &chunks,
size_t num_dicts,
size_t skip_rows,
size_t num_rows,
const std::vector<int64_t> &timezone_table,
const rmm::device_vector<gpu::RowGroup> &row_groups,
size_t row_index_stride,
std::vector<column_buffer> &out_buffers,
cudaStream_t stream)
{
const auto num_columns = out_buffers.size();
const auto num_stripes = chunks.size() / out_buffers.size();
// Update chunks with pointers to column data
for (size_t i = 0; i < num_stripes; ++i) {
for (size_t j = 0; j < num_columns; ++j) {
auto &chunk = chunks[i * num_columns + j];
chunk.column_data_base = out_buffers[j].data();
chunk.valid_map_base = out_buffers[j].null_mask();
}
}
// Allocate global dictionary for deserializing
rmm::device_vector<gpu::DictionaryEntry> global_dict(num_dicts);
// Allocate timezone transition table timestamp conversion
rmm::device_vector<int64_t> tz_table = timezone_table;
CUDA_TRY(cudaMemcpyAsync(
chunks.device_ptr(), chunks.host_ptr(), chunks.memory_size(), cudaMemcpyHostToDevice, stream));
CUDA_TRY(gpu::DecodeNullsAndStringDictionaries(chunks.device_ptr(),
global_dict.data().get(),
num_columns,
num_stripes,
num_rows,
skip_rows,
stream));
CUDA_TRY(gpu::DecodeOrcColumnData(chunks.device_ptr(),
global_dict.data().get(),
num_columns,
num_stripes,
num_rows,
skip_rows,
tz_table.data().get(),
tz_table.size(),
row_groups.data().get(),
row_groups.size() / num_columns,
row_index_stride,
stream));
CUDA_TRY(cudaMemcpyAsync(
chunks.host_ptr(), chunks.device_ptr(), chunks.memory_size(), cudaMemcpyDeviceToHost, stream));
CUDA_TRY(cudaStreamSynchronize(stream));
for (size_t i = 0; i < num_stripes; ++i) {
for (size_t j = 0; j < num_columns; ++j) {
out_buffers[j].null_count() += chunks[i * num_columns + j].null_count;
}
}
}
reader::impl::impl(std::unique_ptr<datasource> source,
reader_options const &options,
rmm::mr::device_memory_resource *mr)
: _source(std::move(source)), _mr(mr)
{
// Open and parse the source dataset metadata
_metadata = std::make_unique<metadata>(_source.get());
// Select only columns required by the options
_selected_columns = _metadata->select_columns(options.columns, _has_timestamp_column);
// Override output timestamp resolution if requested
if (options.timestamp_type.id() != type_id::EMPTY) { _timestamp_type = options.timestamp_type; }
// Enable or disable attempt to use row index for parsing
_use_index = options.use_index;
// Enable or disable the conversion to numpy-compatible dtypes
_use_np_dtypes = options.use_np_dtypes;
// Control decimals conversion (float64 or int64 with optional scale)
_decimals_as_float = options.decimals_as_float;
_decimals_as_int_scale = options.forced_decimals_scale;
}
table_with_metadata reader::impl::read(size_type skip_rows,
size_type num_rows,
const std::vector<size_type> &stripes,
cudaStream_t stream)
{
std::vector<std::unique_ptr<column>> out_columns;
table_metadata out_metadata;
// Select only stripes required (aka row groups)
const auto selected_stripes = _metadata->select_stripes(stripes, skip_rows, num_rows);
// Association between each ORC column and its cudf::column
std::vector<int32_t> orc_col_map(_metadata->get_num_columns(), -1);
// Get a list of column data types
std::vector<data_type> column_types;
for (const auto &col : _selected_columns) {
auto col_type = to_type_id(
_metadata->ff.types[col], _use_np_dtypes, _timestamp_type.id(), _decimals_as_float);
CUDF_EXPECTS(col_type != type_id::EMPTY, "Unknown type");
column_types.emplace_back(col_type);
// Map each ORC column to its column
orc_col_map[col] = column_types.size() - 1;
}
// If no rows or stripes to read, return empty columns
