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Executive Summary 
The topic of this thesis is to derive insight from features not existent in a trained Machine 

Learning (“ML”) model. The idea is to transfer information from an original ML model A 

(“Original Model”) and its feature set to a new ML model B (“Transfer Model”) and a new 

feature set by using the predictions of the Original Model as input/dependent variable in the 

Transfer Model. The feature set of the new Transfer Model is not accessible for the training 

of the Original Model but might reveal information in the newly trained Transfer Model 

through the application of explanation techniques such as Shapley values. I conclude that the 

newly trained Transfer Model with its new “out-of-model” features is stable and accept the 

hypothesis that it is possible to explain the predictions of the Original Model with the new 

features of the Transfer Model. 
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1. Introduction 

A. Commerzbank AG and its Big Data & Advanced Analytics division 
From March to April 2020, I worked as an intern at Commerzbank AG in the “Big Data & 

Advanced Analytics” division (“BDAA”) and since have been working as a working student 

there. Commerzbank AG is the fourth largest bank in Germany1 and has around 30,000 

corporate clients and around 11 million private and business clients.2 Lending to corporate 

customers is a core business of Commerzbank AG. There, in very rare cases, loan frauds 

occur. Loan fraud is defined as the fraudulent use of credit by providing false information in 

the loan application by the applicant and is aimed at not repaying all or part of the funds 

received. A typical use case for the responsible BDAA department (“Predictive Analytics”) 

therefore is the analysis of corporate customer data with the help of ML models to detect 

such loan frauds early.  

B. Reasoning for a Transfer Model 
The ML model used by the “Predictive Analytics” department to predict corporate fraud 

scores (“Fraud-Score”) is well established and has yielded good results in the past. At the time 

the model was developed, data was collected for the preceding 10 years to have enough 

model training data as the number of corporate fraud cases is rare.  

Once every month, the ML model calculates an ordinal Fraud-Score for each client. Fraud-

Scores above a certain threshold are reported and forwarded to an internal investigation 

department. The actual forensic analysis and decision on the existence of credit fraud is then 

carried out there by specially trained investigators, often with the involvement of other units 

of the bank. Various additional data sources are used during this investigation process, 

among them payment transaction (“Zahlungsverkehr”) data.  

To integrate additional data and features into an existing ML model, a common approach 

would be to develop a new ML model that includes these new features. But there are use 

cases where this is not possible. The reasons for that may vary. For instance, an existing ML 

model might be deeply integrated in a structured process to the extent that reengineering 

this process would be almost impossible from a business perspective. In the case of BDAA, 

the need to develop a Transfer Model derives from the fact, that the payment transaction 

data, although important, could not be used directly in the original ML model as its data 

history was not long enough. 

The desire of the investigators is to obtain hints and explanations from this payment 

transaction data in a more structured, direct, automated, and informative manner. In 

particular, the investigation department wants to know how the payment transaction data 

relates to the model’s Fraud-Score and which of the payment transaction data features 

contribute most to it. 

The goal of this thesis is to elaborate on the hypothesis that it is possible to perform model 

explanations on “out-of-model” features (in our case, the features from the payment 

transaction data). By enabling global views on the most important out-of-model features 

related to fraud as well as applying local feature analysis for a specific case under 

investigation, this approach aims at further supporting the investigators during their analysis. 

 
1 (Wikipedia: Banken in Deutschland, 2021) 2 (Commerzbank.de, 2021) 
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C. Original Model and Transfer Model 
In this thesis, the attempt to link the predictions of an existing ML model to a new feature set 

and a newly developed model will be outlined and described. Going forward, I will refer to the 

existent ML model as the “Original Model” and to the newly yet to be developed ML model 

as the “Transfer Model”. Accordingly, the features used in the existing ML model will be 

named “Original Features” and the new feature set coming from the payment transaction 

data will be referred to as “Transfer Features”. 

The Transfer Model uses the Original Model’s predicted Fraud-Scores as the dependent or 

target vector (“y-vector”) and the Transfer Features as explanatory or independent variables 

(“X-matrix”). The Transfer Model will be developed by using different ML classification 

algorithms. The modelling process also includes preprocessing steps and feature reduction 

techniques, but these are not discussed in this thesis.  

By applying global and local model explanation techniques to the Transfer Model instead of 

the Original Model, interpretations on the payment transaction features and their 

contribution to the predictions of the Original Model should become possible. 
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2. The Process to a Transfer Model 

A. Machine Learning 
Machine learning belongs to the field of "Artificial Intelligence" ("AI") and stands for the 

attempt to generate or extract knowledge from data: 

Figure 1: AI, Machine Learning and Deep Learning 

 

ML methods typically are further subdivided into Supervised and Unsupervised Learning.  

In Supervised Learning, the goal is to find a function that best describes the unknown 

relationship between a known input data set (a vector or matrix of independent variables) 

and a known output data set (a vector of the dependent or “target” variable) to later make 

predictions for data whose output data is unknown. Supervised Learning methods are further 

divided into two groups: classification and regression tasks. If the output data is categorical, 

it is a classification task. If the output data is of concrete and often continuous numerical 

values, it is a regression task.  

In contrast to Supervised Learning, Unsupervised Learning does not require any output data 

(no “label”), but only input data or independent variables. The aim is to present the most 

informative structure that best describes the provided data set.  "Clustering" is the attempt 

to separate the data set into several groups or to form “clusters” along some common feature 

characteristics. "Anomaly Detection" has the goal to identify those outliers that are so far 

away from the rest of the data, that they can be classified as "abnormal". A third common use 

case in Unsupervised Learning is to reduce the dimension or number of features to enable 

visualizations in a lower-dimensional space that is perceptible to the human eye. 

Original- and Transfer-Model 
As both, the Original Model and the Transfer Model aim to predict target classes, they clearly 

belong to the Supervised Learning type and there to the classification category.  
 

B. The typical Machine Learning Process 
The typical ML pipeline in a classification task looks like this: 

 

1. ETL 

The first step is the ETL-phase, an abbreviation that stands for “Extract, Transform, Load”. 

The data first needs to be collected and might be gathered from different sources (the 

“Extract” in ETL). The data format then must be converted into a format that ML algorithms 

and database management systems (“DBMS”) accept (the “Transform” in ETL), typically a 
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tabular format with sole numbers in columns and rows. The “Load” in ETL defines the process 

where the data is loaded from a database, often with SQL-commands.  

Original- and Transfer-Model 
The data for both, the Original Model and the Transfer Model has already gone through that 

process and thus is also available in structured tabular form as "Comma-Separated-Values” 

(“CSV” format). As the ETL-phase is also not part of the modelling process described in this 

thesis, I will not elaborate on it further. 

2. Preprocessing and Feature Engineering 

The second phase deals with handling erroneous and missing data and with converting the 

data into an appropriate number format. The general aim is to transform the independent 

variables in such a way that they can be sensibly used by the ML algorithms, or in other words 

to engineer the features out of the unready variables. 

Typically, raw data in a ML process cannot be used immediately but must first be corrected 

for systematic problems and errors. The reasons for incorrect data can be manifold: Typing 

errors in data collection, data damage during transmission or storage, erroneous duplication, 

improper handling, etc.  

Missing or erroneous data entries can either be replaced or removed. As a removal of data 

generally goes along with a loss of information, using an appropriate replacement strategy 

such as to replace those entries with the mean, median, the most frequent value or a constant 

is generally preferred.   

Some ML algorithms, such as the logistic regression estimator, require that the independent 

variables do not have high correlations with each other, that they do not have any extreme 

outliers or that they have a standard normal distribution.  

Most ML programs offer a wide range of transformer functions, be it to convert the data into 

a standard distribution (“standardize”), to clip outliers (“winsorize”) or to transform two or 

more highly correlated variables to a new feature vector. 

Original- and Transfer-Model 
The independent variables have already been transformed and feature-engineered for both, 

the Original Model, and the Transfer Model. Both feature sets are available in structured 

tabular form as CSV-files.  

One motivation to engineer new features is that nominal values in general might be less 

informative than the ratio of two variables. This particularly applies to the payment 

transaction data as it contains payment amounts that range from comparably low to very 

high numbers for the biggest corporate clients. For Transfer Features in the same business 

domain, ratios of two already existent features were calculated and added to the initial 

feature set in cases this made sense. Altogether, the Transfer Model in its training phase 

consists of close to 300 features. As the business logic of the feature sets needs to be strictly 

confidential, the preprocessing and feature engineering phase is not discussed, neither for 

the Original Model nor for the Transfer Model. 
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3. Train and Test data and Cross-Validation 

As already outlined above, ML attempts to “learn” from sample data. The actual learning 

phase in Supervised Learning is generally divided into two parts: In a first “training” step, a 

ML algorithm calculates a complex function that best describes the relationship between the 

feature set and the target vector. In a second “testing” step, the best model found during the 

first step is evaluated on an “unknown” data set from the same domain and with the same 

features to check the validity and stability of the new model. 

Since usually only one data set is available for both, training and testing, the sample data set 

must first be split into a test and a training set. If this separation was not made and the 

training data was also used for testing, there would no longer be any “unknown” data. The 

training data would then already contain the information that one is trying to predict. In data 

science, this is referred to as “data leakage”, as information from a training set “leaks” into a 

test set. This makes models unusable and must be avoided. 

To select from several trained models, evaluation and testing is already desirable during the 

training phase. However, the test data should not be used for this purpose, as it is only used 

for the final evaluation of the model eventually selected.  

For the training set to be used in both, training and testing, the training data must be split up 

again. The validation of models within the training set in data science is also known as "cross 

validation" or "CV".  

Figure 2: Cross- and Final Validation 

 

In the figure above, for example, a training set is split up five times and thus each time in a 

ratio of 4 to 1. The data contained in each split is also known as “fold”. With five model 

training runs, each time four of the five folds are aggregated and used for training, and one 

fold is used for validation. The quality and stability of a model can be read out from the results 

of the five validation folds and their variance. 

Original- and Transfer-Model 
As outlined above, the Original Model has already been created by BDAA and is currently 

used and run in the programming language R. As it is planned to switch from R to Python in 

the long term, the Original Model was re-developed in Python and its affiliated libraries using 

the train-ready Original Feature set.  
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4. Model Selection 

A ML algorithm that calculates a complex function to best describe the relationship between 

the feature set and the target vector is also known as “estimator”. When estimators are 

trained or “fitted”, some parameters are passed to them which are usually referred to as 

"hyperparameters". Estimators together with its hyperparameters form a ML “model”.  

The goal in the modelling process is not only to minimize the difference between the 

predicted and the measured values, but also to increase the stability of the model by setting 

the hyperparameters accordingly. Some of these parameters aim at “regularize” the ML 

model to avoid such “overfitting” (see below). 

Many different models are available for classification tasks. Three of the most widespread are 

the Logistic Regression model ("Logit"), the random Forest Classifier model ("RFC") and the 

XGBoost Classifier model (“XGB”).  

Despite its name, the Logit model is a linear model for classifying discrete dependent 

variables using regression methods. Logistic regression aims at calculating the probability of 

a binary event such as true and false. It uses a logistic function such as the Sigmoid function 

to map the regression output to a probability value between 0 and 1.  

The RFC model is an "ensemble" method because the algorithm combines the predictions of 

several decision trees by calculating an average from the individual tree predictions. The RFC 

is a non-linear model since the decision trees themselves are also non-linear in nature. The 

probability of an instance to belong to one of the two target values is simply calculated by 

dividing the number of data instances in the leaves of the aggregated trees. 

The XGB model is like the RFC model in that it is a non-linear ensemble method that 

combines the predictions of several decision trees. It differs from the RFC as it belongs to the 

class of boosting algorithms that for the aggregate prediction dynamically weigh and re-

weigh the results of the individual decision trees depending on their prediction quality. 

Predictions made with these classification models usually yield a predicted probability for the 

sample data to belong to one of the two target classes. Often, a predicted probability of 0.5 

is considered the border at and above which a sample is classified to belong to target class 1.  

As the focus of this thesis is not on model selection but on information transfer, I will not 

elaborate further on the different ML models. 

Original- and Transfer-Model 
The Original Model written in the programming language R is a composition or “ensemble” 

of different individual models such as Logit, RFC, XGB and others. The final model result is 

calculated by weighing and aggregating the results or the “voting” of these individual models. 

The exact composition of this ensemble model used by BDAA cannot be disclosed due to 

confidentiality issues.  

Nevertheless, it can be disclosed that the Logit model and so called “ensemble” models such 

as the RFC model and the XGB model were used in the Original Model by BDAA. Their 

respective feature sets can also be disclosed in an anonymized form.  

