diff --git a/src/lib/pubkey/pqcrystals/info.txt b/src/lib/pubkey/pqcrystals/info.txt new file mode 100644 index 00000000000..5a2ab539091 --- /dev/null +++ b/src/lib/pubkey/pqcrystals/info.txt @@ -0,0 +1,18 @@ + +PQCRYSTALS -> 20240228 + + + +name -> "CRYSTALS" +brief -> "Base utilities for CRYSTALS-Kyber/ML-KEM and CRYSTALS-Dilithium/ML-DSA. CRYptographic SuiTe for Algebraic LatticeS" +type -> "Internal" + + + + + + +pqcrystals.h +pqcrystals_encoding.h +pqcrystals_helpers.h + diff --git a/src/lib/pubkey/pqcrystals/pqcrystals.h b/src/lib/pubkey/pqcrystals/pqcrystals.h new file mode 100644 index 00000000000..3940e5c66ba --- /dev/null +++ b/src/lib/pubkey/pqcrystals/pqcrystals.h @@ -0,0 +1,661 @@ +/* + * PQ CRYSTALS Common Structures + * + * Further changes + * (C) 2021-2024 Jack Lloyd + * (C) 2021-2022 Manuel Glaser and Michael Boric, Rohde & Schwarz Cybersecurity + * (C) 2021-2022 René Meusel and Hannes Rantzsch, neXenio GmbH + * (C) 2024 René Meusel, Rohde & Schwarz Cybersecurity + * + * Botan is released under the Simplified BSD License (see license.txt) + */ + +#ifndef BOTAN_PQ_CRYSTALS_H_ +#define BOTAN_PQ_CRYSTALS_H_ + +#include +#include +#include +#include + +#include +#include +#include +#include + +namespace Botan::CRYSTALS { + +enum class Domain { Normal, NTT }; + +template +concept crystals_constants = + std::signed_integral && std::integral && std::integral && + std::integral && std::unsigned_integral && + std::integral; + +/** + * This implements basic polynomial operations for Kyber and Dilithium + * based on the given algorithm constants (@p ConstantsT) and back- + * references some of the operations to the actual implementation + * into the derived class (CRTP @p DerivedT). + * + * Polynomial parameters are passed as spans of coefficients for maximum + * flexibility. Certain + * + * It is assumed that this is subclassed with the actual implementation + * with establishing a CRTP back-reference. + */ +template +class Trait_Base { + public: + using T = typename ConstantsT::T; + static constexpr T N = ConstantsT::N; + static constexpr T Q = ConstantsT::Q; + + protected: + using T2 = next_longer_int_t; + + /// \name Pre-computed algorithm constants + /// @{ + + static constexpr T Q_inverse = modular_inverse(Q); + static constexpr T MONTY = montgomery_R(Q); + static constexpr T MONTY_SQUARED = montgomery_R2(Q); + + // Contains the constant f from Algorithm 36 multiplied two times by + // the montgomery parameter, i.e. 2^(2*32) mod q. The first montgomery + // factor is then removed by the reduction in the loop. The second one + // is required to eliminate factors 2^(-32) mod q in coeffs introduced + // by previous montgomery multiplications in a single vector/matrix + // multiplication operation. + static constexpr T F_WITH_MONTY_SQUARED = (static_cast(ConstantsT::F) * MONTY_SQUARED) % Q; + + static constexpr auto zetas = precompute_zetas(Q, MONTY, ConstantsT::ROOT_OF_UNITY); + + /// @} + + protected: + /// @returns the number of polynomials in the polynomial vector @p polyvec. + static constexpr size_t polys_in_polyvec(std::span polyvec) { + BOTAN_DEBUG_ASSERT(polyvec.size() % N == 0); + return polyvec.size() / N; + } + + /// @returns the @p index-th polynomial in the polynomial vector @p polyvec. + template + requires(std::same_as || std::same_as) + static constexpr std::span poly_in_polyvec(std::span polyvec, size_t index) { + BOTAN_DEBUG_ASSERT(polyvec.size() % N == 0); + BOTAN_DEBUG_ASSERT(polyvec.size() / N > index); + auto polyspan = polyvec.subspan(index * N, N); + return std::span{polyspan.data(), polyspan.size()}; + } + + static constexpr T fqmul(T a, T b) { return DerivedT::montgomery_reduce_coefficient(static_cast(a) * b); } + + public: + static constexpr void poly_add(std::span result, std::span lhs, std::span rhs) { + for(size_t i = 0; i < N; ++i) { + result[i] = lhs[i] + rhs[i]; + } + } + + static constexpr void poly_sub(std::span result, std::span lhs, std::span rhs) { + for(size_t i = 0; i < N; ++i) { + result[i] = lhs[i] - rhs[i]; + } + } + + /// Adds Q if the coefficient is negative. + static constexpr void poly_cadd_q(std::span coeffs) { + for(auto& coeff : coeffs) { + using unsigned_T = std::make_unsigned_t; + const auto is_negative = CT::Mask::expand_top_bit(static_cast(coeff)); + coeff += is_negative.if_set_return(Q); + } + } + + static constexpr T to_montgomery(T a) { return fqmul(a, MONTY_SQUARED); } + + constexpr static void barrett_reduce(std::span poly) { + for(auto& coeff : poly) { + coeff = DerivedT::barrett_reduce_coefficient(coeff); + } + } + + /// Multiplication and accumulation of 2 polynomial vectors @p u and @p v. + static constexpr void polyvec_pointwise_acc_montgomery(std::span w, + std::span u, + std::span v) { + clear_mem(w); + std::array t; + for(size_t i = 0; i < polys_in_polyvec(u); ++i) { + DerivedT::poly_pointwise_montgomery(t, poly_in_polyvec(u, i), poly_in_polyvec(v, i)); + poly_add(w, w, t); + } + barrett_reduce(w); + } +}; + +template +concept crystals_trait = + std::signed_integral && sizeof(typename T::T) <= 4 && std::integral && + T::N % 2 == 0 && + requires(std::span polyspan, std::span polyvecspan, typename T::T coeff) { + { T::to_montgomery(coeff) }; + { T::barrett_reduce(polyspan) }; + { T::poly_cadd_q(polyspan) }; + { T::ntt(polyspan) }; + { T::inverse_ntt(polyspan) }; + { T::poly_pointwise_montgomery(polyspan, polyspan, polyspan) }; + { T::polyvec_pointwise_acc_montgomery(polyspan, polyvecspan, polyvecspan) }; + }; + +namespace detail { + +/** + * Converts polynomials or polynomial vectors from one domain to another. + */ +template class StructureT, crystals_trait Trait, Domain From> + requires(To != From) +StructureT domain_cast(StructureT&& p) { + // The public factory method `from_domain_cast` is just a workaround for + // Xcode and NDK not understanding the friend declaration to allow this + // to