if (num_rows <= 0 || selected_stripes.size() == 0) {
std::transform(column_types.cbegin(),
column_types.cend(),
std::back_inserter(out_columns),
[](auto const &dtype) { return make_empty_column(dtype); });
} else {
const auto num_columns = _selected_columns.size();
const auto num_chunks = selected_stripes.size() * num_columns;
hostdevice_vector<gpu::ColumnDesc> chunks(num_chunks, stream);
memset(chunks.host_ptr(), 0, chunks.memory_size());
const bool use_index =
(_use_index == true) &&
// Only use if we don't have much work with complete columns & stripes
// TODO: Consider nrows, gpu, and tune the threshold
(num_rows > _metadata->get_row_index_stride() && !(_metadata->get_row_index_stride() & 7) &&
_metadata->get_row_index_stride() > 0 && num_columns * selected_stripes.size() < 8 * 128) &&
// Only use if first row is aligned to a stripe boundary
// TODO: Fix logic to handle unaligned rows
(skip_rows == 0);
// Logically view streams as columns
std::vector<orc_stream_info> stream_info;
// Tracker for eventually deallocating compressed and uncompressed data
std::vector<rmm::device_buffer> stripe_data;
size_t stripe_start_row = 0;
size_t num_dict_entries = 0;
size_t num_rowgroups = 0;
for (size_t i = 0; i < selected_stripes.size(); ++i) {
const auto stripe_info = selected_stripes[i].first;
const auto stripe_footer = selected_stripes[i].second;
auto stream_count = stream_info.size();
const auto total_data_size = gather_stream_info(i,
stripe_info,
stripe_footer,
orc_col_map,
_selected_columns,
_metadata->ff.types,
use_index,
&num_dict_entries,
chunks,
stream_info);
CUDF_EXPECTS(total_data_size > 0, "Expected streams data within stripe");
stripe_data.emplace_back(total_data_size, stream);
auto dst_base = static_cast<uint8_t *>(stripe_data.back().data());
// Coalesce consecutive streams into one read
while (stream_count < stream_info.size()) {
const auto d_dst = dst_base + stream_info[stream_count].dst_pos;
const auto offset = stream_info[stream_count].offset;
auto len = stream_info[stream_count].length;
stream_count++;
while (stream_count < stream_info.size() &&
stream_info[stream_count].offset == offset + len) {
len += stream_info[stream_count].length;
stream_count++;
}
const auto buffer = _source->host_read(offset, len);
CUDA_TRY(cudaMemcpyAsync(d_dst, buffer->data(), len, cudaMemcpyHostToDevice, stream));
CUDA_TRY(cudaStreamSynchronize(stream));
}
// Update chunks to reference streams pointers
for (size_t j = 0; j < num_columns; j++) {
auto &chunk = chunks[i * num_columns + j];
chunk.start_row = stripe_start_row;
chunk.num_rows = stripe_info->numberOfRows;
chunk.encoding_kind = stripe_footer->columns[_selected_columns[j]].kind;
chunk.type_kind = _metadata->ff.types[_selected_columns[j]].kind;
if (_decimals_as_float) {
chunk.decimal_scale =
_metadata->ff.types[_selected_columns[j]].scale | ORC_DECIMAL2FLOAT64_SCALE;
} else if (_decimals_as_int_scale < 0) {
chunk.decimal_scale = _metadata->ff.types[_selected_columns[j]].scale;
} else {
chunk.decimal_scale = _decimals_as_int_scale;
}
chunk.rowgroup_id = num_rowgroups;
chunk.dtype_len = (column_types[j].id() == type_id::STRING)
? sizeof(std::pair<const char *, size_t>)
: cudf::size_of(column_types[j]);
if (chunk.type_kind == orc::TIMESTAMP) {
chunk.ts_clock_rate = to_clockrate(_timestamp_type.id());
}
for (int k = 0; k < gpu::CI_NUM_STREAMS; k++) {
if (chunk.strm_len[k] > 0) {
chunk.streams[k] = dst_base + stream_info[chunk.strm_id[k]].dst_pos;
}
}
}
stripe_start_row += stripe_info->numberOfRows;
if (use_index) {
num_rowgroups += (stripe_info->numberOfRows + _metadata->get_row_index_stride() - 1) /