I will therefore use three models (Logit, RFC and XGB) in the application to both, the provided 

(anonymized) Original Features and the Transfer Features. As a result, there will be three 

Original “models” and three Transfer “models”. 
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5. Evaluation 

The quality measure of models is derived from certain key figures that are calculated upon 

the answer to the question of whether the forecast for an individual data point was correct or 

not. False positive ("FP") are forecasts that incorrectly categorize negative events as positive. 

True positive ("TP") are forecasts that correctly categorize positive events as positive. False 

negative ("FN") are forecasts that incorrectly categorize positive events as negative. True 

negative ("TN") are forecasts that correctly categorize negative events as negative. The 

number of data points in each of these four categories divided by the total number of data 

points yields their respective “rate”. 

Typically, no model can predict all data points with complete accuracy. When trying to 

minimize the number of false predictions, often there is a “trade-off”: improvements in one 

of the above categories will only come at the expense of a deterioration in another category. 

A well-known measure of accuracy in data science is the measure "ROC-AUC", which stands 

for the "area under the ROC curve". The ROC curve is a diagram in which the trade-off 

between the improvement in the true positive rate ("TP”) versus the deterioration of the false 

positive rate ("FP") is shown: 

Figure 3: Wikipedia: Receiver operating characteristic 

 

The ROC-AUC score in the above figure quantifies the area within the square that lies to the 

right or below the colored lines. The smaller the area on the left or above the colored lines, 

the better the model quality that can be achieved with a given data set. The ROC-AUC score 

has its minimum value at 0.5 where the model predictions are purely random and its 

maximum value at 1.0 where all data points are predicted correctly. 

If data sets have roughly the same number of target values in each of the two binary classes 

(“balanced datasets”), the quality of a model can be measured with the so called “accuracy” 

score. 

If data sets have a very unequal number of target values in each of the two binary classes 

(“unbalanced datasets”), high values of the accuracy score lose their meaningfulness. Quality 

measures such as the ROC-AUC score should then be used. 
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An important concept in measuring the quality of ML models is expressed in the terms “Bias” 
and “Variance”. Generally, a “Low Bias, Low Variance”-model is preferred:  
 
Figure 4: Bias and Variance 

Source:Wikipedia 
 

“Bias” in Machine Learning can be defined as the phenomena of observing results that are 
systematically prejudiced due to faulty assumptions.3 One reason for that could be missing 
important features that are not yet included in the data set but potentially contained some 
additive prediction power.  
Another source of “Bias” is if we dropped data in the preprocessing stage that itself has a 
tendency or “Bias” in one or the other prediction direction and thus might lead to a “Bias” in 
the opposite direction for the remaining data. For such “High Bias” or “underfitted” models, 
it is recommended to go back and do some more research on the domain topic, to find or 
engineer more features or to add additional data if possible. 
“High Bias” cases can usually be recognized by low values in their quality metrics such as ROC-
AUC or “accuracy”. I consider models with a ROC-AUC score of between 0.80 and 0.90 as 
having “Medium Bias” and those with a ROC-AUC score above 0.90 as having “Low Bias”.  

 
“Variance” in the context of ML models can be defined as the amount that the estimate of 
the model will change if different training data was used.4 “High Variance” suggests large 
changes to the estimate of the model with changes to the training data. This also includes 
large changes in the estimates of the different training folds within the cross validation. It is 
said that the model in this case is “overfitted”. Solutions to this problem include to 
“regularize” the model by setting the regularization hyperparameters accordingly, to 
manually drop features with little contribution to the model quality metric or to add 
additional data if possible. 
“High Variance” cases can usually be recognized by a high divergence in the ROC-AUC scores 
of the test sets for different training sets or cross-validation folds. I consider models whose 
ROC-AUC scores for different test sets do not diverge by more than 0.05 to have a “Low 
Variance”. 

 
Original- and Transfer-Model 
As stated previously, loan fraud cases at Commerzbank AG are very rare. Although the data 

for the Original Features was collected for a time span of over ten years, the data set was still 

very unbalanced with a low number of positive (“fraud”) and an overwhelming number of 

negative (“no fraud”) target values. The appropriate measure for the model quality of the 

Original Model thus is the ROC-AUC score. 

 
3 (Jaspret, 2019) 4 (Brownlee, 2019) 

Low Bias, Low Variance High Bias, Low Variance Low Bias, High Variance High Bias, High Variance 
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The number of positive target values for the Transfer Model depends on how the target 

values are calculated as explained in later chapters. Generally, the number of positive target 

values is also low in the learning data of the Transfer Model. Also, to compare the Transfer 

Models with the Original Models, the ROC-AUC score was also chosen there as the 

appropriate model quality metric. 

The terms “Bias” and “Variance” will not be discussed for the Original Model but only for the 

Transfer Model in later chapters. 

C. Software 
I used Python as the programming language. Python is an open source interpreted high-level 

general-purpose programming language that comes with a comprehensive standard library. 

Third-party libraries can easily be integrated.5 

One of those libraries is Scikit-learn, an open-source machine learning package that supports 

Supervised and Unsupervised learning. It also provides various tools for model fitting, data 

preprocessing, model selection and evaluation, and many other utilities.6 Scikit-learn was 

used as the main tool for the ML process. 

In addition, various open-source libraries were also used for data manipulation and 

conversion, two of the most important are “pandas” and “NumPy”. 

Pandas is a fast, powerful, flexible, and easy to use data analysis and manipulation tool built 

on top of the Python programming language. pandas “DataFrames”, a two-dimensional, 

size-mutable, potentially heterogeneous tabular data structure7 was used quite frequently.  

NumPy is the fundamental package for scientific computing in Python. It provides routines 

for fast operations on arrays.8 

In addition to various Python libraries, Jupyter Notebooks were used for interactive analysis 

and quick Python program runs. Project Jupyter is a non-profit, open-source project to 

support interactive data science and scientific computing across the three main 

programming languages Julia, Python and R from which its name derives. 9 

As integrated development environment (“IDE”), I used Jetbrains Intellij with a Python 

plugin.10 

D. Differences to the typical ML process 
As a result of the previous discussion, the specific process to create a Transfer Model looks 

like this: 

 

 

 

 
5 (Wikipedia: Python, 2021) 
6 (Scikit-Learn, 2021) 
7 (Pandas, 2021) 

8 (numpy.org, 2021) 
9 (Wikipedia: Jupyter, 2021) 
10 https://www.jetbrains.com/de-de/idea/ 



14 
 

1. Original Model Training 

The initial feature set for the Original Model contained 664 preprocessed and pre-engineered 

features and around 14,000 rows of borrowers that were either corporate or business clients. 

The binary target vector was defined for each borrower to be either fraudulent (target class 

1) or not (target class 0) in the context of the BDAA definition of “fraud”.  

For their ensemble model, BDAA selected 99 features for the Logit model component and 32 

features for the XGB and RFC model component, respectively. The final selection was the 

result of comparing the model performances for different feature sets.  

To rerun the three model components from the BDAA ensemble model, I rerun the Logit, 

XGB and RFC estimators in Scikit-learn on the 99 and 32 Original Features and 14,000 

borrowers and repeatedly optimized the hyperparameters. The learning phase of the Original 

Model ends with obtaining the three best fitted Logit, XGB and RFC model. 

2. Predict Probabilities and calculate Fraud-Scores 

With each of the three best models for Logit, XGB and RFC, predictions are made for current 

borrowers on monthly loan data to calculate the probability that a current borrower is 

fraudulent. The monthly data contains the Original Features and around 520,000 borrowers 

that are either corporate or business clients.  

Each of the three Scikit-learn estimators offers a “predict_proba”-method that is supposed 

to return the probability of the samples to belong to one of the two target classes. It ranges 

from 0 to 1 indicating very low to high probabilities of “fraud”, respectively. Sometimes, 

results from the predict_proba-method are “distorted in a specific and consistent way”11 and 

are not perfectly calibrated. This means that the mean of the predicted probabilities 

(“predict_probas”) might differ from the mean of the real target values for different target 

bins or segments of the target value distribution.  

To overcome this and to enable inter-monthly comparison of results, each month the 

predict_probas are calibrated by BDAA. This is done by calculating 1000-quantiles or 

“permilles” of these probabilities for a specific and representative sub-portfolio of borrowers 

called the “quantile_portfolio”.  

The desired characteristic of the “quantile_portfolio” is that the derived Fraud-Scores later 

are uniformly distributed in between the extremes of theoretically 0 and 100. The 

“quantile_portfolio” should actually be named “permille_portfolio” as theoretically there are 

1000 bins or intervals. In practice however, the number of bins might be less than 1000 due 

to minor rounding differences of pandas “qcut”-function. But for generalization purposes, in 

the program it is still referred to as the “quantile_portfolio”. 

The predicted probabilities for all borrowers are then allocated into these 1000 (range 

differing) permille bins. The permille of the 1000 bins (“permille interval”) in which the 

predicted probability is contained then serves as the Fraud-Score and thus enables the 

desired inter-monthly comparison and calibration. The Fraud-Scores range from 0 to 100 in 

0.1-steps.  

 

 
11 (Caruana, et al., 2006) 
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3. Convert Fraud-Scores to Transfer Model Target Values 

The intended Transfer Model shall transport information from one feature set into another 

and carry this information in the values of the target vector. The target values in the Original 

Model are the predict_probas and the derived Fraud-Scores. Thus, the target values of the 

Transfer Model must also be the predict_probas or the Fraud-Scores in one form or another.  

The first possibility to create the Transfer Model target vector is to just take the Fraud-Scores 

itself. But as the Fraud-Score is a continuous variable ranging from 0 to 100 in 0.1-steps, the 

task to predict these values would be a regression task and the Transfer Model would be a 

regression model. 

As the Transfer Model aims at supporting the investigators during their analysis, the 

investigators would be overwhelmed by a big number of borrowers and would rather focus 

only on those that have the highest Fraud-Scores. This necessitates a threshold value for the 

Fraud-Score above which borrowers are further analyzed and a distinction between 

“suspicious” and “not-so-suspicious” borrowers based on model results. If such a distinction 

must be made, a classification task is also an appropriate approach. 

The second possibility to create the Transfer Model target vector therefore is that the Fraud-

Score values will be converted to binary target values. Fraud-Scores at or above a certain 

threshold will be classified to belong to class 1 (“fraud”), else to class 0 (“no fraud”).  

The threshold can be set in different ways. Each of the fitted Logit, XGB and RFC models 

outputs different predictions and thus different Fraud-Scores for each of the (currently) 

around 520,000 borrowers in the monthly data. A threshold level could be applied to all, any 

two or only one of the three model’s Fraud-Scores. For this approach, each of the different 

combinations would need to be investigated. It would require in-depth research on if and why 

the three models differ in their results and how they are correlated. As this goes beyond the 

scope of this thesis, the chosen approach was to require all three models to have a Fraud-

Score above a certain threshold to classify the respective borrower as “fraudulent”. The 

Transfer Model so could also be seen as an “ensemble” model that requires the aggregated 

results of three different models. 

But at which level shall this threshold be set? A threshold level set very low, would yield a 

more balanced data set as the number of borrowers in each of the target classes (class 0 = 

“no fraud” and class 1 = “fraud”) were similar. But this would also result in more false positive 

predictions. 

A threshold level set very high, would include only the most suspicious borrowers and would 

result in a lower false positive rate. But this would also come at the disadvantage to have a 

very unbalanced data set with many samples in class 0 (“no fraud”) and only very few samples 

or borrowers in class 1 (“fraud”). It would also increase the false negative rate. 

The chosen approach was a classification task in that the Fraud-Score values were converted 

to binary target values and the threshold was set to a minimum Fraud-Score of 90 required 

to be passed by all three models. This was the result of a repetitive process to maximize 

model performance, have a balanced data set and a lower number of false positive 

predictions. In later chapters, I will elaborate on this. 

This concludes the overview of the specific ML process to create a Transfer Model. 
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E. Program Architecture 
ML program code in the modelling, prediction and explanation phase is often long and 
contains many similarities or even redundancies. This particularly applies to a Transfer Model 
as the modelling, prediction and explanation must be done for both, the Original Model, and 
the Transfer Model. It thus is a typical use case for the Object-Oriented programming 
(“OOP”) software architecture paradigm. What follows is the description of the program 
architecture and the classes used. 

 
1. Class Diagram 

The following class diagram, that excludes the signature of the methods and the attributes, 
provides a rough overview over the architecture of the program: 
 
Figure 5: Class diagram 

 
 

 The architecture style adapts to the modelling technique of “Domain-driven design”12, a 
concept where class names usually refer to the business logic they implement.  

 
A. Class ML 

The class “ML” is contained in the Python file “ml.py” and is the most senior class in the 
inheritance structure. Its only (class) method “set_configuration()” instantiates an object of 
class “Configuration” and to it passes the file path to a configuration file (“config.ini”). The 
instance of class “Configuration” is saved and later used by all sub-classes to get access to the 
config.ini-file. The config.ini-file contains all the parameters, settings and directories for the 
modelling, prediction, and explanation phase. Without an instance of class “ML”, the sub-
classes cannot be instantiated. The class (in a modified form) so could serve as the security 
gate that protects access to the entire ML process.  
 