directly call the private constructor. + return StructureT::from_domain_cast(std::move(p)); +} + +/** + * Ensures that all values in the @p range are within the range [min, max] + * using constant-time operations. + * + * @returns true if all values are within the range, false otherwise. + */ +template +constexpr static bool ct_all_within_range(std::span range, T min, T max) + requires(sizeof(T) <= 4) +{ + BOTAN_DEBUG_ASSERT(min < max); + + using unsigned_T = std::make_unsigned_t; + auto map = [](T v) -> unsigned_T { + if constexpr(std::signed_integral) { + constexpr int64_t offset = -static_cast(std::numeric_limits::min()); + return static_cast(static_cast(v) + offset); + } else { + return v; + } + }; + + const auto umin = map(min); + const auto umax = map(max); + + auto mask = CT::Mask::set(); + for(const T c : range) { + mask &= CT::Mask::is_within_range(map(c), umin, umax); + } + return mask.as_bool(); +} + +} // namespace detail + +/** + * Represents a polynomial with Trait::N coefficients of type Trait::T. + * The domain of the polynomial can be either Domain::Normal or Domain::NTT and + * this information is represented in the C++ type system. + * + * Polynomials may either own their storage of piggy-back on external storage + * when they are part of a PolynomialVector. + */ +template +class Polynomial { + private: + using ThisPolynomial = Polynomial; + using T = typename Trait::T; + + private: + // TODO: perhaps secure vector + std::vector m_coeffs_storage; + std::span m_coeffs; + + private: + template + friend class Polynomial; + + template class StructureT, crystals_trait C, Domain From> + requires(To != From) + friend StructureT detail::domain_cast(StructureT&&); + + /** + * This constructor is used to convert a Polynomial from one domain to another. + * The friend declarations above facilitate this. + */ + template + requires(D != OtherD) + explicit Polynomial(Polynomial&& other) noexcept : + m_coeffs_storage(std::move(other.m_coeffs_storage)), + m_coeffs(owns_storage() ? std::span(m_coeffs_storage) : other.m_coeffs) {} + + public: + // Workaround, because Xcode and NDK don't understand the + // `detail::domain_cast` friend declaration. + // + // TODO: Try to remove this and use the c'tor directly in + // `detail::domain_cast` after updating the compilers. + template + requires(D != OtherD) + static Polynomial from_domain_cast(Polynomial&& p) { + return Polynomial(std::move(p)); + } + + public: + Polynomial() : m_coeffs_storage(Trait::N), m_coeffs(m_coeffs_storage) { BOTAN_DEBUG_ASSERT(owns_storage()); } + + explicit Polynomial(std::span coeffs) : m_coeffs(coeffs) { BOTAN_DEBUG_ASSERT(!owns_storage()); } + + Polynomial(const ThisPolynomial& other) = delete; + + Polynomial(ThisPolynomial&& other) noexcept : + m_coeffs_storage(std::move(other.m_coeffs_storage)), m_coeffs(other.m_coeffs) {} + + ThisPolynomial& operator=(const ThisPolynomial& other) = delete; + + ThisPolynomial& operator=(ThisPolynomial&& other) noexcept { + if(this != &other) { + BOTAN_ASSERT_NOMSG(owns_storage()); + m_coeffs_storage = std::move(other.m_coeffs_storage); + m_coeffs = std::span(m_coeffs_storage); + } + return *this; + } + + ~Polynomial() = default; + + constexpr size_t size() const { return m_coeffs.size(); } + + constexpr Domain domain() const noexcept { return D; } + + ThisPolynomial clone() const { + ThisPolynomial res; + copy_mem(res.m_coeffs_storage, m_coeffs); + res.m_coeffs = std::span(res.m_coeffs_storage); + BOTAN_DEBUG_ASSERT(res.owns_storage()); + return res; + } + + /// @returns true if all coefficients are within the range [min, max] + constexpr bool ct_validate_value_range(T min, T max) const noexcept { + return detail::ct_all_within_range(coefficients(), min, max); + } + + /// @returns the number of non-zero coefficients in the polynomial + constexpr size_t hamming_weight() const noexcept { + size_t weight = 0; + for(const auto c : m_coeffs) { + weight += (c != 0); + } + return weight; + } + + std::span coefficients() { return m_coeffs; } + + std::span coefficients() const { return m_coeffs; } + + T& operator[](size_t i) { return m_coeffs[i]; } + + T operator[](size_t i) const { return m_coeffs[i]; } + + decltype(auto) begin() { return m_coeffs.begin(); } + + decltype(auto) begin() const { return m_coeffs.begin(); } + + decltype(auto) end() { return m_coeffs.end(); } + + decltype(auto) end() const { return m_coeffs.end(); } + + constexpr bool owns_storage() const { return !m_coeffs_storage.empty(); } + + ThisPolynomial& reduce() { + Trait::barrett_reduce(m_coeffs); + return *this; + } + + ThisPolynomial& conditional_add_q() { + Trait::poly_cadd_q(m_coeffs); + return *this; + } + + /** + * Adds two polynomials element-wise. Does not perform a reduction after the addition. + * Therefore this operation might cause an integer overflow. + */ + decltype(auto) operator+=(const ThisPolynomial& other) { + Trait::poly_add(m_coeffs, m_coeffs, other.m_coeffs); + return *this; + } + + /** + * Subtracts two polynomials element-wise. Does not perform a reduction after the subtraction. + * Therefore this operation might cause an integer underflow. + */ + decltype(auto) operator-=(const ThisPolynomial& other) { + Trait::poly_sub(m_coeffs, m_coeffs, other.m_coeffs); + return *this; + } +}; + +template +class PolynomialVector { + private: + using ThisPolynomialVector = PolynomialVector; + using T = typename Trait::T; + + private: + std::vector m_polys_storage; + std::vector> m_vec; + + private: + template + friend class PolynomialVector; + + template class StructureT, crystals_trait C, Domain From> + requires(To != From) + friend StructureT detail::domain_cast(StructureT&&); + + /** + * This constructor is used to convert a PolynomialVector from one domain to another. + * The friend declarations above facilitate this. + */ + template + requires(D != OtherD) + explicit