-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfer2013.py
325 lines (252 loc) · 11.2 KB
/
fer2013.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
"""Builds the FER2013 network."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import re
import sys
import tarfile
from six.moves import urllib
import tensorflow as tf
import fer2013_input
FLAGS = tf.app.flags.FLAGS
# Basic model parameters.
tf.app.flags.DEFINE_integer('batch_input_size', 128, """Number of images to process in a batch.""")
tf.app.flags.DEFINE_string('data_input_dir', '/tmp/fer2013_data', """Path to the FER2013 data directory.""")
# Global constants describing the FER2013 data set.
IMAGE_SIZE = fer2013_input.IMAGE_SIZE
NUM_CLASSES = fer2013_input.NUM_CLASSES
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = fer2013_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = fer2013_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays.
LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor.
INITIAL_LEARNING_RATE = 0.1 # Initial learning rate.
# If a model is trained with multiple GPU's prefix all Op names with tower_name
# to differentiate the operations. Note that this prefix is removed from the
# names of the summaries when visualizing a model.
TOWER_NAME = 'tower'
def _activation_summary(x):
"""Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measure the sparsity of activations.
Args:
x: Tensor
Returns:
nothing
"""
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.histogram_summary(tensor_name + '/activations', x)
tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
def _variable_on_cpu(name, shape, initializer):
"""Helper to create a Variable stored on CPU memory.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
"""
with tf.device('/cpu:0'):
var = tf.get_variable(name, shape, initializer=initializer)
return var
def _variable_with_weight_decay(name, shape, stddev, wd):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
var = _variable_on_cpu(name, shape,
tf.truncated_normal_initializer(stddev=stddev))
if wd:
weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def distorted_inputs():
"""Construct distorted input for FER2013 training using the Reader ops.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 1] size.
labels: Labels. 1D tensor of [batch_size] size.
Raises:
ValueError: If no data_dir
"""
if not FLAGS.data_input_dir:
raise ValueError('Please supply a data_input_dir')
data_input_dir = os.path.join(FLAGS.data_input_dir, 'fer2013-batches-bin')
return fer2013_input.distorted_inputs(data_dir=data_input_dir,
batch_size=FLAGS.batch_input_size)
def inputs(eval_data):
"""Construct input for FER2013 evaluation using the Reader ops.
Args:
eval_data: bool, indicating if one should use the train or eval data set.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 1] size.
labels: Labels. 1D tensor of [batch_size] size.
Raises:
ValueError: If no data_dir
"""
if not FLAGS.data_input_dir:
raise ValueError('Please supply a data_input_dir')
data_input_dir = os.path.join(FLAGS.data_input_dir, 'fer2013-batches-bin')
return fer2013_input.inputs(eval_data=eval_data, data_dir=data_input_dir,
batch_size=FLAGS.batch_input_size)
def inference(images):
"""Build the FER2013 model.
Args:
images: Images returned from distorted_inputs() or inputs().
Returns:
Logits.
"""
# We instantiate all variables using tf.get_variable() instead of
# tf.Variable() in order to share variables across multiple GPU training runs.
# If we only ran this model on a single GPU, we could simplify this function
# by replacing all instances of tf.get_variable() with tf.Variable().
#
# conv0 layer takes 32x32 images as input and outputs 24x24 feature maps.
with tf.variable_scope('conv0') as scope:
# [width, height, depth, filters]
kernel = _variable_with_weight_decay('weights', shape=[9, 9, 1, 64], stddev=1e-4, wd=0.0)
conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='VALID')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
bias = tf.nn.bias_add(conv, biases)
conv0 = tf.nn.relu(bias, name=scope.name)
_activation_summary(conv0)
# pool0
pool0 = tf.nn.max_pool(conv0, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool0')
# norm0
norm0 = tf.nn.lrn(pool0, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm0')
# conv1
with tf.variable_scope('conv1') as scope:
# [width, height, depth, filters]
kernel = _variable_with_weight_decay('weights', shape=[5, 5, 64, 128], stddev=1e-4, wd=0.0)
conv = tf.nn.conv2d(norm0, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [128], tf.constant_initializer(0.1))
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope.name)
_activation_summary(conv1)
# norm1
norm1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')
# pool1
pool1 = tf.nn.max_pool(norm1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1')
# local3
with tf.variable_scope('local3') as scope:
# Move everything into depth so we can perform a single matrix multiply.
dim = 1
for d in pool1.get_shape()[1:].as_list():
dim *= d
reshape = tf.reshape(pool1, [FLAGS.batch_input_size, dim])
weights = _variable_with_weight_decay('weights', shape=[dim, 384],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
_activation_summary(local3)
# local4
with tf.variable_scope('local4') as scope:
weights = _variable_with_weight_decay('weights', shape=[384, 192],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
_activation_summary(local4)
# softmax, i.e. softmax(WX + b)
with tf.variable_scope('softmax_linear') as scope:
weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
stddev=1/192.0, wd=0.0)
biases = _variable_on_cpu('biases', [NUM_CLASSES],
tf.constant_initializer(0.0))
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
_activation_summary(softmax_linear)
return softmax_linear
def loss(logits, labels):
"""Add L2Loss to all the trainable variables.
Add summary for for "Loss" and "Loss/avg".
Args:
logits: Logits from inference().
labels: Labels from distorted_inputs or inputs(). 1-D tensor
of shape [batch_size]
Returns:
Loss tensor of type float.
"""
# Calculate the average cross entropy loss across the batch.
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, labels, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
# The total loss is defined as the cross entropy loss plus all of the weight
# decay terms (L2 loss).
return tf.add_n(tf.get_collection('losses'), name='total_loss')
def _add_loss_summaries(total_loss):
"""Add summaries for losses in FER2013 model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
"""
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.scalar_summary(l.op.name +' (raw)', l)
tf.scalar_summary(l.op.name, loss_averages.average(l))
return loss_averages_op
def train(total_loss, global_step):
"""Train FER2013 model.
Create an optimizer and apply to all trainable variables. Add moving
average for all trainable variables.
Args:
total_loss: Total loss from loss().
global_step: Integer Variable counting the number of training steps
processed.
Returns:
train_op: op for training.
"""
# Variables that affect learning rate.
num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_input_size
decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)
# Decay the learning rate exponentially based on the number of steps.
lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
global_step,
decay_steps,
LEARNING_RATE_DECAY_FACTOR,
staircase=True)
tf.scalar_summary('learning_rate', lr)
# Generate moving averages of all losses and associated summaries.
loss_averages_op = _add_loss_summaries(total_loss)
# Compute gradients.
with tf.control_dependencies([loss_averages_op]):
opt = tf.train.GradientDescentOptimizer(lr)
grads = opt.compute_gradients(total_loss)
# Apply gradients.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
# Add histograms for trainable variables.
for var in tf.trainable_variables():
tf.histogram_summary(var.op.name, var)
# Add histograms for gradients.
for grad, var in grads:
if grad:
tf.histogram_summary(var.op.name + '/gradients', grad)
# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
train_op = tf.no_op(name='train')
return train_op