 

 

 
12 (Evans, 2003) 
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B. Class Configuration 
The class “Configuration” is also contained in the Python file “ml.py” and makes use of 
Python’s “ConfigParser”, a class contained in the “configparser” library that creates and reads 
configuration files. Its main task is to read data from the config.ini-file. 

 
C. Class DataAccessDescriptor 

Python Descriptors let objects customize attribute lookup, storage, and deletion.13 The class 
“DataAccessDescriptor” serves as an accessor to data, here to data saved in files. But it could 
also be used to access data stored in DBMS or any other form of persistent data storage.  
Descriptors implement and overwrite any or all of the three Python “dunder”-methods 
(“double underscore methods”) “get()”, “set()” or “delete()”. DataAccessDescriptor instances 
are set as class attributes in the classes “InsideAccess” and “OutsideAccess”. If values are 
assigned TO these instances, the “set()”-method of the Descriptor is called and so saves the 
data to the referenced directory and file. If values are assigned to any other variable FROM 
these instances, the “get()”-method of the Descriptor is called and so loads the data from the 
referenced directory and file. 
The implemented “get()” and “set()” methods load and save either csv-files or joblib-files. The 
csv-format was chosen for the persistent storage of tabular data and the joblib-format for the 
persistent storage of the fitted Scikit-learn model estimators. 

 
D. Classes InsideAccess and OutsideAccess 

To separate use cases where model internals shall be available only to some objects and users 
but not to others, the two different access rights to these model internals are incorporated in 
the two different classes “InsideAccess” and “OutsideAccess”.  
Both classes are contained in the “data_access.py”-file and inherit from the class “ML”. 
Instances of class “InsideAccess” have full access to model internals as they have different 
instance attributes and can also use all class instances of the DataAccessDescriptor-class as 
described above. With their respective “load_...”- and “save_...”-methods, “InsideAccess”-
instances so have access to all persistently stored data.  
On the other hand, “OutsideAccess”-instances with their own attributes and own “load_...”- 
and “save_...”-methods contain less and different DataAccessDescriptor-class instances and 
thus have only access to general output- or generic model-information. Sensitive data, such 
as the training and test data or the model parameters are so hidden from those objects and 
users. The class “OusideAccess” currently only has one sub-class named “Prediction” but is 
forecast to get other children in a production mode for purposes such as monthly “Reports” 
to be produced for the investigators. 
 

E. Class Model 
The class “Model” implements the ML modelling logic and is one of the biggest classes in the 
program. It is contained in the “model.py”-file and is a sub-class of “InsideAccess” from which 
it inherits the instances, attributes and full data access rights. 
Its methods make use of the Scikit-learn toolset and the data structures and manipulation 
tools provided by pandas and NumPy. 

 
i) set_dataframe(…) 

The learning data can either be loaded with the “InsideAccess”-method “load_dataframe()” 
or by passing as parameter to this method a pandas “DataFrame” that contains the feature 
set and the target vector. 
 

 
13 (Hettinger, 2021) 
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ii) set_key_target_features(…) 
This method receives the following strings and lists as parameters and sets them as instance 
attributes: the name of the target, the name of the features, the name of the features 
excluded in the training and the names of the key and the second key. The two “key” 
parameters are the columns in the “dataframe” that identify a particular data row and 
represent the individual corporate or business client. The first key is the Commerzbank 
internal client identification number (“ID”) and the second key the months and year the data 
was recorded. As the Original Model data contained duplicated client ID’s for different 
months, the second key was necessary to make the data row unique. The name of the (first) 
key in the anonymized dataframe is “orig_key_1” and the name of the second key is 
“orig_key_2”.  
The “features_excluded_in_training”-parameter lists those column names in the 
“dataframe”, that might be key values to identify individual rows, but anyway are not desired 
for the training of the model. These names must be carried for reasons related to the 
avoidance of data leakage as explained below.  

 
iii) set_estimator_and_parameters(…) 

This method is passed a Scikit-learn estimator and a reference to the hyperparameters in the 
config.ini-file. The retrieved hyperparameters and the passed estimator are then set as 
“Model” instance attributes.  
If the estimator is of type “Logit”, which might require either imputation, standardization or 
winsorization of the learning data in the cross-validation phase, a Scikit-learn “Pipeline” 
instance is created by making a call to the private method “make_pipeline(…)”. All the 
parameters needed for the “Pipeline” are retrieved from the config.ini-file and set in this 
private method. The “Pipeline” instance is then set as estimator attribute instead of the 
“Logit”-estimator and later is treated differently compared to estimators that are not a 
“Pipeline”. To keep track of that, the Boolean flag “estimator_is_pipeline” is set to “True”. 

 
iv) under_sample_dataframe(…) 

This method allows to rebalance an unbalanced dataset, i.e., a data set whose target values 
are heavily dominated by just one of the two target classes. As even the Transfer Model data 
contains much more “non-fraud” than “fraud”-cases, this method allows to resample and 
resize the data set so that the “majority”-class is reduced according to the desired strategy. 
This method is later used in the Transfer Model. Allowed parameters are float-type numbers 
that express the desired ratio of the minority class (1 = “fraud”) to the majority class (0 = “no 
fraud”) or any string allowed as “sampling_strategy” as defined by the 
“RandomUnderSampler”-method of the Scikit-learn “imbalanced-learn” library. 
 

v) train_test_split_dataframe(…) 
This method splits the “dataframe”-rows into a training set and a test set. If the parameter 
“group” is provided (default is: None), it must be the name of a feature in the “dataframe” 
with duplicate entries that shall either be in the train and or in the test set but not in both to 
avoid data leakage. The duplicate entries form so called “groups” and Scikit-learn’s tool 
“GroupShuffleSplit” can create an iterator that separates these “groups”. 
The Original Model contained borrowers with different company ID’s but some of them 
belong to the same conglomerate or concern and thus had the same concern ID. As the 
company data has some overlap with the concern data, the concern ID’s form “groups” that 
need to be accounted for in the train-test-split. After retrieving the split ratio from the 
config.ini-file, it is passed to the “GroupShuffleSplit”-function along with the name of the 
“groups” column in the “dataframe”. The name of the “groups”-column in the anonymized 
“dataframe” is “orig_key_3”. The function then splits the “dataframe”-rows into a train and a 
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test set, accounting for the mentioned “groups” by ensuring that rows with equal concern 
ID’s are EITHER in the test set OR in the training set but not in both. The function then stores 
the row indexes of the respective sets in the “Model” instance. The private method 
“set_train_test_set_rows()” eventually splits the rows of the feature set and the target vector 
into “X_train”, “X_test”, “y_train” and “y_test” sets along these indexes and saves them as 
“Model” instance attributes.  
 

vi) train_model_and_cross_validate(…) 
This method does all the training and cross-validation. As data leakage also lures in this 
phase, it must be ensured that the individual cross-validation folds are also separated along 
the just discussed “groups”. This is accomplished by using yet another Scikit-learn function 
named “GroupKFold” which does exactly what the “GroupShuffleSplit”-function does, 
except that it does this only for the “X_train” dataset rather than the entire learning data. Its 
parameters are not only the “group” column name, but also the number of folds 
(“num_cv_folds”). The “num_cv_folds” is retrieved from the config.ini-file as is the “scoring” 
method.  
Besides the created “GroupShuffleSplit”-iterator and the scoring-method, the previously 
retrieved hyperparameters and the provided estimator also go into a newly created Scikit-
learn “GridSearchCV”-instance as parameters. Finally, the “fit(…)”-method is run on that  
instance and on the feature set that excludes the “features_excluded_in_training” to do the 
cross-validation. The best estimator with the best hyperparameters is then saved as instance 
attribute and can be persistently stored with the “IndsideAccess”-method 
“save_fitted_estimator(…)”. 

 
vii) get_cv_results() and get_test_set_roc_auc_score() 

To get the cross-validation results in the form of an aggregated pandas “DataFrame”, the 
method get_cv_results() can be run. To get the “ROC-AUC score” for the previously set aside 
test data set, the method get_test_set_roc-auc_score() can be used. 

 
viii) generate_prediction_input() and generate_explanation_input() 

The generate_prediction_input()-method can generate a “namedtuple” data structure from 
the Python collections library. This namedtuple “PredictionInput” object carries all the 
required data that is needed for instances of class “Prediction”. The 
generate_explanation_input()-method also creates a namedtuple “ExplanationInput” object 
also carrying all the required data, that is later needed for instances of class “Explanation”. 
This object can be persistently stored to interrupt and later again resume the ML process. 

 
F. Class Prediction 

The class “Prediction” is contained in the Python file “prediction.py” and its task is to perform 
monthly predictions. It inherits from class “OutsideAccess” and so has only limited access to 
the model internals. At instantiation, it must receive a “PredictionInput” object, a 
“namedtuple” data structure that contains the fitted estimator, the feature names in the 
training phase, the name of the target vector, the key name (“orig_key_1” in the anonymized 
“dataframe") and whether the fitted estimator is an instance of Scikit-learns “Pipeline”. The 
“PredictionInput” object does not contain the learning data, nor does it reveal the 
hyperparameters or any results from the model’s learning phase. As described in the last 
chapters, there are several steps to arrive at the Fraud-Score used at BDAA:  

 
i) set_quantile_keys(…) 

Firstly, the probabilities for the two target classes are predicted for a representative monthly 
sub-portfolio of borrowers (the “quantile_portfolio”).  
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The meaning of the “quantile_portfolio” is described in detail in the “Predict Probabilities and 
calculate Fraud-Scores” chapter above. 
To set this “quantile_portfolio”, this method set_quantile_keys(…) receives as parameter a 
pandas DataFrame containing the  key values (key: “orig_key_1”) for the representative 
“quantile_portfolio”. It then stores as an instance attribute the key values as list. 

 
ii) get_pred_proba_for_key() and predict_probas() 

Next, the predict_probas()-method predicts the probabilities for either target class by using 
the Scikit-learn-function predict_proba(…). For that, a “prediction_dataframe” containing the 
monthly data for which the probabilities shall be predicted, must have been loaded before 
with the “OutsideAccess”-method load_prediction_dataframe(…).  
The method get_pred_proba_for_key() can also predict probabilities for an individual 
borrower if a value for the key “orig_key_1” is provided. 

 
iii) calculate_quantiles() 

This method is the most comprehensive in the class. Its task is to eventually convert the just 
calculated probabilities for the two target classes to Fraud-Scores.  
This process is described in detail in the “Predict Probabilities and calculate Fraud-Scores” 
chapter above. 
In the first step, only those borrowers that are in the “quantile_portfolio” list - together with 
their predicted probabilities – go into the instance attribute “instance_quantile_portfolio”, a 
pandas DataFrame. 
Next, the “permilles” and the “permille-bins” (“permille intervals”) are calculated for the 
predicted probabilities of the “quantile_portfolio”. Both are added to the 
“instance_quantile_portfolio” as new columns. 
Into the “instance_result_dataframe”, which already contains the key values and the 
predicted probabilities, the “permille-bins” from the “instance_quantile_portfolio”, are 
inserted according to the predicted probabilities therein with the pandas “cut”-function.   
In the final step, the permilles from the “quantile_portfolio” are also inserted or “merged” 
into the “instance_result_dataframe”. As already described, the permilles also serve as 
Fraud-Scores.  
 

iv) add_results_to_aggregate() 
Because the “instance_result_dataframe” and the “instance_quantile_portfolio” are instance 
attributes, they must be aggregated at a higher level if the Fraud-Scores threshold shall be 
calculated on the aggregated Fraud-Scores for the Logit, XGB and RFC models. The method 
add_results_to_aggregate() aggregates the individual instance predictions to the 
“result_dataframe” and the “quantile_portfolio”, which are class attributes of the 
“OutsideAccess”-class. These aggregated class attributes can also be loaded and persistently 
stored with the “OutsideAccess”-methods load_quantile_portfolio(…), 
save_quantile_portfolio(…), load_result_dataframe(…) and save_result_dataframe(…). 
 

v) generate_transfer_model_inputs() 
The generate_transfer_model_inputs()-method can generate a “namedtuple” data structure. 
This namedtuple “TransferModelInput” object carries all the required data that is needed for 
instances of class “TransferModel”.  