PolynomialVector(PolynomialVector&& other) noexcept : + m_polys_storage(std::move(other.m_polys_storage)) { + BOTAN_DEBUG_ASSERT(m_polys_storage.size() % Trait::N == 0); + const size_t vecsize = m_polys_storage.size() / Trait::N; + for(size_t i = 0; i < vecsize; ++i) { + m_vec.emplace_back( + Polynomial(std::span{m_polys_storage}.subspan(i * Trait::N).template first())); + } + } + + public: + // Workaround, because Xcode and NDK don't understand the + // `detail::domain_cast` friend declaration above. + // + // TODO: Try to remove this and use the c'tor directly in + // `detail::domain_cast` after updating the compilers. + template + requires(D != OtherD) + static PolynomialVector from_domain_cast(PolynomialVector&& other) { + return PolynomialVector(std::move(other)); + } + + public: + PolynomialVector(size_t vecsize) : m_polys_storage(vecsize * Trait::N) { + for(size_t i = 0; i < vecsize; ++i) { + m_vec.emplace_back( + Polynomial(std::span{m_polys_storage}.subspan(i * Trait::N).template first())); + } + } + + PolynomialVector(const ThisPolynomialVector& other) = delete; + PolynomialVector(ThisPolynomialVector&& other) noexcept = default; + ThisPolynomialVector& operator=(const ThisPolynomialVector& other) = delete; + ThisPolynomialVector& operator=(ThisPolynomialVector&& other) noexcept = default; + ~PolynomialVector() = default; + + size_t size() const { return m_vec.size(); } + + constexpr Domain domain() const noexcept { return D; } + + ThisPolynomialVector clone() const { + ThisPolynomialVector res(size()); + + // The default-constructed PolynomialVector has set up res.m_vec to + // point to res.m_polys_storage. Therefore we can just copy the data + // into res.m_polys_storage to fill the non-owning polynomials. + copy_mem(res.m_polys_storage, m_polys_storage); + + return res; + } + + /// @returns the number of non-zero coefficients in the polynomial vector + size_t hamming_weight() const noexcept { + size_t weight = 0; + for(const auto c : m_polys_storage) { + weight += (c != 0); + } + return weight; + } + + /// @returns true if all coefficients are within the range [min, max] + constexpr bool ct_validate_value_range(T min, T max) const noexcept { + return detail::ct_all_within_range(coefficients(), min, max); + } + + std::span coefficients() { return m_polys_storage; } + + std::span coefficients() const { return m_polys_storage; } + + ThisPolynomialVector& operator+=(const ThisPolynomialVector& other) { + BOTAN_ASSERT(m_vec.size() == other.m_vec.size(), "cannot add polynomial vectors of differing lengths"); + for(size_t i = 0; i < m_vec.size(); ++i) { + Trait::poly_add(m_vec[i].coefficients(), m_vec[i].coefficients(), other.m_vec[i].coefficients()); + } + return *this; + } + + ThisPolynomialVector& operator-=(const ThisPolynomialVector& other) { + BOTAN_ASSERT(m_vec.size() == other.m_vec.size(), "cannot subtract polynomial vectors of differing lengths"); + for(size_t i = 0; i < m_vec.size(); ++i) { + Trait::poly_sub(m_vec[i].coefficients(), m_vec[i].coefficients(), other.m_vec[i].coefficients()); + } + return *this; + } + + ThisPolynomialVector& reduce() { + for(auto& p : m_vec) { + Trait::barrett_reduce(p.coefficients()); + } + return *this; + } + + ThisPolynomialVector& conditional_add_q() { + for(auto& v : m_vec) { + Trait::poly_cadd_q(v.coefficients()); + } + return *this; + } + + Polynomial& operator[](size_t i) { return m_vec[i]; } + + const Polynomial& operator[](size_t i) const { return m_vec[i]; } + + decltype(auto) begin() { return m_vec.begin(); } + + decltype(auto) begin() const { return m_vec.begin(); } + + decltype(auto) end() { return m_vec.end(); } + + decltype(auto) end() const { return m_vec.end(); } +}; + +template +class PolynomialMatrix { + private: + using ThisPolynomialMatrix = PolynomialMatrix; + + private: + std::vector> m_mat; + + public: + PolynomialMatrix(std::vector> mat) : m_mat(std::move(mat)) {} + + PolynomialMatrix(const ThisPolynomialMatrix& other) = delete; + PolynomialMatrix(ThisPolynomialMatrix&& other) noexcept = default; + ThisPolynomialMatrix& operator=(const ThisPolynomialMatrix& other) = delete; + ThisPolynomialMatrix& operator=(ThisPolynomialMatrix&& other) noexcept = default; + ~PolynomialMatrix() = default; + + size_t size() const { return m_mat.size(); } + + PolynomialMatrix(size_t rows, size_t cols) { + m_mat.reserve(rows); + for(size_t i = 0; i < rows; ++i) { + m_mat.emplace_back(cols); + } + } + + PolynomialVector& operator[](size_t i) { return m_mat[i]; } + + const PolynomialVector& operator[](size_t i) const { return m_mat[i]; } + + decltype(auto) begin() { return m_mat.begin(); } + + decltype(auto) begin() const { return m_mat.begin(); } + + decltype(auto) end() { return m_mat.end(); } + + decltype(auto) end() const { return m_mat.end(); } +}; + +namespace detail { + +template +void montgomery(Polynomial& p) { + for(auto& c : p) { + c = Trait::to_montgomery(c); + } +} + +template +void pointwise_multiply(Polynomial& out, + const PolynomialVector& a, + const PolynomialVector& b) { + BOTAN_ASSERT(a.size() == b.size(), "Pointwise vector multiplication requires equally sized PolynomialVectors"); + for(size_t i = 0; i < a.size(); ++i) { + out += a[i] * b[i]; + } + out.reduce(); +} + +} // namespace detail + +template +Polynomial ntt(Polynomial p) { + auto p_ntt = detail::domain_cast(std::move(p)); + Trait::ntt(p_ntt.coefficients()); + return p_ntt; +} + +template +Polynomial inverse_ntt(Polynomial p_ntt) { + auto p = detail::domain_cast(std::move(p_ntt)); + Trait::inverse_ntt(p.coefficients()); + return p; +} + +template +PolynomialVector ntt(PolynomialVector polyvec) { + auto polyvec_ntt = detail::domain_cast(std::move(polyvec)); + for(auto& poly : polyvec_ntt) { + Trait::ntt(poly.coefficients()); + } + return polyvec_ntt; +} + +template +PolynomialVector inverse_ntt(PolynomialVector polyvec_ntt) { + auto polyvec = detail::domain_cast(std::move(polyvec_ntt)); + for(auto& poly : polyvec) { + Trait::inverse_ntt(poly.coefficients()); + } + return polyvec; +} + +template +Polynomial montgomery(Polynomial p) { + detail::montgomery(p); + return p; +} + +template +PolynomialVector montgomery(PolynomialVector polyvec) { + for(auto& p : polyvec) { + detail::montgomery(p); + } + return polyvec; +} + +template +PolynomialMatrix montgomery(PolynomialMatrix m) { + for(auto& polyvec : m) { + for(auto& poly : polyvec) { + detail::montgomery(poly); + } + } + return m; +} + +template +PolynomialVector operator+(const PolynomialVector& a, + const PolynomialVector& b) { + BOTAN_DEBUG_ASSERT(a.size() == b.size()); + PolynomialVector result(a.size()); + for(size_t i = 0; i < a.size(); ++i) { + Trait::poly_add(result[i].coefficients(), a[i].coefficients(), b[i].coefficients()); + } + return result; +} + +template +PolynomialVector operator*(const PolynomialMatrix& mat, + const PolynomialVector& vec) { + PolynomialVector result(mat.size()); + for(size_t i = 0; i < mat.size(); ++i) { + Trait::polyvec_pointwise_acc_montgomery(result[i].coefficients(), mat[i].coefficients(), vec.coefficients()); + } + return result; +} + +template +Polynomial operator*(const PolynomialVector& a, + const PolynomialVector& b) { + Polynomial result; + detail::pointwise_multiply(result, a, b); + return result; +} + +template +PolynomialVector operator*(const Polynomial& p, + const PolynomialVector& pv) { + PolynomialVector result(pv.size()); + for(size_t i = 0; i < pv.size(); ++i) { + Trait::poly_pointwise_montgomery(result[i].coefficients(), p.coefficients(), pv[i].coefficients()); + } + return result; +} + +template +Polynomial operator*(const Polynomial& a, + const Polynomial& b) { + Polynomial result; + Trait::poly_pointwise_montgomery(result.coefficients(), a.coefficients(), b.coefficients()); + return result; +} + +template +PolynomialVector operator<<(const PolynomialVector& pv, size_t shift) { + BOTAN_ASSERT_NOMSG(shift < sizeof(typename Trait::T) * 8); + PolynomialVector result(pv.size()); + for(size_t i = 0; i < pv.size(); ++i) { + for(size_t j = 0; j < Trait::N; ++j) { + result[i][j] = pv[i][j] << shift; + } + } + return result; +} + +} // namespace Botan::CRYSTALS + +#endif diff --git a/src/lib/pubkey/pqcrystals/pqcrystals_encoding.h b/src/lib/pubkey/pqcrystals/pqcrystals_encoding.h new file mode 100644 index 00000000000..7a4bcfe95af --- /dev/null +++ b/src/lib/pubkey/pqcrystals/pqcrystals_encoding.h @@ -0,0 +1,220 @@ +/* + * PQ CRYSTALS Encoding Helpers + * + * Further changes + * (C) 2024 Jack Lloyd + * (C) 2024 René Meusel, Rohde & Schwarz Cybersecurity + * + * Botan is released under the Simplified BSD License (see license.txt) + */ + +#ifndef BOTAN_PQ_CRYSTALS_ENCODING_H_ +#define BOTAN_PQ_CRYSTALS_ENCODING_H_ + +#include +#include + +#include + +#include +#include +#include +#include + +namespace Botan::CRYSTALS { + +namespace detail { + +constexpr auto as_byte_source(BufferSlicer& slicer) { + return [&](std::span out) { slicer.copy_into(out); }; +} + +constexpr auto as_byte_source(Botan::XOF& xof) { + return [&](std::span out) { xof.output(out); }; +} + +} // namespace detail + +template +concept byte_source = + requires(T& t) { requires std::invocable>; }; + +template +concept coeff_map_fn = std::signed_integral && requires(T fn, PolyCoeffT coeff) { + { fn(coeff) } -> std::same_as>; +}; + +template +concept coeff_unmap_fn = + std::signed_integral && requires(T fn, std::make_unsigned_t coeff_value) { + { fn(coeff_value) } -> std::same_as; + }; + +/** + * Helper for base implementations of NIST FIPS 204 IPD, Algorithms 10-13 and + * NIST FIPS Algorithms 4-5. It pre-computes generic values to bit-(un)pack + * polynomial coefficients at compile-time. + * + * The base implementations are also templated with the @p range parameter + * forcing the compiler to generate specialized code for each supported range. + */ +template +struct BitPackingTrait final { + using T = typename PolyTrait::T; + using unsigned_T = std::make_unsigned_t; + using sink_t = uint64_t; + + static_assert(range <= std::numeric_limits::max()); + + constexpr static size_t bits_in_collector = sizeof(sink_t) * 8; + constexpr static size_t bits_per_coeff = bitlen(range); + + /// The smallest number of coefficents that must be bit-packed to + /// obtain a span of bytes without any padding. Note that this may be more + /// than 64 bits. + constexpr static size_t bits_per_pack = lcm(bits_per_coeff, size_t(8)); + constexpr static size_t bytes_per_pack = bits_per_pack / 8; + constexpr static size_t coeffs_per_pack = bits_per_pack / bits_per_coeff; + constexpr static size_t collectors_per_pack = (bytes_per_pack + sizeof(sink_t) - 1) / sizeof(sink_t); + constexpr static size_t collector_bytes_per_pack = collectors_per_pack * sizeof(sink_t); + constexpr static sink_t value_mask = (1 << bits_per_coeff) - 1; + + using collector_array = std::array; + using collector_bytearray = std::array; + + static_assert(PolyTrait::N % coeffs_per_pack == 0); +}; + +/** + * Base implementation of NIST FIPS 203 IPD Algorithm 4 (ByteEncode) and NIST + * FIPS 204 Algorithms 10 (SimpleBitPack) and 11 (BitPack). + * + * This takes a polynomial @p p and packs its coefficients into the buffer + * represented by @p stuffer. Optionally, the coefficients can be transformed + * using the @p map function before packing them. Kyber uses @p map to compress + * the coefficients as needed, Dilithium to transform coefficients to unsigned. + * + * The implementation assumes that the values returned from the custom @p map + * transformation are in the range [0, range]. No assumption is made about the + * value range of the coefficients in the polynomial @p p. + * + * Note that this bit-packing algorithm is inefficient if the bit-length of the + * coefficients is a multiple of 8. In that case, a byte-level