-
Notifications
You must be signed in to change notification settings - Fork 40
/
models.py
760 lines (596 loc) · 29.3 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
from collections import OrderedDict
from typing import Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from timm.models.layers import drop, drop_path, trunc_normal_
from mmseg.models.builder import BACKBONES
from mmseg.models.backbones import ResNet
from mmseg.models.backbones import VisionTransformer as MMVisionTransformer
from timm.models.resnet import ResNet as TimmResNet
from timm.models.resnet import Bottleneck as TimmBottleneck
import math
from timm.models.vision_transformer import VisionTransformer
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(OrderedDict([
("-1", nn.AvgPool2d(stride)),
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
("1", nn.BatchNorm2d(planes * self.expansion))
]))
def forward(self, x: torch.Tensor):
identity = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.relu(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
self.embed_dim = embed_dim
self.spacial_dim = spacial_dim
def forward(self, x):
B, C, H, W = x.shape
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
cls_pos = self.positional_embedding[0:1, :]
spatial_pos = F.interpolate(self.positional_embedding[1:,].reshape(1, self.spacial_dim, self.spacial_dim, self.embed_dim).permute(0, 3, 1, 2), size=(H, W), mode='bilinear')
spatial_pos = spatial_pos.reshape(self.embed_dim, H*W).permute(1, 0)
positional_embedding = torch.cat([cls_pos, spatial_pos], dim=0)
x = x + positional_embedding[:, None, :]
x, _ = F.multi_head_attention_forward(
query=x, key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
x = x.permute(1, 2, 0)
global_feat = x[:, :, 0]
feature_map = x[:, :, 1:].reshape(B, -1, H, W)
return global_feat, feature_map
@BACKBONES.register_module()
class CLIPResNet(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim=512, input_resolution=224, width=64, pretrained=None, **kwargs):
super().__init__()
self.pretrained = pretrained
self.output_dim = output_dim
self.input_resolution = input_resolution
# the 3-layer stem
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
def init_weights(self, pretrained=None):
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(pretrained, map_location='cpu').float().state_dict()
state_dict = {}
for k in checkpoint.keys():
if k.startswith('visual.'):
new_k = k.replace('visual.', '')
state_dict[new_k] = checkpoint[k]
u, w = self.load_state_dict(state_dict, False)
print(u, w, 'are misaligned params in CLIPResNet')
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
def stem(x):
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x
x = x.type(self.conv1.weight.dtype)
x = stem(x)
outs = []
x = self.layer1(x)
outs.append(x)
x = self.layer2(x)
outs.append(x)
x = self.layer3(x)
outs.append(x)
x = self.layer4(x)
outs.append(x)
return tuple(outs)
@BACKBONES.register_module()
class CLIPResNetWithAttention(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim=1024, input_resolution=224, width=64, pretrained=None, **kwargs):
super().__init__()
self.pretrained = pretrained
self.output_dim = output_dim
self.input_resolution = input_resolution
# the 3-layer stem
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, 32, output_dim)
def init_weights(self, pretrained=None):
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(pretrained, map_location='cpu').float().state_dict()
state_dict = {}
for k in checkpoint.keys():
if k.startswith('visual.'):
new_k = k.replace('visual.', '')
state_dict[new_k] = checkpoint[k]
if 'positional_embedding' in new_k:
if self.attnpool.positional_embedding.shape != state_dict[new_k].shape:
print(f'Resize the pos_embed shape from {state_dict[new_k].shape} to {self.attnpool.positional_embedding.shape}')
cls_pos = state_dict[new_k][0:1, :]
H = W = self.input_resolution // 32
old_h = int(math.sqrt(state_dict[new_k][1:,].shape[0]))
spatial_pos = F.interpolate(state_dict[new_k][1:,].reshape(1, old_h, old_h, cls_pos.shape[1]).permute(0, 3, 1, 2), size=(H, W), mode='bilinear')
spatial_pos = spatial_pos.reshape(cls_pos.shape[1], H*W).permute(1, 0)
positional_embedding = torch.cat([cls_pos, spatial_pos], dim=0)
state_dict[new_k] = positional_embedding
assert self.attnpool.positional_embedding.shape == state_dict[new_k].shape
u, w = self.load_state_dict(state_dict, False)
print(u, w, 'are misaligned params in CLIPResNet')
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
def stem(x):
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x
x = x.type(self.conv1.weight.dtype)
x = stem(x)
outs = []
x = self.layer1(x)
outs.append(x)
x = self.layer2(x)
outs.append(x)
x = self.layer3(x)
outs.append(x)
x = self.layer4(x)
outs.append(x)
x_global, x_local = self.attnpool(x)
outs.append([x_global, x_local])
return tuple(outs)