  
G. Class TransferModel 

The class “TransferModel” is a sub-class of class “Model” and is also contained in the 
“model.py”-file. It has one proprietary method and overwrites one of its parent’s methods to 
account for “TransferModel” specifics.  
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i) set_transfer_model_inputs(…) 
This method is passed a namedtuple “TransferModelInput” that contains the Original 
Model’s target name, the key name of the Original Model and most importantly the three 
“permilles” (one for each model) from the “quantile_portfolio”. 
The Original Model’s target name is converted to the Transfer Model’s target name by 
concatenating a “TRANS_TARGET_of_”-prefix. 
The name of the two key variables (“orig_key_1” and “orig_key_2” for the anonymized data 
set) of the Transfer Model are taken over from the Original Model. 
The three “permilles” from the “quantile_portfolio”, as stated previously, represent the 
Fraud-Scores for each of the three models. They are used to calculate a Fraud-Score-
threshold at or above which the Transfer Model target class is equal to one (1 = “fraud”) and 
below that equal to zero (0 = “no fraud”). This is done by first receiving the settings for this 
calculation from the config.ini file, which are then used by the two “helper”-methods 
create_target_column() and combine_targets_with_features() to arrive at the Fraud-Score-
threshold. The calculated values represent the target vector of the Transfer Model. 

 
ii) set_key_target_features(…) 

This method overwrites three of the instance parameters passed to this method and sets the 
"key", "second_key" and "target" attributes according to the data received in the namedtuple 
“TransferModelInput” that is processed by the previous method. 
As the “TransferModel” is a sub-class of class “Model”, a Transfer Model instance could also 
generate a namedtuple “PredictionInput” and use it for another “Prediction”-instance to 
predict monthly data based on the new Transfer Features.  

 
H. Class Explanation 

The class “Explanation” is contained in the “explanation.py”-file and inherits from class 
“InsideAccess”. It thus has full access to the model internals as most Python libraries used to 
do feature explanations require this. 
The class currently has only one sub-class “Shap” but will get more children if explanation 
techniques other than Shapley-values shall be used in production mode.  
Its only method is the init(…)-method that receives a namedtuple “ExplanationInput” object 
that contains the fitted model estimator, the learning data set “X”, the “X_train” and “X_test” 
set and the key names. If features for monthly data shall be explained, the 
“shap_data_for_explanation”-variable in the config.ini-file must be set to “monthly” and a 
“prediction_dataframe” loaded first. 

 
I. Class Shap 

The class “Shap” inherits from class “Explanation” and is also contained in the 
“explanation.py”-file. It uses the Python library “shap” that offers insights into the 
contribution of features to model results which will be explained later in more detail.  
The class offers methods that do not only calculate Shapley-values but also provide data 
around this topic that can be extracted and analyzed further.  
In addition to that, the class offers methods to plot graphs that contain all the relevant 
information but do not reveal model internals. The latter could be used to create 
informational reports.  

 
i) create_shap_objects() 

This method sets some required variables and creates an “explanation”- and an “explainer”-
object that are saved as instance attributes. The "data"-parameter passed to the explainer 
object must be a shap “masker” object instead of the actual data, because otherwise the 
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standard masker is set in the background whose "max_samples"-attribute is set to 100 rows 
only. 

 
ii) calc_global_explanation() 

After invoking the create_shap_objects()-method, the Shapley-data is imported into a pandas 
DataFrame and saved as “global_shap_values”-attribute with this method. 

 
iii) get_local_shap_values_from_global(…) 

There are two ways to get Shapley-values for an individual data row or individual borrower: 
The first is to get them from the “global_shap_values”-attribute. Then the Shapley-values are 
just extracted from that global Shapley-values data set. The method 
get_local_shap_values_from_global() does exactly that. 

 
iv) get_local_shap_values_from_method(…) 

The second possibility to get Shapley-values for an individual data row or individual borrower 
is to let the method “shap_values” from the shap library calculate the Shapley values from 
the feature data that are passed as parameters. To do that, the method 
get_local_shap_values_from_method(…) first extracts the feature data from the 
“shap_explanation_data” and then applies the “shap_values”-method. As of the time this 
thesis is written, there is a (minor) difference for the individual Shapley-values dependent on 
the method that is used to calculate them. The results from this method add up to the 
difference between the calculated Shapley-values and the respective base value and is 
therefore considered to be “correct”.  

 
v) compare_local_shap_from_global_with_local_shap_from_method(…) 

This method shows the difference between the local Shapley-values for the two different 
approaches.  

 
vi) plot_global_bars(…), plot_global_beeswarm(…) and plot_global_heatmap(…) 

These methods for the respective type of plot show Shapley-values for all the data that was 
referenced in the config.ini-file as “shap_data_for_explanation”-variable. 

 
vii) plot_global_scatter_for_features(…) 

This scatter plot shows the Shapley values for one or two features. Dependent on the settings 
for the parameters, it can also show an interaction effect. 

 
viii) plot_local_force(…) 

This is the most important plot to show Shapley-values for an individual borrower. It is based 
on the method get_local_shap_values_from_method(…) that is considered to show the 
“correct” values as stated above. It is passed one key value (“orig_key_1”), or if the Original 
Features shall be explained, two key values (“orig_key_1” and “orig_key_2”) as parameters. 
 

ix) reduce_shap_explanation_data_rows() 
Not all “helper”-methods are mentioned here, but this one deserves some attention. The 
time to calculate Shapley-values increases exponentially by the number of rows or borrowers 
in the data set. To limit the calculation time and to reduce the size of the 
“shap_explanation_data”-attribute, this method receives the 
“max_num_explanation_data_rows”-variable from the config.ini-file and randomly selects 
the provided number of rows from the “shap_explanation_data” to reduce its size. 
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J. Others 
There are some other Python-files, classes, and helper methods in the program. These are 
not explained as they are outside the focus of this thesis. Nevertheless, they are all shown in 
the appendix.  
 

2. The ML Process with Class Instances 
As a result of the previous chapter’s discussion, the specific ML process to create a Transfer 
Model in the OOP-paradigm looks like this: 

 
Figure 6: namedtuples as input objects 

 
 

Firstly, an instance of class “Model” withs its methods and attributes, does all the ML 
modelling for the Original Model as described previously. It concludes with generating a 
“PredictionInput” object, a “namedtuple” data structure from the Python collection library. 
The “PredictionInput” object carries all the required data that is passed to a newly created 
instance of class “Prediction”. 

 
Secondly, this instance of class “Prediction” then with its methods and attributes does all the 
desired predictions and at the end generates a “TransferModelInput” object. This again, is a 
“namedtuple” data structure, that contains all the required data for a newly created instance 
of class “TransferModel” to which it is passed.  
 
Thirdly, the instance of class “TransferModel” then does all the desired ML modelling for the 
Transfer Model and concludes with generating an “ExplanationInput” object, also a 
“namedtuple” data structure.  
Fourthly, this “ExplanationInput” object carries all the required data that a newly created 
instance of class “Shap” needs to do SHAP explanations on the Transfer Features (on which I 
will elaborate later).  
 
Finally, the instance of class “Model” created in the first step could also generate an 
“ExplanationInput” object that would serve as input to another instance of class “Shap” to 
explain the Original Features. 
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The namedtuple data structures in this way encapsulate sensitive information and ensure 
that data is revealed only to privileged users and objects. These data structures can also be 
stored persistently with the help of the Python joblib library. This allows to interrupt the ML 
model at any stage and later resume it. 

 
3. Program Code 

To show the ML process from an Original Model to a Transfer Model in program code, some 
important steps are shown as extracts of a Jupyter Notebook for just one of the three models, 
here the XGB model:  
 
(1) Set the configuration with the class method of class “ML”: 

ML.set_configuration(path_to_config_file='../Configuration/config.ini')  
 
(2) Create an instance of class “Model” for the Original Model: 

xgb_model = Model()     # For: XGBoost or XGB  
 

(3) Load the learning data for the Original Model by passing in references to the paths of 
the file in the config.ini-file: 

xgb_model.load_dataframe(config_section='Original.Model.Data.Training',  
                         config_name='learn_data_preprocessed')  

 
(4) Set key, target and features of the Original Model. The respective features (32 
features for XGB and RFC (“ensemble_index”), 99 features for Logit (“logit_index”)) are 
referenced to two lists in a Python-file named “Feature_Indices_Anonymized.py” (see 
appendix: “feature indexes”): 

xgb_model.set_key_target_features(key='orig_key_1',target='orig_target',  
                                  features=ensemble_index,  
                                  features_excluded_in_training= 
                                 ['orig_key_1','orig_key_3', 'orig_key_2'],  
                                  second_key='orig_key_2')  

 
(5) Split the Original Model learning data into a train and a test set. The “orig_key_3” 
feature vector must be “grouped” to avoid data leakage: 

xgb_model.train_test_split_dataframe(group='orig_key_3')  
 
(6) Set estimators and hyperparameters for the Original Model: 

estimator = XGBClassifier() 
xgb_params = 'xgb' 
xgb_model.set_estimator_and_parameters(unfitted_estimator=estimator,  
                                       hyper_params_dict_name_in_config= 
                   xgb_params)  

 
(7) Train the Original XGB model and cross-validate them: 

xgb_model.train_model_and_cross_validate()  
 
 
(8) Get the cross-validation results for the Original Model.  

xgb_model.get_cv_results()  
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Here, extracts from the “results_dataframe” are shown for the (Original) XGB-model 
(“xgb_model”): 
 

split0_test_ROC-AUC 0.957058 
split1_test_ROC-AUC 0.939859 
split2_test_ROC-AUC 0.942978 
split3_test_ROC-AUC 0.924194 
split4_test_ROC-AUC 0.956416 
mean_test_ROC-AUC 0.944101 
std_test_ROC-AUC 0.013556 

 
The ROC-AUC scores for the five individual test folds and their mean of 0.9441 indicate a 
good model fit. 
 
(9) Get the ROC-AUC score for the test set: 

xgb_model.get_test_set_roc_auc_score()  
ROC-AUC score for the XGB model: 0.943084. The good model fit is confirmed by 
the ROC-AUC score of the test set. 
 

(10) Generate a “PredictionInput” (namedtuple) object from the XGB model and pass it to 
a newly created instance of the class “Prediction”: 

xgb_model.generate_prediction_input() 
predict_xgb = Prediction(xgb_model.prediction_input_object)  

 
(11)     Load monthly data (that contains the Original Features) for which to make 
predictions (“predict_probas”): 

predict_xgb.load_prediction_dataframe(config_section= 
     'Original.Model.Data.Monthly',  
                  config_name='data_for_prediction')  

 
(12) Load the representative “quantile_portfolio” for which later “permilles” and 
“permille_bins” are calculated: 

predict_xgb.load_quantile_portfolio(config_section= 
         'Original.Model.Data.Monthly',  
                                    config_name= 
         'quantile_portfolio_key_values')  

 
(13) Set the quantile keys from the “quantile_portfolio”: 

predict_xgb.set_quantile_keys()  
 
(14) Predict the probabilities (“predict_probas”) for the monthly data of the Original 
Model: 

predict_xgb.predict_probas()  
 
(15) Now calculate the “permilles” and “permille_bins” for the “quantile_portfolio" based 
on the predicted probabilities (“predict_probas”): 

predict_xgb.calculate_quantiles()  
 
(16) Aggregate the “permilles” and “permille_bins” for all three models at the class level 
to later use them for the Transfer Model:  

predict_xgb.add_results_to_aggregate()  
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(17) The “result_dataframe” and the “quantile_portfolio” with the aggregated values can 
be shown from any instance: 

predict_xgb.result_dataframe 
 
predict_xgb.quantile_portfolio  

 
 

Figure 7: Result dataframe 

 
 
Figure 8: The quantile_portfolio 

 

(18) Generate a “TransferModelInput” (namedtuple) object: 

predict_xgb.generate_transfer_model_inputs()  
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predict_pr
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quantile

0 k1_val1 0

(-1e-05, 

0.00016949] 0 0.006589

(0.0065653, 

0.0065965] 38.3 0.00011

(0.00010966, 

0.00011064] 15.4

1 k1_val2 0

(-1e-05, 

0.00016949] 0 0.006589

(0.0065653, 

0.0065965] 38.3 0.00011

(0.00010966, 

0.00011064] 15.4

2 k1_val3 0.000714

(0.00068966, 

0.00076923] 0.5 0.001356

(0.0013462, 

0.0013603] 13.6 0.000028

(2.7941e-05, 

2.8382e-05] 4.5

3 k1_val4 0.015979

(0.015927, 

0.015994] 13.7 0.003072

(0.0030657, 

0.0030855] 24.6 0.000234

(0.00023234, 

0.00023457] 24.9

4 k1_val5 0.005791

(0.0056465, 

0.0057957] 3.9 0.004864

(0.0048469, 

0.0048723] 32.4 0.000327

(0.00032504, 

0.00032739] 29.5

... ... ... ... ... ... ... ... ... ... ...