encoding (that + * might need to take endianess into account) would be more efficient. + * + * @tparam range the upper bound of the coefficient range. + */ +template MapFnT> +constexpr void pack(const Polynomial& p, BufferStuffer& stuffer, MapFnT map) { + using trait = BitPackingTrait; + + BOTAN_DEBUG_ASSERT(stuffer.remaining_capacity() >= p.size() * trait::bits_per_coeff / 8); + + // Bit-packing example that shows a coefficients' bit-pack that spills across + // more than one 64-bit collectors. This illustrates the algorithm below. + // + // 0 64 128 + // Collectors (64 bits): | collectors[0] | collectors[1] | + // | | | + // Coefficients (11 bits): | c[0] | c[1] | c[2] | c[3] | c[4] | c[5] | c[6] | c[7] | | | | | ... + // | | | + // | < byte-aligned coefficient pack > | < byte-aligned pad. > | + // | (one inner loop iteration) | + // 0 88 (divisible by 8) + + for(size_t i = 0; i < p.size(); i += trait::coeffs_per_pack) { + // The collectors array is filled with bit-packed coefficients to produce + // a byte-aligned pack of coefficients. When coefficients fall onto the + // boundary of two collectors, their bits must be split. + typename trait::collector_array collectors = {0}; + for(size_t j = 0, bit_offset = 0, c = 0; j < trait::coeffs_per_pack; ++j) { + // Transform p[i] via a custom map function (that may be a NOOP). + const typename trait::unsigned_T mapped_coeff = map(p[i + j]); + const auto coeff_value = static_cast(mapped_coeff); + BOTAN_DEBUG_ASSERT(coeff_value <= range); + + // Bit-pack the coefficient into the collectors array and keep track of + // the bit-offset within the current collector. Note that this might + // shift some high-bits of the coefficient out of the current collector. + collectors[c] |= coeff_value << bit_offset; + bit_offset += trait::bits_per_coeff; + + // If the bit-offset now exceeds the collector's bit-width, we fill the + // next collector with the high-bits that didn't fit into the previous. + // The bit-offset is adjusted to now point into the new collector. + if(bit_offset > trait::bits_in_collector) { + bit_offset = bit_offset - trait::bits_in_collector; + collectors[++c] = coeff_value >> (trait::bits_per_coeff - bit_offset); + } + } + + // One byte-aligned pack of bit-packed coefficients is now stored in the + // collectors and can be written to an output buffer. Note that we might + // have to remove some padding bytes of unused collector space. + const auto bytes = store_le(collectors); + stuffer.append(std::span{bytes}.template first()); + } +} + +/** + * Base implementation of NIST FIPS 203 IPD Algorithm 5 (ByteDecode) and NIST + * FIPS 204 Algorithms 12 (SimpleBitUnpack) and 13 (BitUnpack). + * + * This takes a byte sequence represented by @p byte_source and unpacks its + * coefficients into the polynomial @p p. Optionally, the coefficients can be + * transformed using the @p unmap function after unpacking them. Note that the + * provided range is assumed for the coefficients _before_ the transformation. + * + * Kyber uses @p unmap to decompress the coefficients as needed, Dilithium uses + * it to convert the coefficients back to signed integers. + * + * @tparam range the upper bound of the coefficient range. + */ +template UnmapFnT> +constexpr void unpack(Polynomial& p, ByteSourceT& byte_source, UnmapFnT unmap) { + using trait = BitPackingTrait; + + auto get_bytes = detail::as_byte_source(byte_source); + typename trait::collector_bytearray bytes = {0}; + + // This is the inverse operation of the bit-packing algorithm above. Please + // refer to the comments there for a detailed explanation of the algorithm. + for(size_t i = 0; i < p.size(); i += trait::coeffs_per_pack) { + get_bytes(std::span{bytes}.template first()); + const auto collectors = load_le(bytes); + + for(size_t j = 0, bit_offset = 0, c = 0; j < trait::coeffs_per_pack; ++j) { + typename trait::sink_t coeff_value = collectors[c] >> bit_offset; + bit_offset += trait::bits_per_coeff; + if(bit_offset > trait::bits_in_collector) { + bit_offset = bit_offset - trait::bits_in_collector; + coeff_value |= collectors[++c] << (trait::bits_per_coeff - bit_offset); + } + const auto mapped_coeff = static_cast(coeff_value & trait::value_mask); + BOTAN_DEBUG_ASSERT(mapped_coeff <= range); + p[i + j] = unmap(mapped_coeff); + } + } +} + +/// Overload for packing polynomials with a NOOP map function +template +constexpr void pack(const Polynomial& p, BufferStuffer& stuffer) { + using unsigned_T = std::make_unsigned_t; + pack(p, stuffer, [](typename PolyTrait::T x) { return static_cast(x); }); +} + +/// Overload for unpacking polynomials with a NOOP unmap function +template +constexpr void unpack(Polynomial& p, ByteSourceT& byte_source) { + using unsigned_T = std::make_unsigned_t; + unpack(p, byte_source, [](unsigned_T x) { return static_cast(x); }); +} + +} // namespace Botan::CRYSTALS + +#endif diff --git a/src/lib/pubkey/pqcrystals/pqcrystals_helpers.h b/src/lib/pubkey/pqcrystals/pqcrystals_helpers.h new file mode 100644 index 00000000000..9d1fbc54126 --- /dev/null +++ b/src/lib/pubkey/pqcrystals/pqcrystals_helpers.h @@ -0,0 +1,143 @@ +/* + * PQ CRYSTALS Common Helpers + * + * Further changes + * (C) 2024 Jack Lloyd + * (C) 2024 René Meusel, Rohde & Schwarz Cybersecurity + * + * Botan is released under the Simplified BSD License (see license.txt) + */ + +#ifndef BOTAN_PQ_CRYSTALS_HELPERS_H_ +#define BOTAN_PQ_CRYSTALS_HELPERS_H_ + +#include +#include +#include + +#include + +namespace Botan { + +// clang-format off + +template + requires(sizeof(T) <= 4) +using next_longer_uint_t = + std::conditional_t>>; + +template + requires(sizeof(T) <= 4) +using next_longer_int_t = + std::conditional_t>>; + +// clang-format on + +template + requires(size_t(sizeof(T)) <= 4) +constexpr T montgomery_R(T q) { + using T_unsigned = std::make_unsigned_t; + using T2 = next_longer_uint_t; + return (T2(1) << (sizeof(T) * 8)) % q; +} + +template + requires(size_t(sizeof(T)) <= 4) +constexpr T montgomery_R2(T q) { + using T2 = next_longer_int_t; + return (static_cast(montgomery_R(q)) * static_cast(montgomery_R(q))) % q; +} + +template +struct eea_result { + T gcd; + T u; + T v; +}; + +/** + * Run the extended Euclidean algorithm to find the greatest common divisor of a + * and b and the Bézout coefficients, u and v. + */ +template +constexpr eea_result extended_euclidean_algorithm(T a, T b) { + if(a > b) { + std::swap(a, b); + } + + T u1 = 0, v1 = 1, u2 = 1, v2 = 0; + + if(a != b) { + while(a != 0) { + const T q = b / a; + std::tie(a, b) = std::make_tuple(b - q * a, a); + std::tie(u1, v1, u2, v2) = std::make_tuple(u2, v2, u1 - q * u2, v1 - q * v2); + } + } + + return {.gcd = b, .u = u1, .v = v1}; +} + +/** + * Calculate the modular multiplacative inverse of q modulo m. + * By default, this assumes m to be 2^bitlength of T for application in a + * Montgomery reduction. + */ +template > + requires(sizeof(T) <= 4) +constexpr T modular_inverse(T q, T2 m = T2(1) << sizeof(T) * 8) { + return static_cast(extended_euclidean_algorithm(q, m).u); +} + +template +constexpr T lcm(T a, T b) { + return a / extended_euclidean_algorithm(a, b).gcd * b; +} + +constexpr auto bitlen(size_t x) { + return ceil_log2(x + 1); +}; + +/** + * Precompute the zeta-values for the NTT. Note that the pre-computed values + * contain the Montgomery factor for either Kyber or Dilithium. + */ +template +consteval static auto precompute_zetas(T q, T monty, T root_of_unity) { + using T2 = next_longer_int_t; + + std::array result = {0}; + + auto bitreverse = [](size_t k) -> size_t { + size_t r = 0; + const auto l = ceil_log2(degree); + for(size_t i = 0; i < l; ++i) { + r |= ((k >> i) & 1) << (l - 1 - i); + } + return r; + }; + + auto pow = [q](T base, size_t exp) -> T2 { + T2 res = 1; + for(size_t i = 0; i < exp; ++i) { + res = (res * base) % q; + } + return res; + }; + + auto csubq = [q](T a) -> T { return a <= q / 2 ? a : a - q; }; + + for(size_t i = 0; i < result.size(); ++i) { + result[i] = csubq(pow(root_of_unity, bitreverse(i)) * monty % q); + } + + return result; +} + +} // namespace Botan + +#endif diff --git a/src/lib/rng/rng.h b/src/lib/rng/rng.h index b96e2f4633e..a85ee42f68c 100644 --- a/src/lib/rng/rng.h +++ b/src/lib/rng/rng.h @@ -14,6 +14,7 @@ #include #include +#include #include #include #include diff --git a/src/tests/test_crystals.cpp b/src/tests/test_crystals.cpp new file mode 100644 index 00000000000..d5c91da6755 --- /dev/null +++ b/src/tests/test_crystals.cpp @@ -0,0 +1,432 @@ +/* + * Tests for PQ Crystals + * (C) 2024 Jack Lloyd + * (C) 2024 René Meusel, Rohde & Schwarz Cybersecurity + * + * Botan is released under the Simplified BSD License (see license.txt) + */ + +#include "tests.h" + +#if defined(BOTAN_HAS_PQCRYSTALS) + #include + + #include + #include + #include + #include + #include + +namespace Botan_Tests { + +namespace { + +Test::Result test_extended_euclidean_algorithm() { + Test::Result res("Extended Euclidean Algorithm"); + + res.test_is_eq("gcd(1337, 1337)", Botan::extended_euclidean_algorithm(1337, 1337).gcd, 1337); + res.test_is_eq("gcd(350, 294)", Botan::extended_euclidean_algorithm(350, 294).gcd, 14); + res.test_is_eq("gcd(294, 350)", Botan::extended_euclidean_algorithm(294, 350).gcd, 14); + + res.test_is_eq("gcd(1337, 1337)", Botan::extended_euclidean_algorithm(1337, 1337).gcd, 1337); + res.test_is_eq("gcd(350, 294)", Botan::extended_euclidean_algorithm(350, 294).gcd, 14); + res.test_is_eq("gcd(294, 350)", Botan::extended_euclidean_algorithm(294, 350).gcd, 14); + + res.test_is_eq("u(1337, 1337)", Botan::extended_euclidean_algorithm(1337, 1337).u, 0); + res.test_is_eq("v(1337, 1337)", Botan::extended_euclidean_algorithm(1337, 1337).v, 1); + res.test_is_eq("u(294, 350)", Botan::extended_euclidean_algorithm(294, 350).u, 6); + + res.test_is_eq("q^-1(3329) - Kyber::Q", Botan::modular_inverse(3329), 62209); + res.test_is_eq("q^-1(8380417) - Dilithium::Q", Botan::modular_inverse(8380417), 58728449); + + return res; +} + +// Equivalent to Kyber's constants +struct Kyberish_Constants { + using T = int16_t; + static constexpr T N = 256; + static constexpr T Q = 3329; + static constexpr T F = 3303; + static constexpr T ROOT_OF_UNITY = 17; + static constexpr size_t NTT_Degree = 128; +}; + +class Kyberish_Trait final : public Botan::CRYSTALS::Trait_Base { + public: + static T montgomery_reduce_coefficient(T2) { + throw Botan_Tests::Test_Error("montgomery reduction not implemented"); + } + + static T barrett_reduce_coefficient(T) { throw Botan_Tests::Test_Error("barrett reduction not implemented"); } + + static void ntt(std::span) { throw Botan_Tests::Test_Error("NTT not implemented"); } + + static void inverse_ntt(std::span) { throw Botan_Tests::Test_Error("inverse NTT not implemented"); } + + static void poly_pointwise_montgomery(std::span, std::span, std::span) { + throw Botan_Tests::Test_Error("pointwise multiplication not implemented"); + } +}; + +using Domain = Botan::CRYSTALS::Domain; + +template +using Kyberish_Poly = Botan::CRYSTALS::Polynomial; + +template +using Kyberish_PolyVec = Botan::CRYSTALS::PolynomialVector; + +std::vector test_polynomial_basics() { + return { + Botan_Tests::CHECK("polynomial owning storage", + [](Test::Result& res) { + Kyberish_Poly p; + res.confirm("default constructed poly owns memory", p.owns_storage()); + for(auto coeff : p) { + res.test_is_eq("default constructed poly has 0 coefficients", coeff, 0); + } + + Kyberish_Poly p_ntt; + res.confirm("default constructed poly owns memory (NTT)", p_ntt.owns_storage()); + for(auto coeff : p) { + res.test_is_eq("default constructed poly (NTT) has 0 coefficients", coeff, 0); + } + }), + + Botan_Tests::CHECK("polynomial vector managing storage", + [](Test::Result& res) { + Kyberish_PolyVec