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return 'p={}'.format(self.drop_prob)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, drop_path=0.):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.drop_path(self.attention(self.ln_1(x)))
x = x + self.drop_path(self.mlp(self.ln_2(x)))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, drop_path_rate=0.):
super().__init__()
self.width = width
self.layers = layers
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, layers)] # stochastic depth decay rule
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask, dpr[i]) for i in range(layers)])
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.q_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.k_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.v_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, q, k, v):
B, N, C = q.shape
assert k.shape == v.shape
B, M, C = k.shape
q = self.q_proj(q).reshape(B, N, self.num_heads, C // self.num_heads)
k = self.k_proj(k).reshape(B, M, self.num_heads, C // self.num_heads)
v = self.v_proj(v).reshape(B, M, self.num_heads, C // self.num_heads)
attn = torch.einsum('bnkc,bmkc->bknm', q, k) * self.scale
attn = attn.softmax(dim=-1)
x = torch.einsum('bknm,bmkc->bnkc', attn, v).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class TransformerDecoderLayer(nn.Module):
def __init__(
self,
d_model,
nhead,
dropout=0.1,
):
super().__init__()
self.self_attn = Attention(d_model, nhead, proj_drop=dropout)
self.cross_attn = Attention(d_model, nhead, proj_drop=dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.mlp = nn.Sequential(
nn.Linear(d_model, d_model * 4),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(d_model * 4, d_model)
)
def forward(self, x, mem):
q = k = v = self.norm1(x)
x = x + self.self_attn(q, k, v)
q = self.norm2(x)
x = x + self.cross_attn(q, mem, mem)
x = x + self.dropout(self.mlp(self.norm3(x)))
return x
@BACKBONES.register_module()
class CLIPVisionTransformer(nn.Module):
def __init__(self, input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, drop_path_rate=0.0, out_indices=[3, 5, 7, 11], pretrained=None, get_embeddings=False, **kwargs):
super().__init__()
self.pretrained = pretrained
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.spatial_size = input_resolution // patch_size
self.ln_pre = LayerNorm(width)
self.get_embeddings = get_embeddings
self.transformer = Transformer(width, layers, heads, drop_path_rate=drop_path_rate)
self.out_indices = out_indices
if get_embeddings:
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
embed_dim = width
if patch_size == 16:
self.fpn1 = nn.Sequential(
nn.GroupNorm(1, embed_dim),
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
nn.SyncBatchNorm(embed_dim),
nn.GELU(),
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
)
self.fpn2 = nn.Sequential(
nn.GroupNorm(1, embed_dim),
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
)
self.fpn3 = nn.GroupNorm(1, embed_dim)
self.fpn4 = nn.Sequential(
nn.GroupNorm(1, embed_dim),
nn.MaxPool2d(kernel_size=2, stride=2)
)
elif patch_size == 8:
self.fpn1 = nn.Sequential(
nn.GroupNorm(1, embed_dim),
nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
)
self.fpn2 = nn.GroupNorm(1, embed_dim)
self.fpn3 = nn.Sequential(
nn.GroupNorm(1, embed_dim),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.fpn4 = nn.Sequential(
nn.GroupNorm(1, embed_dim),
nn.MaxPool2d(kernel_size=4, stride=4),
)
def init_weights(self, pretrained=None):
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(pretrained, map_location='cpu').float().state_dict()
state_dict = {}
for k in checkpoint.keys():
if k.startswith('visual.'):
new_k = k.replace('visual.', '')
state_dict[new_k] = checkpoint[k]
if 'positional_embedding' in state_dict.keys():
if self.positional_embedding.shape != state_dict['positional_embedding'].shape:
print(f'Resize the pos_embed shape from {state_dict["positional_embedding"].shape} to {self.positional_embedding.shape}')
cls_pos = state_dict["positional_embedding"][0:1, :]
spatial_pos = F.interpolate(state_dict["positional_embedding"][1:,].reshape(1, 14, 14, 768).permute(0, 3, 1, 2), size=(self.spatial_size, self.spatial_size), mode='bilinear')
spatial_pos = spatial_pos.reshape(768, self.spatial_size*self.spatial_size).permute(1, 0)
positional_embedding = torch.cat([cls_pos, spatial_pos], dim=0)
state_dict['positional_embedding'] = positional_embedding
assert self.positional_embedding.shape == state_dict['positional_embedding'].shape
u, w = self.load_state_dict(state_dict, False)
print(u, w, 'are misaligned params in vision transformer')
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
B, C, H, W = x.shape
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
pos = self.positional_embedding.to(x.dtype)
cls_pos = pos[0,:] + self.class_embedding.to(x.dtype)
spatial_pos = F.interpolate(pos[1:,].reshape(1, self.spatial_size, self.spatial_size, C).permute(0, 3, 1, 2), size=(H, W), mode='bilinear')