518881 k1_val523644 0.045523

(0.04544, 

0.045584] 44.2 0.120684

(0.1197, 

0.12086] 88.5 0.062695

(0.06209, 

0.063324] 90.6

518882 k1_val523645 0.125684

(0.12522, 

0.1258] 77.5 0.046415

(0.046406, 

0.046677] 76.8 0.032723

(0.032498, 

0.033002] 86.8

518883 k1_val523646 0.028621

(0.028615, 

0.028728] 27.8 0.065322

(0.065019, 

0.065498] 81.7 0.025532

(0.025338, 

0.025661] 85

518884 k1_val523647 0.125684

(0.12522, 

0.1258] 77.5 0.046415

(0.046406, 

0.046677] 76.8 0.032723

(0.032498, 

0.033002] 86.8

518885 k1_val523648 0.028621

(0.028615, 

0.028728] 27.8 0.179754

(0.17898, 

0.18175] 91.8 0.025532

(0.025338, 

0.025661] 85
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0 k1_val21 0.054195

(0.054097, 

0.05424] 51.4 0.106531

(0.10609, 

0.10714] 87.3 0.001809

(0.0017974, 

0.0018119] 55.2

1 k1_val23 0.109139

(0.1088, 

0.10928] 74.3 0.003593

(0.0035886, 

0.0036062] 27.1 0.000724

(0.0007204, 

0.00072604] 41.3

2 k1_val32 0.331059

(0.32872, 

0.33205] 91.9 0.053792

(0.053786, 

0.054107] 79 0.043525

(0.043376, 

0.044101] 88.6

3 k1_val42 0.074961

(0.07496, 

0.075193] 63.5 0.109817

(0.10902, 

0.11021] 87.6 0.003759

(0.0037393, 

0.0037683] 65.3

4 k1_val44 0.032109

(0.032056, 

0.032183] 31.3 0.004745

(0.0047424, 

0.0047664] 32 0.000393

(0.00039089, 

0.00039325] 32.2

... ... ... ... ... ... ... ... ... ... ...

87310 k1_val523592 0.042161

(0.042135, 

0.042237] 41.3 0.034866

(0.034824, 

0.03499] 72 0.002085

(0.0020696, 

0.0020859] 57.2

87311 k1_val523594 0.054038

(0.05395, 

0.054097] 51.3 0.015847

(0.015804, 

0.015877] 56.6 0.002519

(0.0025028, 

0.002522] 59.9

87312 k1_val523626 0.02251

(0.022489, 

0.022577] 21.3 0.056758

(0.056583, 

0.056998] 79.7 0.032392

(0.032015, 

0.032498] 86.7

87313 k1_val523627 0.069936

(0.069765, 

0.069975] 61 0.144304

(0.14317, 

0.14485] 90.1 0.002134

(0.002128, 

0.0021434] 57.6

87314 k1_val523631 0.040824

(0.04078, 

0.040872] 40 0.085798

(0.084973, 

0.085822] 85 0.019194

(0.019006, 

0.019213] 82.8
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(19) Create a new instance of the class “TransferModel” for a new XGB model: 

trans_model_xgb = TransferModel()  
 

(20) Load the learning data for the Transfer Model: 
trans_model_xgb.load_dataframe(config_section= 
    'Transfer.Model.Data.Training',  
                               config_name='learn_data_feat_engineered')  

 
(21) Pass the “TransferModelInput” (namedtuple) object to the “TransferModel” instance 
with the method set_transfer_model_inputs(…). This method also creates the target vector 
column with class 0 and class 1 values based on the Fraud-Score-threshold from the 
config.ini-file: 

trans_model_xgb.set_transfer_model_inputs(transfer_model_input= 
                                   predict_xgb.transfer_model_input_object)  

 
(22) Set the key, target and features for the Transfer Model, which are mostly 
predetermined by the data contained in the “TransferModelInput” (namedtuple) objects. 
Only the “features_excluded_in_training”-parameter needs to be set: 

trans_model_xgb.set_key_target_features(features_excluded_in_training =  
                                ['orig_key_1', 'orig_key_2', 'orig_key_3'])  

 
(23) Set estimators and hyperparameters for the Transfer XGB model: 

estimator = XGBClassifier() 
params_name_xgb = 'xgb' 
trans_model_xgb.set_estimator_and_parameters(unfitted_estimator=estimator,   
                                                                                           
hyper_params_dict_name_in_config=params_name3)  

 
(24) Under-sample the learning data so that the majority class 0 (“no fraud”) is not heavily 
overrepresented. In this case, the ratio of minority class 1 (“fraud”) to majority class 0 (“no 
fraud”) is 0.10: 

trans_model_xgb.under_sample_dataframe(sampling_strategy=0.10)  
 

(25) Split the Transfer Features learning data into a train and a test set. The “orig_key_3”-
vector must be “grouped” to avoid data leakage: 

trans_model_xgb.train_test_split_dataframe(group='orig_key_3')  
 
(26) Train the XGB model of the Transfer Model and do cross-validation: 

trans_model_xgb.train_model_and_cross_validate()  
 
(27) Get the cross-validation results for the Transfer Model: 

trans_model_xgb.get_cv_results()  
 
For the Transfer Model cross-validations, all three model results for the test fold of the 
training set are shown: 
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Figure 9: Cross-Validation results 

  
 

(28) In addition to that, the ROC-AUC score for the test set, that was set aside at the 
beginning of the modelling process, can also be shown: 

trans_model_xgb.get_test_set_roc_auc_score()  
 

The results for the respective model are: 
 

Figure 10: Test set results 

 
 
(29) The XGB model creates a (namedtuple) “ExplanationInput” object: 

trans_model_xgb.generate_explanation_input()  
 
(30) This “ExplanationInput” object is then passed to a newly created instance of class 
“Shap”: 

shap_xgb = Shap(explanation_input=trans_model_xgb.explanation_input_object)  
 
(31) From the Original Model, we could also generate a (namedtuple) “ExplanationInput” 
object and also pass it into new instances of class “Shap” to explain the Original Features: 

# XGB of the Original Model 
xgb_model.generate_explanation_input() 
shap_orig_xgb = Shap(explanation_input=xgb_model.explanation_input_object)  

But we do not pursue this further as we only want to explain the Transfer Model. 
 
(32) We first create the Shap-Objects (Explainer- and Explanation-objects): 

shap_xgb.create_shap_objects() 
 
shap_xgb.calc_global_explanation()  

 
 
 
 
 
 
 

split0_test 0.8593 split0_test 0.8634 split0_test 0.9122
split1_test 0.8742 split1_test 0.8475 split1_test 0.8883
split2_test 0.8842 split2_test 0.8806 split2_test 0.8875
split3_test 0.8497 split3_test 0.8689 split3_test 0.8846
split4_test 0.8741 split4_test 0.8494 split4_test 0.8732
mean_test 0.8683 mean_test 0.8620 mean_test 0.8892
std_test 0.0122 std_test 0.0124 std_test 0.0128

roc_auc for RFC roc_auc for Logit roc_auc for XGB
Cross-Validation

roc_auc RFC 0.8728
roc_auc Logit 0.8668
roc_auc XGB 0.8879

Test Set
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(33) We then can create the global plots (only scatter plot is shown): 
# XGB – Bar Plot 
shap_xgb.plot_global_bars(num_feat_shown=20) 
 
# XGB – Beeswarm plot 
shap_xgb.plot_global_beeswarm(num_feat_shown=20) 
 
# XGB – Scatter plot for feature 'zv_1_rat_feat_47' 
shap_xgb.plot_global_scatter_for_features(feaure_name_one= 
         'zv_1_rat_feat_47', 
                                          display_only_feat_one = False, 
                                          feature_name_two =  
     'zv_1_all_bool_flags_provided_feat',  
                                          save_plot_as_pdf=True)  

 

Figure 11: SHAP global scatter plot 

 
 
(34) And also create a local force plot for a particular borrower: 

# XGB 
shap_xgb.plot_local_force(key_value='k1_val449745',  
                          save_plot_as_pdf=True,  
                          contribution_threshold=0.0371)  

 

Figure 12: SHAP local force plot 

 
 
In this chapter, I have shown the entire process from an Original Model to a Transfer Model. 
What follows is an analysis of the Transfer Model and a discussion about explaining model 
results with feature explanation techniques such as Shapley-values. 
 
 
 

2020-09 – k1_val449745 
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3. The Transfer Model 
This chapter will be about an analysis of the Transfer Model. 

A. The Transfer Model target values 
The Transfer Model learning set initially has around 80,000 rows. It is thus much smaller than 
the monthly data for the Original Features that contain around 520,000 rows. This is because 
the payment data is not available for all borrowers.  
The actual size of the learning data in the training phase depends on two crucial inputs:  
Firstly, the number of class 1 (“fraud”) samples in the target vector of the Transfer Model. To 
calculate the target values for the Transfer Model, the “permilles” or the Fraud-Scores of the 
Original Model (RFC, Logit, XGB) were converted to binary target values. Borrowers with 
predicted Fraud-Scores in all three Original models at or above a threshold of 90 were 
classified to belong to class 1, else to class 0. But what are the effects if we chose a Fraud-
Score threshold that is different from 90? From the discussion in the first chapter, we know 
that a threshold that is too low would increase the number of “suspicious” borrowers and 
raise the false positive rate. If we chose a threshold that is too high, we would have less 
“suspicious” borrowers but at the expense of a higher false negative rate. 

 
Secondly, the actual size of the training data is then determined by the “resampling” done 
for the Transfer Model learning data. The learning data must be resampled to reduce the size 
of the heavily overweighted majority class 0 (“no fraud”) relative to the minority class 1 
(“fraud”). The desired ratio (“minority-majority-ratio”) between the minority and majority 
class is chosen and passed to the “under_sample_dataframe”-method. Upon execution, this 
resampling method leaves the samples of the minority class untouched but throws out some 
majority class samples to get to the desired ratio.  
If this minority-majority-ratio is too small, then the training set is heavily skewed towards the 
majority class. If the minority-majority-ratio is too big, the size of the training data becomes 
very small. 
The following tables with different settings for these parameters illustrate the trade-off: 

 
Figure 13: Transfer Model ROC-AUC scores for minority-majority-ratio: 0.10 

 
 
 
 

 

Minority Class 
to 

Majority Class:

0.10
Fraud-Score 
Threshold 

for all 3 models 
(RFC, Logit, XGB)

RFC Logit XGB RFC Logit XGB

Size of 
Train Set
 (average of 3 

models)

95.0 0.9077 0.8741 0.9227 0.8910 0.8932 0.9185 6310 rows 816 cases
90.0 0.8683 0.8620 0.8892 0.8728 0.8668 0.8879 16045 rows 2097 cases
85.0 0.8545 0.8672 0.8722 0.8651 0.8574 0.8693 27831 rows 3626 cases

80.0 0.8193 0.8213 0.8265 0.8301 0.8148 0.8240 43659 rows 5676 cases

ROC_AUC Scores (Ratio: 0.10)

Number of class 1 
("fraud") 

instances in 
monthly data at or 
above threshold 
(total of around 

80000)

CV-Mean

Transfer Model
Original 
Model Test Set
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Figure 14: Transfer Model ROC-AUC score for minority-majority-ratio: 0.25 

 
 

The results in the first table (figure 11) correspond to a minority-majority-ratio that is set to 
0.10 whereas in the second table (figure 12) they correspond to a minority-majority-ratio set 
to 0.25.  
In case the Fraud-Score-threshold is set to 90, at a minority-majority-ratio of 0.10 the 
“under_sample_dataframe”-method leaves 16,045 rows in the training set but only 6,731 
rows if the minority-majority-ratio is set to 0.25. The size of the training set though would go 
up from 6,731 rows to 11,333 rows if the Fraud-Score threshold of the latter would be lowered 
from 90.0 to 85.0. At this level however, the number of monthly “fraud” cases that appear to 
be suspicious would be 3,234.  
To select an appropriate Fraud-Score threshold and an appropriate minority-majority-ratio, 
it is tempting to just pick the best ROC-AUC score. But the number of features in the Transfer 
Model data must also be considered. As stated previously, the Transfer Model consists of 
close to 300 features. Thus, the “curse of dimensionality” needs to be addressed: as the 
number of features or dimensions grows, the amount of data that is required to generalize 
accurately grows exponentially.14 With the number of features close to 300, I would require 
the data set to have at least 15,000 rows. 
Given the requirements of a low number of “fraud” cases, a high ROC-AUC score and at least 
15,000 rows of data for the training set, I would choose a minority-majority-ratio of 0.10 and 
a Fraud-Score-threshold of 90. This choice is marked in green in the first table. 