polys(4); + res.test_is_eq("requested size", polys.size(), 4); + + for(const auto& poly : polys) { + res.confirm("poly embedded in vector does not own memory", !poly.owns_storage()); + } + + Kyberish_PolyVec polys_ntt(4); + res.test_is_eq("requested size (NTT)", polys.size(), 4); + + for(const auto& poly : polys_ntt) { + res.confirm("poly (NTT) embedded in vector does not own memory", !poly.owns_storage()); + } + }), + + Botan_Tests::CHECK("cloned polynomials always manage their storge", + [](Test::Result& res) { + Kyberish_Poly p; + auto p2 = p.clone(); + res.confirm("cloned poly owns memory", p2.owns_storage()); + + Kyberish_PolyVec pv(3); + for(auto& poly : pv) { + res.require("poly in vector does not own memory", !poly.owns_storage()); + auto pv2 = poly.clone(); + res.confirm("cloned poly in vector owns memory", pv2.owns_storage()); + } + + auto pv2 = pv.clone(); + for(const auto& poly : pv2) { + res.confirm("cloned vector polynomial don't own memory", !poly.owns_storage()); + } + + Kyberish_Poly p_ntt; + auto p2_ntt = p_ntt.clone(); + res.confirm("cloned poly (NTT) owns memory", p2_ntt.owns_storage()); + + Kyberish_PolyVec pv_ntt(3); + for(auto& poly : pv_ntt) { + res.require("poly (NTT) in vector does not own memory", !poly.owns_storage()); + auto pv2_ntt = poly.clone(); + res.confirm("cloned poly (NTT) in vector owns memory", pv2_ntt.owns_storage()); + } + + auto pv2_ntt = pv_ntt.clone(); + for(const auto& poly : pv2_ntt) { + res.confirm("cloned vector polynomial (NTT) don't own memory", !poly.owns_storage()); + } + }), + + Botan_Tests::CHECK("hamming weight of polynomials", + [](Test::Result& res) { + Kyberish_Poly p; + res.test_is_eq("hamming weight of 0", p.hamming_weight(), 0); + + p[0] = 1337; + res.test_is_eq("hamming weight of 1", p.hamming_weight(), 1); + + p[1] = 42; + res.test_is_eq("hamming weight of 2", p.hamming_weight(), 2); + + p[2] = 11; + res.test_is_eq("hamming weight of 3", p.hamming_weight(), 3); + + p[3] = 4; + res.test_is_eq("hamming weight of 4", p.hamming_weight(), 4); + + p[3] = 0; + res.test_is_eq("hamming weight of 3", p.hamming_weight(), 3); + + p[2] = 0; + res.test_is_eq("hamming weight of 2", p.hamming_weight(), 2); + + p[1] = 0; + res.test_is_eq("hamming weight of 1", p.hamming_weight(), 1); + + p[0] = 0; + res.test_is_eq("hamming weight of 0", p.hamming_weight(), 0); + }), + + Botan_Tests::CHECK("hamming weight of polynomial vectors", + [](Test::Result& res) { + Kyberish_PolyVec pv(3); + res.test_is_eq("hamming weight of 0", pv.hamming_weight(), 0); + + pv[0][0] = 1337; + res.test_is_eq("hamming weight of 1", pv.hamming_weight(), 1); + + pv[1][1] = 42; + res.test_is_eq("hamming weight of 2", pv.hamming_weight(), 2); + + pv[2][2] = 11; + res.test_is_eq("hamming weight of 3", pv.hamming_weight(), 3); + + pv[2][2] = 0; + res.test_is_eq("hamming weight of 2", pv.hamming_weight(), 2); + + pv[1][1] = 0; + res.test_is_eq("hamming weight of 1", pv.hamming_weight(), 1); + + pv[0][0] = 0; + res.test_is_eq("hamming weight of 0", pv.hamming_weight(), 0); + }), + + Botan_Tests::CHECK("value range validation", + [](Test::Result& res) { + Kyberish_Poly p; + res.confirm("value range validation (all zero)", p.ct_validate_value_range(0, 1)); + + p[0] = 1; + p[32] = 1; + p[172] = 1; + res.confirm("value range validation", p.ct_validate_value_range(0, 1)); + + p[11] = 2; + res.confirm("value range validation", !p.ct_validate_value_range(0, 1)); + + p[11] = -1; + res.confirm("value range validation", !p.ct_validate_value_range(0, 1)); + }), + + Botan_Tests::CHECK("value range validation for polynomial vectors", + [](Test::Result& res) { + Kyberish_PolyVec pv(3); + res.confirm("value range validation (all zero)", pv.ct_validate_value_range(0, 1)); + + pv[0][0] = 1; + pv[1][32] = 1; + pv[2][172] = 1; + res.confirm("value range validation", pv.ct_validate_value_range(0, 1)); + + pv[0][11] = 2; + res.confirm("value range validation", !pv.ct_validate_value_range(0, 1)); + + pv[0][11] = -1; + res.confirm("value range validation", !pv.ct_validate_value_range(0, 1)); + }), + }; +} + +namespace { + +class DeterministicXOF : public Botan::XOF { + public: + DeterministicXOF(std::span data) : m_data(data) {} + + std::string name() const override { return "DeterministicXOF"; } + + bool accepts_input() const override { return false; } + + std::unique_ptr copy_state() const override { throw Botan_Tests::Test_Error("copy_state not implemented"); } + + std::unique_ptr new_object() const override { throw Botan_Tests::Test_Error("new_object not implemented"); } + + size_t block_size() const override { return 1; } + + void start_msg(std::span, std::span) override { + throw Botan_Tests::Test_Error("start_msg not implemented"); + } + + void add_data(std::span) override { throw Botan_Tests::Test_Error("add_data not implemented"); } + + void generate_bytes(std::span output) override { m_data.copy_into(output); } + + void reset() override {} + + private: + Botan::BufferSlicer m_data; +}; + +template +void random_encoding_roundtrips(Test::Result& res, Botan::RandomNumberGenerator& rng, size_t expected_encoding_bits) { + using Poly = Kyberish_Poly; + + auto random_poly = [&rng]() -> Poly { + Poly p; + std::array buf; + for(auto& coeff : p) { + rng.randomize(buf); + coeff = static_cast((Botan::load_be(buf) % (range + 1))); + } + return p; + }; + + const auto p = random_poly(); + std::vector buffer((p.size() * expected_encoding_bits + 7) / 8); + Botan::BufferStuffer stuffer(buffer); + Botan::CRYSTALS::pack(p, stuffer); + res.confirm("encoded polynomial fills buffer", stuffer.full()); + + Botan::BufferSlicer slicer(buffer); + Poly p_unpacked; + Botan::CRYSTALS::unpack(p_unpacked, slicer); + res.confirm("decoded polynomial reads all bytes", slicer.empty()); + + p_unpacked -= p; + res.confirm("p = unpack(pack(p))", p_unpacked.hamming_weight() == 0); +} + +} // namespace + +std::vector test_encoding() { + const