_metadata->get_row_index_stride();
}
}
// Process dataset chunk pages into output columns
if (stripe_data.size() != 0) {
// Setup row group descriptors if using indexes
rmm::device_vector<gpu::RowGroup> row_groups(num_rowgroups * num_columns);
if (_metadata->ps.compression != orc::NONE) {
auto decomp_data = decompress_stripe_data(chunks,
stripe_data,
_metadata->decompressor.get(),
stream_info,
selected_stripes.size(),
row_groups,
_metadata->get_row_index_stride(),
stream);
stripe_data.clear();
stripe_data.push_back(std::move(decomp_data));
} else {
if (not row_groups.empty()) {
CUDA_TRY(cudaMemcpyAsync(chunks.device_ptr(),
chunks.host_ptr(),
chunks.memory_size(),
cudaMemcpyHostToDevice,
stream));
CUDA_TRY(gpu::ParseRowGroupIndex(row_groups.data().get(),
nullptr,
chunks.device_ptr(),
num_columns,
selected_stripes.size(),
num_rowgroups,
_metadata->get_row_index_stride(),
stream));
}
}
// Setup table for converting timestamp columns from local to UTC time
std::vector<int64_t> tz_table;
if (_has_timestamp_column) {
CUDF_EXPECTS(
BuildTimezoneTransitionTable(tz_table, selected_stripes[0].second->writerTimezone),
"Cannot setup timezone LUT");
}
std::vector<column_buffer> out_buffers;
for (size_t i = 0; i < column_types.size(); ++i) {
bool is_nullable = false;
for (size_t j = 0; j < selected_stripes.size(); ++j) {
if (chunks[j * num_columns + i].strm_len[gpu::CI_PRESENT] != 0) {
is_nullable = true;
break;
}
}
out_buffers.emplace_back(column_types[i], num_rows, is_nullable, stream, _mr);
}
decode_stream_data(chunks,
num_dict_entries,
skip_rows,
num_rows,
tz_table,
row_groups,
_metadata->get_row_index_stride(),
out_buffers,
stream);
for (size_t i = 0; i < column_types.size(); ++i) {
out_columns.emplace_back(make_column(out_buffers[i], stream, _mr));
}
}
}
// Return column names (must match order of returned columns)
out_metadata.column_names.resize(_selected_columns.size());
for (size_t i = 0; i < _selected_columns.size(); i++) {
out_metadata.column_names[i] = _metadata->ff.GetColumnName(_selected_columns[i]);
}
// Return user metadata
for (const auto &kv : _metadata->ff.metadata) {
out_metadata.user_data.insert({kv.name, kv.value});
}
return {std::make_unique<table>(std::move(out_columns)), std::move(out_metadata)};
}
// Forward to implementation
reader::reader(std::vector<std::string> const &filepaths,
reader_options const &options,
rmm::mr::device_memory_resource *mr)
{
CUDF_EXPECTS(filepaths.size() == 1, "Only a single source is currently supported.");
_impl = std::make_unique<impl>(datasource::create(filepaths[0]), options, mr);
}
// Forward to implementation
reader::reader(std::vector<std::unique_ptr<cudf::io::datasource>> &&sources,
reader_options const &options,
rmm::mr::device_memory_resource *mr)
{
CUDF_EXPECTS(sources.size() == 1, "Only a single source is currently supported.");
_impl = std::make_unique<impl>(std::move(sources[0]), options, mr);
}
// Destructor within this translation unit
reader::~reader() = default;
// Forward to implementation
table_with_metadata reader::read_all(cudaStream_t stream)
{
return _impl->read(0, -1, std::vector<size_type>(), stream);
}
// Forward to implementation
table_with_metadata reader::read_stripes(const std::vector<size_type> &stripes, cudaStream_t stream)
{
return _impl->read(0, -1, stripes, stream);
}
// Forward to implementation
table_with_metadata reader::read_rows(size_type skip_rows, size_type num_rows, cudaStream_t stream)
{
return _impl->read(skip_rows, (num_rows != 0) ? num_rows : -1, std::vector<size_type>(), stream);
}
} // namespace orc
} // namespace detail
} // namespace io
} // namespace cudf