  

B. Variance and Bias 
The cross-validation results of the Transfer Model for the chosen minority-majority-ratio of 

0.10 and a Fraud-Score threshold of 90.0 have been shown previously as have been the ROC-

AUC scores for the test sets, that were set aside at the beginning of the modelling process: 

Figure 15: Cross-Validation and Test set results 

 

 
14 (Swapnil-Vishwakarma, 2021) 

Minority Class 
to 

Majority Class:

0.25
Fraud-Score 
Threshold 

for all 3 models 
(RFC, Logit, XGB)

RFC Logit XGB RFC Logit XGB

Size of 
Train Set
 (average of 3 

models)

95.0 0.9032 0.8978 0.9007 0.9051 0.8677 0.9190 2192 rows 628 cases
90.0 0.8785 0.8731 0.8917 0.8911 0.8850 0.9047 6731 rows 1929 cases
85.0 0.8615 0.8632 0.8815 0.8685 0.8702 0.8774 11333 rows 3234 cases

80.0 0.8326 0.8320 0.8361 0.8320 0.8308 0.8401 15171 rows 4338 cases

ROC_AUC Scores (Ratio: 0.25)

Original 
Model

Transfer Model

CV-Mean Test Set Number of class 1 
("fraud") 

instances in 
monthly data at or 
above threshold 
(total of around 

80000)

roc_auc RFC 0.8728
split0_test 0.8593 split0_test 0.8634 split0_test 0.9122 roc_auc Logit 0.8668
split1_test 0.8742 split1_test 0.8475 split1_test 0.8883 roc_auc XGB 0.8879
split2_test 0.8842 split2_test 0.8806 split2_test 0.8875
split3_test 0.8497 split3_test 0.8689 split3_test 0.8846
split4_test 0.8741 split4_test 0.8494 split4_test 0.8732
mean_test 0.8683 mean_test 0.8620 mean_test 0.8892
std_test 0.0122 std_test 0.0124 std_test 0.0128

Test Set
roc_auc for RFC roc_auc for Logit roc_auc for XGB

Cross-Validation
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As discussed previously, “Bias” in Machine Learning is defined as the phenomena of 
observing results that are systematically prejudiced due to faulty assumptions. The degree of 
“Bias” can usually be directly read from the ROC-AUC score.  
The ROC-AUC scores of the five cross-validation folds for the RFC model range from 0.8497 
to 0.8842 and the ROC-AUC score for the RFC test set is 0.8728. All values thus lie close but 
below the threshold of 0.90 above which I would consider a model to have a “Low Bias”.  
The same applies to the XGB and Logit models as their values also lie below this threshold. 
 
To improve or to lower the “Bias” of these “Medium Bias” models, in the future it is intended 
to add more features coming from the balance sheet data of the borrowers. 
Not only could they contain additional information directly, but also indirectly in ratio 
features that are engineered by combining balance sheet and payment data. 
 
Another possibility to lower the “Bias” is to increase the amount of learning data. As 
mentioned above, the Transfer Model learning data was resampled with the 
“under_sample_dataframe”-method so that the majority class (0 = “no fraud”) did not 
dominate the minority class (1 = “fraud”) too much, but with a minority-majority-ratio of 
0.10 just enough to address the “curse of dimensionality”. But even with this more 
unbalanced data set, the model’s ROC-AUC scores for several program runs, and even 
different minority-majority-ratios, only changed very minimally and to a negligible extent. 
The size of the data set thus had almost no effect on the “Bias” of the three models. 
 
A third possibility is to adjust the hyperparameters to improve the “Bias”, but this has already 
been exhausted in the training phase. I would therefore classify the “Bias” of the transfer 
model to be of “Medium Bias”. 
 
As discussed previously, the “Variance” is the amount that the estimate of the model will 
change if different training data was used.  “Low Variance”, as I defined it above, allows only 
for up to 0.05 in difference between the ROC-AUC scores for the different test sets of the 
training data. The difference between the highest and lowest ROC-AUC scores for the 
different models in the cross-validation are as follows: 
 
CV-Difference max – min ROC-AUC for RFC: 0.8842 – 0.8497 = 0.0345 
CV-Difference max – min ROC-AUC for Logit: 0.8806 – 0.8474 = 0.0332 
CV-Difference max – min ROC-AUC for XGB: 0.9122 – 0.8732 = 0.0390 
The difference between the mean in the cross-validation and the final test set ROC-AUC 
scores are: 
 
Difference ROC-AUC CV-mean – test set for RFC: absolute (0.8683 – 0.8728) = 0.0045 
Difference ROC-AUC CV-mean – test set for Logit: absolute (0.8620 – 0.8668) = 0.0048 
Difference ROC-AUC CV-mean – test set for XGB: absolute (0.8892 – 0.8879) = 0.0013 
 
Both kind of differences are very low and safely within the 0.05-threshold. I would therefore 
classify the “Variance” of the transfer model to be of “Low Variance”. 
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C. Model Stability 
The learning data of the Transfer Model stems from the monthly payment data for 

September 2020. To check whether the Transfer Model is viable and valid, we not only need 

to check its “Bias” and “Variance”, but also its stability over time. What if the learning data 

comes from another month? Does the Transfer Model then have similar characteristics and 

model parameters or are the latter just dependent on the month from which we take the 

data? To check that, several months would have to be compared with each other. But as this 

goes beyond the scope of this thesis, I just re-run the entire modelling process for one other 

month (April 2021) and did the comparison to the month of September 2020.  

Here are the general results:  

Figure 16: Results for September 2020 and April 2021 

 

 

split0_test 0.8593 split0_test 0.8824
split1_test 0.8742 split1_test 0.8748
split2_test 0.8842 split2_test 0.8640
split3_test 0.8497 split3_test 0.8704
split4_test 0.8741 split4_test 0.8554
mean_test 0.8683 mean_test 0.8694
std_test 0.0122 std_test 0.0092

split0_test 0.8634 split0_test 0.8563
split1_test 0.8475 split1_test 0.8527
split2_test 0.8806 split2_test 0.8752
split3_test 0.8689 split3_test 0.8700
split4_test 0.8494 split4_test 0.8751
mean_test 0.8620 mean_test 0.8658
std_test 0.0124 std_test 0.0095

split0_test 0.9122 split0_test 0.8902
split1_test 0.8883 split1_test 0.8810
split2_test 0.8875 split2_test 0.8823
split3_test 0.8846 split3_test 0.8802
split4_test 0.8732 split4_test 0.8624
mean_test 0.8892 mean_test 0.8792
std_test 0.0128 std_test 0.0091

roc_auc RFC 0.8728 roc_auc RFC 0.8691
roc_auc Logit 0.8668 roc_auc Logit 0.8724
roc_auc XGB 0.8879 roc_auc XGB 0.8826

roc_auc for XGB

Test Set

September 2020

Cross-Validation
roc_auc for RFC

roc_auc for Logit

roc_auc for RFC

roc_auc for Logit

roc_auc for XGB

Cross-Validation

April 2021

Test Set
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The general model results for both data sets, the cross-validation and the tests sets are very 

similar for both months. The ROC-AUC scores only differ slightly, and their “Bias” and 

“Variances” are comparable. If we assume that the results are very similar for other months 

too, it could be argued that the model is stable over time, at least based on these general 

results. 

What is missing is the analysis of the result sources or the feature contributions. Only if similar 

model features contribute to the model results for the two different months in a similar way, 

we can claim that the model is indeed stable over time. This question will be discussed in the 

next chapter which deals with feature explanation.  

So far, we could classify our Transfer Model as a “Low Variance, Medium Bias” model with an 
expected improvement in “Bias” if we added new features from the balance sheet data. This 
could possibly deteriorate the “Variance” of the model again as there usually is a trade-off 
between “Variance” and “Bias”. The ML process would then need to adjust for that by fine-
tuning the hyperparameters or by dropping some features with low explanation power. 
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4. Feature Explanation 

A. Introduction 
The goal in our classification task was to find a model that best describes the unknown 

relationship between a known input feature matrix and a known output target vector. At the 

end of the modelling process, we get the model results that tell us how well the model can do 

predictions. But because the results do not tell us how these predictions are made in detail, 

ML models are often considered black boxes.  

To overcome this and to make models more interpretable, there are several approaches that 

all fall under the terms “model interpretability” or “feature explanation”.  

1. Choosing interpretable models 

The first approach to make ML models interpretable is to only choose those ML models that 

can be interpreted on basis of its model parameters. In a linear regression model, for instance, 

the estimated feature coefficients reveal how much a particular feature vector contributed to 

the final prediction. But the easy interpretability comes at the cost that the model must meet 

some requirements: it is only applicable if the relationship between its feature matrix and the 

target vector is linear and is only interpretable if the data is normalized, homoscedastic, not 

multicollinear, etc.  

Other models do not have such requirements. Decision Trees, for instance, can also map non-

linear relationships. The feature importances can be expressed as ratios of the number of 

instances in the different leaves of the Decision Tree and the data may be non-normalized, 

non-homoscedastic and multicollinear. But the model is unstable in the sense that a few 

changes in the training set can create completely different trees. If a different feature is 

selected as the root node, the entire tree structure changes. This instability does not create 

confidence in the interpretability of the model. 

But the biggest disadvantage of such models is that their interpretability is model-specific 

and that the parameters of different models cannot be compared with each other. The 

feature coefficients of a Linear Regression model, for instance, must be interpreted very 

differently than the feature coefficients of a Logistic Regression model.   

What is needed is a model-agnostic approach to overcome this. The great advantage of 

model-agnostic methods over model-specific ones is their flexibility. Any ML model can be 

used when such a generic interpretation method can be applied to this model.15 

2. Partial Dependence Plots (PDP) 

PDP is such a model-agnostic feature importance technique. The partial dependence plot 

shows the marginal effect that one or two features have on the predicted outcome of a ML 

model.16 A partial dependence plot can show whether the relationship between the target 

and a feature is linear, monotonic, or more complex. For example, when applied to a linear 

regression model, partial dependence plots always show a linear relationship. The PDP also 

show how strong the relationship between the respective feature and the target vector is. 

This can be read from the steepness/ascent of the line in the PDP assuming the relationship 

between the feature and the target vector is linear.  

 
15 (Molnar, 2019) 16 (Hastie, et al., 2009) 



36 
 

One disadvantage of PDP is that it only calculates the partial dependence of a feature based 

on all feature values (global) but not for a single (local) data instance individually. Fraud 

investigators would thus not be able to get the feature contributions for a particular 

borrower. Another disadvantage of PDP is its assumption that features are not correlated 

with each other whereas in practice they often are. 

3. Permutation Importance 

Another approach to measure feature importance is the “Permutation Importance” method. 

The idea is quite simple: After a model is fitted, the values in a feature vector or feature 

column are randomly shuffled. The expectation is that the shuffling will cause less accurate 

predictions and thus worse model results. The shuffling is done for every feature individually 

and the most important features are those for which the model results deteriorate the most.  

But the disadvantages of this method are the same as with PDP: Its global scale and its 

assumption that features are independent of each other. The shuffling of the features data 

produces unlikely data rows when two or more features are correlated. For instance: If the 

data row contains physical measures such as a person’s height and weight, a data row with a 

(shuffled) child’s height of 2,10 meter and a (unshuffled) child’s weight of 10 kg is physically 

highly unlikely. Nevertheless, the unreal data row contributes to the decreased accuracy and 

feature importance measurement. Moreover, correlation can wrongly decrease the 

importance of an important feature if this feature is highly correlated with another feature as 

the importance is then “shared” between the two. In a Decision Tree, for instance, the 

algorithm might switch back and forth between two important but correlated features when 

selecting the top nodes which decreases the feature importance of both. And as the 

permutation is done for the entire feature column, a permutation importance measure and 

an analysis for a single data row is not possible. 

4. Feature Interaction 

As discussed above, correlation between features is a concern when trying to calculate 

feature importances. But even more important to it is another measure: Feature interaction. 

Whereas feature correlation only measures the co-movement of feature values independent 

of the target vector, feature interaction measures the co-movement-effect of two or more 

features on the target vector.  

When features interact with each other in a prediction model, the prediction result is not just 

the sum of the individual feature contributions but must also account for the interaction 

effect between the features. The interaction between two features so defined is the rise or 

fall of the prediction value if feature values are changed after accounting for the individual 

feature effects. To demonstrate this, I here cite the example by Christoph Molnar17: 

Suppose we have the following extract of house data that contains the features “Location” 

and “Size” (of the house) and try to explain the predictions of house prices: 

 

 

 

 
17 (Molnar, 2019) 
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 Figure 17: Interaction effect 

 

We can decompose the predictions into a constant term, an effect for the “Location” feature, 

an effect for the “Size” feature and an interaction effect. We here define the constant term 

as the prediction value if the values for the features “Location” and “Size” are at the low level 

of “bad” and “small” respectively. In both tables the constant term is 150,000. 

Considerations for the left table (“NO Interaction Effect”): 
If one chooses a big house instead of a small one, one must pay an additional 100,000 which 
is the “Size” effect. If one chooses a good location instead of a bad location, one must pay an 
additional 50,000. If one chooses a good location and a big house, the prediction is just the 
sum of the constant term and the two effects (“Size”, “Location”). There is no interaction 
effect in the left table. 