auto threebitencoding = Botan::hex_decode( + "88C61AD158231A6B44638D68AC118D35A2B14634D688C61AD158231A6B44638D68AC118D" + "35A2B14634D688C61AD158231A6B44638D68AC118D35A2B14634D688C61AD158231A6B44" + "638D68AC118D35A2B14634D688C61AD158231A6B44638D68"); + + const auto eightbitencoding = Botan::hex_decode( + "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F20212223" + "2425262728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F4041424344454647" + "48494A4B4C4D4E4F505152535455565758595A5B5C5D5E5F606162636465666768696A6B" + "6C6D6E6F707172737475767778797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F" + "909192939495969798999A9B9C9D9E9FA0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3" + "B4B5B6B7B8B9BABBBCBDBEBFC0C1C2C3C4C5C6C7C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7" + "D8D9DADBDCDDDEDFE0E1E2E3E4E5E6E7E8E9EAEBECEDEEEFF0F1F2F3F4F5F6F7F8F9FAFB" + "FCFDFEFF"); + + const auto tenbitencoding = Botan::hex_decode( + "00084080010828C0800310484081051868C08107208840820928A8C0820B30C840830D38" + "E8C0830F40084184114828C1841350484185155868C18517608841861968A8C1861B70C8" + "41871D78E8C1871F80084288218828C2882390484289259868C28927A088428A29A8A8C2" + "8A2BB0C8428B2DB8E8C28B2FC008438C31C828C38C33D048438D35D868C38D37E088438E" + "39E8A8C38E3BF0C8438F3DF8E8C38F3F00094490410829C4904310494491451869C49147" + "208944924928A9C4924B30C944934D38E9C4934F40094594514829C59453504945955558" + "69C59557608945965968A9C5965B70C945975D78E9C5975F80094698618829C698639049" + "4699659869C69967A089469A69A8A9C69A6BB0C9469B6DB8E9C69B6FC009479C71C829C7" + "9C73D049479D75D869C79D77E089479E79E8A9C79E7BF0C9479F7DF8E9C79F7F"); + + return { + Botan_Tests::CHECK("encode polynomial coefficients into buffer", + [&](Test::Result& res) { + // value range is about 3 bits + Kyberish_Poly p1; + for(size_t i = 0; i < p1.size(); ++i) { + p1[i] = static_cast(i % 7); + } + + std::vector buffer1(96); + Botan::BufferStuffer stuffer1(buffer1); + Botan::CRYSTALS::pack<6>(p1, stuffer1); + res.test_eq("3 bit encoding", buffer1, threebitencoding); + + // value range is exactly one byte + Kyberish_Poly p2; + for(size_t i = 0; i < p2.size(); ++i) { + p2[i] = static_cast(i); + } + + std::vector buffer2(256); + Botan::BufferStuffer stuffer2(buffer2); + Botan::CRYSTALS::pack<255>(p2, stuffer2); + res.test_eq("8 bit encoding", buffer2, eightbitencoding); + + // value range for 10 bits, with mapping function + std::vector buffer3(p2.size() / 8 * 10 /* bits */); + Botan::BufferStuffer stuffer3(buffer3); + Botan::CRYSTALS::pack<512>(p2, stuffer3, [](int16_t x) -> uint16_t { return x * 2; }); + res.test_eq("10 bit encoding", buffer3, tenbitencoding); + }), + + Botan_Tests::CHECK("decode polynomial coefficients from buffer", + [&](Test::Result& res) { + Kyberish_Poly p1; + Botan::BufferSlicer slicer1(threebitencoding); + Botan::CRYSTALS::unpack<6>(p1, slicer1); + res.require("read all bytes from 3-bit encoding", slicer1.empty()); + for(size_t i = 0; i < p1.size(); ++i) { + res.test_is_eq("decoded 3-bit coefficient", p1[i], i % 7); + } + + Kyberish_Poly p2; + Botan::BufferSlicer slicer2(eightbitencoding); + Botan::CRYSTALS::unpack<255>(p2, slicer2); + res.require("read all bytes from 8-bit encoding", slicer2.empty()); + for(size_t i = 0; i < p2.size(); ++i) { + res.test_is_eq("decoded 8-bit coefficient", p2[i], i); + } + + Kyberish_Poly p3; + Botan::BufferSlicer slicer3(tenbitencoding); + Botan::CRYSTALS::unpack<512>(p3, slicer3, [](uint16_t x) -> int16_t { return x / 2; }); + res.require("read all bytes from 10-bit encoding", slicer3.empty()); + for(size_t i = 0; i < p3.size(); ++i) { + res.test_is_eq("decoded 10-bit coefficient with mapping", p3[i], i); + } + }), + + Botan_Tests::CHECK("decode polynomial coefficients from XOF", + [&](Test::Result& res) { + Kyberish_Poly p1; + DeterministicXOF xof1(threebitencoding); + Botan::CRYSTALS::unpack<6>(p1, xof1); + for(size_t i = 0; i < p1.size(); ++i) { + res.test_is_eq("decoded 3-bit coefficient", p1[i], i % 7); + } + + Kyberish_Poly p2; + DeterministicXOF xof2(eightbitencoding); + Botan::CRYSTALS::unpack<255>(p2, xof2); + for(size_t i = 0; i < p2.size(); ++i) { + res.test_is_eq("decoded 8-bit coefficient", p2[i], i); + } + + Kyberish_Poly p3; + DeterministicXOF xof3(tenbitencoding); + Botan::CRYSTALS::unpack<512>(p3, xof3, [](int16_t x) -> int16_t { return x / 2; }); + for(size_t i = 0; i < p3.size(); ++i) { + res.test_is_eq("decoded 10-bit coefficient with mapping", p3[i], i); + } + }), + + Botan_Tests::CHECK("random encoding roundtrips (0 to x)", + [](Test::Result& res) { + auto rng = Test::new_rng("CRYSTALS encoding roundtrips"); + random_encoding_roundtrips<1>(res, *rng, 1); + random_encoding_roundtrips<3>(res, *rng, 2); + random_encoding_roundtrips<6>(res, *rng, 3); + random_encoding_roundtrips<12>(res, *rng, 4); + random_encoding_roundtrips<15>(res, *rng, 4); + random_encoding_roundtrips<31>(res, *rng, 5); + random_encoding_roundtrips<42>(res, *rng, 6); + random_encoding_roundtrips<128>(res, *rng, 8); + random_encoding_roundtrips<1337>(res, *rng, 11); + }), + }; +} + +} // namespace + +BOTAN_REGISTER_TEST_FN("pubkey", "CRYSTALS", test_extended_euclidean_algorithm, test_polynomial_basics, test_encoding); + +} // namespace Botan_Tests + +#endif diff --git a/src/tests/test_pubkey_pqc.h b/src/tests/test_pubkey_pqc.h index 703830f2acf..e1c35417c4a 100644 --- a/src/tests/test_pubkey_pqc.h +++ b/src/tests/test_pubkey_pqc.h @@ -142,6 +142,10 @@ class PK_PQC_KEM_KAT_Test : public PK_Test { // Decapsulation auto sk2 = Botan::load_private_key(sk->algorithm_identifier(), sk->private_key_bits()); + if(!result.test_not_null("Successfully deserialized private key", sk2)) { + return result; + } + Botan::Null_RNG null_rng; auto dec = Botan::PK_KEM_Decryptor(*sk2, null_rng, "Raw"); const auto shared_key = dec.decrypt(encaped.encapsulated_shared_key(), 0 /* no KDF */);