-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_app.py
40 lines (31 loc) · 1.46 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import streamlit as st
import tempfile
import os
# App Header
st.title("Business Process and Analytics Lab: Multimodal Emotion Analysis")
# Video Upload
video_file = st.file_uploader("Upload your video file", type=["mp4", "mov", "avi"])
# Display the uploaded video if it exists
if video_file is not None:
# Display the video
st.video(video_file)
# Save the uploaded video to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file:
tmp_file.write(video_file.read())
temp_video_path = tmp_file.name
# Inform the user that the video is ready for analysis
st.write(f"Video saved for analysis: {os.path.basename(temp_video_path)}")
# Buttons for Emotion Analysis
st.header("Choose Emotion Analysis Method")
if st.button("Facial Expressions"):
st.write("Facial Expressions analysis will be implemented here.")
# Placeholder for facial expression analysis
# This would use temp_video_path for analysis
if st.button("Audio Intonation"):
st.write("Audio Intonation analysis will be implemented here.")
# Placeholder for audio intonation analysis
# This would use temp_video_path for analysis
if st.button("Textual Content"):
st.write("Textual Content analysis will be implemented here.")
# Placeholder for textual content analysis
# This would use temp_video_path for analysis