 
Considerations for the right table (“Interaction Effect”): 
If one chooses a big house instead of a small one in a bad location, the “Size” effect is the 
same as before (100,000). If one chooses a good location instead of a bad one and a small 
house, the “Location” effect is also the same as before (50,000). But if one chooses a big 
house in a good location in the right table, the prediction is NOT just the sum of the constant 
term and the two effects (“Size”, “Location”) but also contains an additional interaction effect 
of 100,000. This appears reasonable, as one would expect unproportionally higher prices for 
more living space if the house is in a better living area. And the logic might apply to other 
business domains as well. 

 
5. Feature Contribution 

From the right table of the last example, we have seen that there is an interaction effect 

between the features “Size” and “Location”. But what if we are forced to allocate this 

interaction effect just on the two features? Let us assume that the initial state in the right 

table (“Interaction Effect”) of the last example is bad location and small size. The predicted 

price for that combination is 150,000. Now we change our mind and first change bad location 

to good location and afterwards also change from a small house to a big house: The predicted 

price first jumps from 150,000 to 200,000 and we would attribute the difference of 50,000 to 

the “Location” feature. Afterwards, it jumps from 200,000 to 400,000 and we would attribute 

the increase of 200,000 to the “Size” feature.  

In an alternative trial and also starting from an initial state of bad location and small size, we 

would now first change from a small house to a big house and afterwards from a bad location 

to a good location. The predicted price now first jumps from 150,000 to 250,000 and we would 

attribute the difference of 100,000 to the “Size” feature. Afterwards, it jumps from 250,000 

to 400,000 and we would attribute the increase of 150,000 to the “Location” feature.  

If we compare the marginal contributions from the two trials for each of the two features 

“Size” and “Location”, we realize that the effect is different and dependent on the order of 

Location Size Prediction Location Size Prediction
good big 300,000 good big 400,000
good small 200,000 good small 200,000
bad big 250,000 bad big 250,000
bad small 150,000 bad small 150,000

NO Interaction Effect Interaction Effect
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the change. In the first trial, the marginal contribution of the “Size” feature was 200,000 but 

was only 100,000 in the second trial. In the first trial, the marginal contribution of the 

“Location” feature was only 50,000 but was 150,000 in the second trial. 

One could now calculate the average marginal contribution for both features by taking the 

mean of the two trials: The average marginal contribution for the feature “Size” is (200,000 + 

100,000)/2 = 150,000 and it varies from 100,000 to 200,000. The average marginal 

contribution for the feature “Location” is (50,000 + 150,000)/2 = 100,000 and it varies from 

50,000 to 150,000.  

In contrast to that, in our “NO Interaction Effect”-table, the respective marginal contributions 

for the features “Size” and “Location” are 100,000 and 50,000 respectively and they do not 

vary. We can say that, ceteris paribus, marginal contributions have a higher variance if there 

is an interaction effect between the feature values.  

In our example, we divided the interaction effect of 100,000 equally and added the dividends 

to both features. In our “NO Interaction Effect”-table, the respective marginal contributions 

for the features “Size” and “Location” were 100,000 and 50,000 respectively and this changed 

to 150,000 and 100,000 after accounting for the interaction effect. 

From this example, two things become clear: First, the allocation order of feature 

contributions is crucial. Second, the calculated marginal contribution value for any feature 

has a higher variance if its interaction (effect) with the other features is larger. 

Both aspects must be taken into consideration, and this is where Shapley values come into 

play. 

B. Shapley Values and SHAP 
Before going into Shapley values, I first want to define two terms that I use. “Feature value” 

is the numerical or categorical value of a feature and instance. “Shapley value” is the feature 

contribution to a prediction of a ML model.  

1. Shapley Values 
Shapley values initially were named after Lloyd Shapley, an American mathematician, and 
Nobel Prize-winning economist.18 Shapley tried to answer a core question in game theory: 
what is the fairest way to share the collective payoff in a coalition or group with multiple 
players of different skill sets?  
One way to approach this is to imagine that each player joins the group one after another and 

so sequentially adds to the collective payout. His or her marginal contribution would then just 

be his or her added value to the collective sum. For instance: if player A was the first to join 

the group, with a payoff of 5, and player B joined to bring the payoff to 9, and later player C 

joined to bring the payoff to 11, then the players’ respective marginal contributions would be 

5, 4 and 2. 

But there is a problem with this approach. If player C and B have very similar skill sets, it might 

be that player C would have a higher marginal contribution if he or she joined the group 

before player B, because she or he would be the first one to provide his or her overlapping 

skill set. When player B then joined after player C, his or her marginal contribution would be 

 
18 (Shapley, 1953) 
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lower than before, and we could imagine different marginal contributions for players A, B and 

C of 5,1 and 5 for instance.  

This is a similar problem to the one we had in our discussion in the prediction of house prices. 

There we realized that the order of feature contributions is crucial if there is an interaction 

effect between the features. Here we realize that the order the players join the group is crucial 

for their marginal contribution if their skill set is similar.  

This problem is what lead to the formulation of Shapley values, which can be understood as 

“finding each player’s (or feature’s) marginal contribution, averaged over every possible 

sequence in which the players (or features) could have been added to the group (or prediction 

result)”. So, for the example above, one would simulate all possible arrival sequences of the 

players to the game:  

Figure 18: Possible arrival sequences of 3 players 

 

For each of the six sequences, the marginal contributions for each player would then be 

written down. The average of all six contributions for each player is then their respective 

Shapley value. 

This is like the example in our house price prediction case from the last chapter. There we 

calculated the marginal contribution average for the two trials because they differed for each 

trial because of the interaction effect between the two features “Size” and “Location”.  And 

there, we had two possible arrival sequences:  

Figure 19: Possible arrival sequences for 2 features 

 

The number of possible arrival sequences or orders how the players (features) can arrive to 

the game (prediction result) is dependent on the number of players (features) and can be 

calculated as “factorial of number of players (features)”. The number of possible sequences 

was six (3! = 6) for our players example and two (2! = 2) for our house price example.  

Shapley values, as applied here to feature importance, are defined as the sequential impact 

on the model’s output of observing each input feature’s value, averaged over all possible 

feature orderings.19 

 

 

 
19 (Lundberg, et al., 11 May 2019) 

A -> B -> C
A -> C -> B
B -> C -> A
B -> A -> C
C -> A -> B
C -> B -> A 

Size -> Location
Location -> Size
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The calculation of Shapley values always starts with a concrete question. For instance: 

Figure 20: Prediction for one instance in a 3-feature model 

 

A ML model with the features A, B and C was trained and a prediction was made for a single 

data instance. The feature values for this data instance are 6, 5 and 8 for the respective 

features A, B and C and the ML model predicts a value of 10. How can this value of 10 be 

attributed to each feature and how can we measure their successive contributions? 

In the classic “Shapley values”-approach20 this is done by dividing up all arrival sequences into 

subsets (or “coalitions” as they are called in Game Theory21). As these subsets contain 

redundant information that is also contained in other subsets, the calculation procedure can 

be simplified. To demonstrate this, let us go back to our player’s example and let us assume 

that the previous players are now the three features of the single data instance for which we 

want to calculate the respective feature contributions to the prediction value of 10.  

To calculate the contribution of feature C for all its possible positions in all of the six possible 

arrival sequences, four subsets are built from the “All Sequences”-set: 

Figure 21: Arrival sequences of 3 features and subsets from it: Feature C 

 

In subset #C1, feature C arrives at the last/third position, in subset #C2 and #C3 at the second 

position and in subset #C4, feature C arrives at the first position. 

 
20 (Lundberg, et al., 25 Nov 2017) 21 

https://en.wikipedia.org/wiki/Cooperative_game_t
heory 

A B C
single data
 instance

6 5 8 10

Features

Existing (Trained)
3-Feature-Model

Model
Predicts

All Sequences Sub-Sets #

1 A -> B -> C
1 A -> B -> C 4 B -> A -> C
2 A -> C -> B
3 B -> C -> A 2 A -> C -> B C2
4 B -> A -> C
5 C -> A -> B 3 B -> C -> A C3
6 C -> B -> A 

5 C -> A -> B
6 C -> B -> A 

C1

C4

Feature C
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For subset #C1, we would be required to build one new ML model that must first be trained 

and has only the two features A and B. Beside that new 2-feature-model, we would also use 

our existing 3-feature-model. We would then put in the values 6 and 5 for feature A and B into 

the new 2-feature-model and the values 6, 5 and 8 into our existing 3-feature model and 

repeatedly make several predictions for both ML models to account for their variance (in 

making predictions). Each time we would calculate the prediction difference of the two 

models and then take the average of all the prediction differences:22 

Figure 22: Prediction results of a 3-feature-model (A, B, C) and a 2-feature-model (A, B) 

 

This (average) difference (in the above example, the (average) difference is 3) represents the 

marginal contribution of feature C to enter the model at the THIRD/LAST position. I will call 

it the “subset #C1 contribution”. 

For subset #C2 (and #C3), this process must be repeated, but here we would need to train 

two new models (for each of the two subsets): One new model with feature A only (B only) 

and another new model with the features A and C (B and C). We would then again put the 

feature values of the single data instance into the two models respectively and (repeatedly) 

make predictions. Afterwards we calculate the (average) difference in the predictions 

between the new 2-feature model and the new 1-feature-model. This (average) difference 

represents the contribution of feature C to enter the model at the SECOND position. I will call 

it the “subset #C2 contribution” (and “subset #3 contribution”): 

Figure 23: Prediction results of a 2-feature-models (A, C) and (B, C) and 1-feature-models (A) and (B) 

 

 

 
22 Note: In this and all subsequent tables and 
graphs, I use purely random numbers for the 
feature values that have no meaning whatsoever 

and are not part of a real ML model. The focus 
here is only on the prediction values and their 
differences. 
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For subset #C4, this process must also be repeated but is simplified by the fact, that we only 

need to run one new model with the feature vector of feature C against the target vector. The 

contribution of feature C to enter the model at the FIRST position is then just the (average) 

prediction. I will call this average “subset #C4 contribution”: 

Figure 24: Prediction result of a 1-feature-model (C) 

 

These respective differences of averages in the paper of Lundberg & Lee23 were expressed as: 

 

But how is the average of all four marginal contributions for our four subsets (i.e., the Shapley 

Values) calculated? How are these four subsets weighted to arrive at the Shapley value? In 

Lundberg & Lee24, this is done by weighing the four individual averages with the following 

formula: 

Figure 25: Shapley value weights 

 

For the four subsets in our example, S! corresponds to the number of ways that all previous 

features could have been added leading up to the position of feature C in the sequence. Since 

|F| is the total number of features in the coalition, |F| — |S| — 1 corresponds to the number of 

features left to be added after the position of feature C.  

 

 
23 (Lundberg, et al., 25 Nov 2017) 24 (Lundberg, et al., 25 Nov 2017) 
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Applied to the subset #C1, S! is the number of ways that features A and B could have been 
added leading up to the last position of feature C in the sequence. This is: 2! = 2.  The total 
number of features in our example is 3 and thus the above formula for the weight of the 
“subset #C1 contribution” becomes:  

 
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
=

2! (3 − 2 − 1)!

3!
=  

2! 0!

3!
=  

2

6
 

 
Accordingly, the respective weights of the “subset #C2 contribution” and “subset #C3 
contribution” are: 

|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
=

1! (3 − 1 − 1)!

3!
=  

1! 1!

3!
=  

1

6
 

 
 
And the weight for “subset #C4 contribution” is: 

 
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
=

0! (3 − 0 − 1)!

3!
=  

0! 2!

3!
=  

2

6
 

 
The weights of our four subsets correspond to the number of rows in each subset in the above 

picture. 

The four weights are then multiplied with the four contributions of the subsets to arrive at 

the weighted average of all marginal contributions to the prediction for feature C, i.e., the 

Shapley value. This is expressed in the following formula for the Shapley values by Lundberg 

& Lee25:  

Figure 26: Shapley value formula 

 

In dividing up the entire set of 6 sequences into 4 subsets, we reduce the number of 

calculations from six (rows) to four (subsets). But why can we package rows 1 and 4 in our 

“Feature C” example into a subset and do the contribution calculation for that subset only 

once, for instance?  