spatial_pos = spatial_pos.reshape(1, C, H*W).permute(0, 2, 1)
pos = torch.cat([cls_pos.reshape(1, 1, C), spatial_pos], dim=1)
x = x + pos
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
features = []
for i, blk in enumerate(self.transformer.resblocks):
x = blk(x)
if i in self.out_indices:
xp = x.permute(1, 0, 2)[:, 1:, :].permute(0, 2, 1).reshape(B, -1, H, W)
features.append(xp.contiguous())
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
for i in range(len(features)):
features[i] = ops[i](features[i])
if self.get_embeddings:
x = x.permute(1, 0, 2)
x = self.ln_post(x)
x = x @ self.proj
global_embedding = x[:, 0]
visual_embedding = x[:, 1:].reshape(B, H, W, -1).permute(0, 3, 1, 2) # B C H W
features.append([global_embedding, visual_embedding])
return tuple(features)
@BACKBONES.register_module()
class CLIPTextEncoder(nn.Module):
def __init__(self, context_length=77,
vocab_size=49408,
transformer_width=512,
transformer_heads=8,
transformer_layers=12,
embed_dim=1024,
out_dim=256,
pretrained=None, **kwargs):
super().__init__()
self.pretrained = pretrained
self.context_length = context_length
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
def init_weights(self, pretrained=None):
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(pretrained, map_location='cpu').float().state_dict()
state_dict = {}
for k in checkpoint.keys():
if k.startswith('transformer.'):
state_dict[k] = checkpoint[k]
if k == 'positional_embedding' or k == 'text_projection' or k.startswith('token_embedding') or k.startswith('ln_final'):
if k == 'positional_embedding' and checkpoint[k].size(0) > self.context_length:
checkpoint[k] = checkpoint[k][:self.context_length]
print('positional_embedding is tuncated from 77 to', self.context_length)
state_dict[k] = checkpoint[k]
u, w = self.load_state_dict(state_dict, False)
print(u, w, 'are misaligned params in text encoder')
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def forward(self, text):
x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
# x = self.out_proj(x)
return x
@BACKBONES.register_module()
class CLIPTextContextEncoder(nn.Module):
def __init__(self, context_length=22,
vocab_size=49408,
transformer_width=512,
transformer_heads=8,
transformer_layers=12,
embed_dim=1024,
out_dim=256,
pretrained=None, **kwargs):
super().__init__()
self.pretrained = pretrained
self.context_length = context_length
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.embed_dim = embed_dim
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
def init_weights(self, pretrained=None):
pretrained = pretrained or self.pretrained
if isinstance(pretrained, str):
checkpoint = torch.jit.load(pretrained, map_location='cpu').float().state_dict()
state_dict = {}
for k in checkpoint.keys():
if k.startswith('transformer.'):
state_dict[k] = checkpoint[k]
if k == 'positional_embedding' or k == 'text_projection' or k.startswith('token_embedding') or k.startswith('ln_final'):
if k == 'positional_embedding' and checkpoint[k].size(0) > self.context_length:
checkpoint[k] = checkpoint[k][:self.context_length]
print('positional_embedding is tuncated from 77 to', self.context_length)
state_dict[k] = checkpoint[k]
u, w = self.load_state_dict(state_dict, False)
print(u, w, 'are misaligned params in text encoder')
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def forward(self, text, context):
x_text = self.token_embedding(text) # n_clas, n_text, C
K, N1, C = x_text.shape
B, N2, C = context.shape
eos_indx = text.argmax(dim=-1) + N2
eos_indx = eos_indx.reshape(1, K).expand(B, K).reshape(-1)
x_text = x_text.reshape(1, K, N1, C).expand(B, K, N1, C)
context = context.reshape(B, 1, N2, C).expand(B, K, N2, C)
x = torch.cat([x_text[:,:,0:1], context, x_text[:, :, 1:]], dim=2).reshape(B*K, N1+N2, C)
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
x = x[torch.arange(x.shape[0]), eos_indx] @ self.text_projection
x = x.reshape(B, K, self.embed_dim)
return x
@BACKBONES.register_module()
class ContextDecoder(nn.Module):
def __init__(self,
transformer_width=256,
transformer_heads=4,
transformer_layers=6,
visual_dim=1024,
dropout=0.1,
**kwargs):
super().__init__()
self.memory_proj = nn.Sequential(
nn.LayerNorm(visual_dim),
nn.Linear(visual_dim, transformer_width),
nn.LayerNorm(transformer_width),
)
self.text_proj = nn.Sequential(
nn.LayerNorm(visual_dim),
nn.Linear(visual_dim, transformer_width),
)
self.decoder = nn.ModuleList([
TransformerDecoderLayer(transformer_width, transformer_heads, dropout) for _ in range(transformer_layers)
])
self.out_proj = nn.Sequential(
nn.LayerNorm(transformer_width),
nn.Linear(transformer_width, visual_dim)
)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, text, visual):
B, N, C = visual.shape
visual = self.memory_proj(visual)
x = self.text_proj(text)
for layer in self.decoder:
x = layer(x, visual)
return self.out_proj(x)