Let us assume that we only do the calculations for the sequence in row 4 of the above table 

“Feature C”. To calculate the marginal contribution of feature C for row 4 only, we would first 

let feature B enter the model, afterwards feature A and then take the (average of the) 

difference in their predictions. But to arrive at the SAME average, we could also have taken 

row 1. From the perspective of feature C, it does not matter which of the two features A and 

B first enters the model. The marginal contribution of feature C in row 1 is the same as in row 

4.  The same logic applies to row 5 and 6 that we have grouped into subset #4: From the 

perspective of feature C, it does not matter if feature A or B joins next after feature C has 

already entered the model. For this reason, we must do the calculation for the contribution 

only once (in our case for row 4) and then weight this contribution by the number of 

occurrences in the set. What is important to note for later considerations is that with an 

 
25 (Lundberg, et al., 25 Nov 2017) 
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increasing number of features, the number of such “equal” subsets or “coalitions” also 

increase which later simplifies the calculation process. So now we have calculated the 4 

marginal contributions and the respective weights for these contributions. We thus could 

calculate the Shapley value for feature C: 

Figure 27: Shapley value of feature C 

 

For our single data instance, the feature C contribution to the prediction of 10 is 2.08. If 

we did the calculations for the features A and B accordingly, we would have all our 

Shapley values and thus could calculate the contribution of each feature for our single 

data instance to the model prediction of 10. 

But there are several practical problems with this approach: In our little example above, we 

would have to train six (!) new ML models in addition to the existing ML model. But usually, 

we do not want to run additional ML models but use the existing ML model that we have 

already trained before.  

The solution to this problem is that we take the existing model and only “PRETEND” that 

features are successively added (or omitted).  

In this solution, a 0/1-coalition-vector is introduced, where 1 means that the feature is 

“present” and 0 means that the feature is “absent”. Applied to our example from above, the 

coalition-vector [1,1,0], for instance, would mean that feature A and B are present, but 

feature C is absent. This coalition-vector corresponds to our new 2-feature-model in subset 

#C1.  

Figure 28: Feature C sub-set #C1 

 

To recall: This new 2-feature-model was required to make a prediction and calculate the 

difference to the prediction of the 3-feature-model. The difference would be the prediction 

contribution of feature C in the 3-feature-model.  

But how can we simulate the new 2-feature-model (features A and B) within our existing 3-

feature-model? We cannot just put “Absent” or “Nothing” into our existing model as 

Subset subset #C1 subset #C2 subset #C3 subset #C4
Marginal Contribution 3.0 -3.0 1.5 4.0

Weight 1/3 1/6 1/6 1/3
Marginal Contribution

x
Weight

1.00 -0.50 0.25 1.33

2.08Sum of weighted contributions: 

Shapley value of feature C

Sub-Sets #

1 A -> B -> C
4 B -> A -> C

C1

Feature C
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placeholder for feature C values because the existing 3-feature-model expects 3 feature 

vectors with real numbers to make predictions: 

Figure 29: From a 3-feature-model to a 2-feature-model? 

 

The solution is to put in random feature values from the training set for the respective 

feature(s) that is (are) missing.  

For our required 2-feature-model in subset #C1, for instance, the placeholder for our feature 

C value would just be any random feature C value from the training set. If we put a random 

feature C value into the single data row as “placeholder” for the feature C (value) to be 

“absent”, the “pretended” 2-feature-model now can make a prediction for this single data 

row. We stick with this data row and repeat the sampling process for the feature C value to 

be “inserted” as placeholder several times. 

The expected result of this sampling exercise is to get a (single) number that is the average 

model prediction for this data row/single data instance: 

Figure 30: Sampling of missing or absent feature values 

 

If we repeated the sampling process until all feature C values from all the rows of the training 

set have been put in and all predictions have been made, we could finally calculate an exact 

average of all those predictions for this particular data row. Done for all other subsets, this 

would later also get us the exact Shapley values. But as this process is computationally very 

expensive, in practice the sampling here is “approximated” by sampling only some but not all 

rows from the training set. The part of the training set that is used for sampling is called 

“background dataset” in the SHAP Python library (see below). 

But can’t we just take a shortcut here and take the average of all feature C values in the 

training set as a single entry and then make a prediction from it? Shouldn’t we then also get 

the same exact prediction as with the process of repeatedly sampling the entire training set 

and take the predictions average? No! Because of the (potential) non-linearity of our ML 

model and the interaction effects, the frequency distribution of the predictions is not known. 

To enter just the average of all feature C values as “placeholder” of the “absent” feature C 
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value thus will not (necessarily) get us the same and exact prediction as before. This is the 

reason why we here would need to do the sampling for all the data rows in the training set if 

we later wanted to calculate the “exact” Shapley values.  

After we have done this, we can then calculate the difference between our 3-feature-model 

prediction and our “derived” 2-feature-model prediction (i.e., the average of all predictions 

as just described) to arrive at the “subset #C1 contribution”: 

Figure 31: Sampling of missing values for feature C 

 

At first glance, it seems counterintuitive to put in sampled feature C values to simulate that 

feature C is “absent”. But what are we trying to do here? For our particular data instance, we 

want to know the specific effect to have a feature C value of 8 instead of a feature C value of 

“absent”. But what is the best value guess or numerical approximation to “feature C is 

absent”?  

Isn't the 2-feature-model all about simulating the state of a "neutral base" (in respect to 

feature C) from which individual data instances can deviate? If we see it in this context, we 

could re-formulate our goal from above: we want to know the specific effect to have a feature 

C value of 8 instead of a “feature C base value for the entire data population”. The “entire data 

population” in the SHAP library would just be the “background data set”, a sample set of all 

data instances. 

In this context, we can use the approach described above and this is also the approach used 

by Lundberg and Lee.26  

To calculate the “subset #C2 contribution”, we would need to create and train two new 

models: a 1-feature-model with feature A (coalition-vector: [1,0,0]) and a 2-feature-model 

with features A and C (coalition-vector: [1,0,1]).  

 

 

 

 

 

 
26 (Lundberg, et al., 25 Nov 2017) 
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Figure 32: Sampling of missing values for features B, C 

 

Here we would not only need to sample feature C values but also feature B values from the 

training set.  

But independent whether we sample all feature values from the training set or only part of it, 

here we must distinguish between “conditional sampling” and “marginal sampling”. 

“Conditional sampling” takes the dependency structure of the two features - in our example 

the features B and C - into account whereas “Marginal Sampling” does not.  

The difference in the predictions of our 2-feature-model and our 1-feature-model here would 

be a what Lundberg and Lee call “Conditional Expectation” if the sampling method was 

“conditional” and a “Marginal Expectation” if the sampling method was “marginal”. A 

“Conditional Expectation” is described by Lundberg and Lee as the “expected value of the 

function conditioned on a subset S of the input features”27: 

 

where z’ is the (reduced) input feature set.  
In this definition, hx(z’) represents the mapping function, that for our example from above, 
would map samples of feature B values to samples of feature C values. 
In the SHAP Python library later used, “Conditional Expectation” is used in the TreeSHAP 
method whereas “Marginal Expectation” is used in the KernelSHAP method. 
KernelSHAP thus ignores the dependency structure between present and absent features 
and thus suffers from the same problem as all permutation-based interpretation methods: 
The estimation puts too much weight on unlikely instances.28 
 
Back to our 2-feature-model and 1-feature-model to calculate the “subset #C2 contribution”: 

For each feature B sample, we would need to sample all feature C samples as we intend to 

calculate the feature C Shapley value here. The number of all samplings for our single data 

instance would be the product of the number of feature C samples times the number of 

feature B samples. Sampling here, again, means inserting the respective sample value(s) and 

do a model prediction. The average of all prediction differences would be the “subset #C2 

contribution”.  

The process to calculate the “subset #C3 contribution” with a coalition vector of [0,1,1]is very 

similar, but instead of features B and C, we would sample features A and C: 

 
27 (Lundberg, et al., 7 Mar 2019) 28 (Molnar, 2019) 

A B C A B C

single data
 instance

6

Sampling of 
random 

feature B 
values from 
training set

8

Average 
prediction for 
all feature B 
values put in, 
for instance: 

9

single data 
instance

6

Sampling of 
random 

feature B 
values from 
training set

Sampling of 
random 

feature C 
values from 
training set

Average prediction 
for all feature C 
and feature B 

values put in, for 
instance: 

5.5

3.5Marginal Contribution of feature C = 9 - 5.5   = 

=> DO this for all feature values and take the average of the differences

2-Feature-Model derived from 
existing (Trained)
3-Feature-Model

1-Feature-Model derived from existing 
(Trained)

3-Feature-Model
Features Model

Predicts
Features Model

Predicts



48 
 

Figure 33: Sampling of missing values for features A, C 

 

For the calculation of the “subset #C4 contribution”, theoretically, we would deduct the 

predictions of 1-feature-model from the predictions of a 0-feature-model. But a 0-feature-

model does not exist (or we can say its prediction is 0). So, the calculation of the “subset #C4 

contribution” with a coalition vector of [0,0,1]is simplified by the fact that we only need one 

1-factor-model. But now we need to sample the values for all three features A, B, C: 

Figure 34: Sampling of missing values for features A, B, C 

 
 

What do we get when we calculate this 1-feature-model for feature C? We get the average 

prediction if all features are sampled. This is the so called “base value” of feature C or “base 

value #C4”. But is it just the base value for feature C?  

The weight for each of the three “subset contributions #4” is: 

|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
=

0! (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 − 0 − 1)!

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠!
 

which is equal to: 

1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 

So, the “base value” for our single data instance would be: 

𝑏𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝑏𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 #𝐴4

3
+

𝑏𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 #𝐵4

3
+  

𝑏𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 #𝐶4

3
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But the process to calculate the “base value #A4”, “base value #B4” and “base value #C4” is 

the same for all three features because the values for all three features are sampled each 

time. Therefore, it must be that: 

𝑏𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 = 𝑏𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 #𝐴4 = 𝑏𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 #𝐵4 = 𝑏𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 #𝐶4 

So, the just calculated base value for feature C is the base value for our single data instance. 

This “base value” later is used in SHAP “force plots” to mark the average SHAP values of the 

background data set. 

The number of samplings for our single data instance would be the product of the number of 

feature B samples times the number of feature A samples times the number of all feature C 

samples. And again, sampling here means inserting the respective sample values, do the 

model predictions and calculate the average of all predictions. This average would be the 

“subset #C4 contribution”. 

With the coalition-vectors, our Shapley value formula to calculate the Shapley value from 

above would turn into29: 

 

where the last term is the difference of the “expected value of the function” and the 

“expected value of the function without the feature vector for which we want to calculate the 

contribution”.  

This process must then be repeated to calculate the Shapley values for the features A and B. 

In our example though, this is simplified by the fact that some required 2-feature-model 

results and 1-feature-model results have already been calculated in the process to calculate 

the Shapley value for feature C. For instance, if we wanted to calculate the Shapley value for 

feature B, … 

Figure 35: Arrival sequences of 3 features and subsets from it: Feature B 

 

…, for the “subset #B1”, we would need to calculate a 2-feature-model with features A and 

C.  

 
29 (Lundberg, et al., 25 Nov 2017) 

All Sequences Sub-Sets #

2 A -> C -> B
1 A -> B -> C 5 C -> A -> B
2 A -> C -> B
3 B -> C -> A 1 A -> B -> C B2

4 B -> A -> C
5 C -> A -> B 6 C -> B -> A B3

6 C -> B -> A 
3 B -> C -> A
4 B -> A -> C

B4

Feature B

B1
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But the results of this 2-feature-model already exist because it was calculated for the subset 

#C2 in the process to calculate the Shapley value for feature C (see above). Important to note 

is that we need to use the same data rows or instances as before if we want to make use of 

this “redundancy” of already existent results. We would also need to use the same sampling 

values for the respective feature(s) that is (are) missing. This useful “redundancy” would 

increase with the number of features and can later be used to reduce the computation 

complexity.  

Shapley values, proved by Lundberg & Lee, is the only explanation method available that 

meets the requirements of “Local Accuracy”, “Missingness” and “Consistency” 30. 

Once the Shapley values in our example for all three features A, B and C are calculated, they 

translate our ML model to an additive linear explanation model, which is an interpretable 

approximation of the original ML model: 

 

In our 3-feature-model example, the formula concretizes to: 

Prediction = g(x’) = ɸ0 + ɸA x
’
A + ɸB x

’
B + ɸC x

’
C 

where ɸx’are the three Shapley values for the respective features A, B and C for our single 

data instance plus an “approximation error”-term ɸ0. 
The ML model prediction of our single data instance can so be approximated by adding up 
the respective Shapley values. 
 

2. SHAP (SHapley Additive exPlanation) 
The major problem of Shapley values is its computational complexity. This complexity 

increases exponentially with an increasing number of features. If not only three features are 

used as in our example above, but hundreds or thousands as is usually the case, then the 

computation task becomes infeasible. In a tree-based ML model such as Random Forest, for 

instance, the complexity to calculate Shapley values in big-O-notation is of O(TLM2M), where 

M is the number of input features, L the number of leaves and T the number of trees.31 

Lundberg et al32 addressed this problem and developed several algorithms and methods that 

reduce the complexity of calculating the Shapley values for such models. KernelSHAP and 

TreeSHAP are two of those. 

 

 

 

 

 

 
30 (Lundberg, et al., 25 Nov 2017) 
31 (Lundberg, et al., 11 May 2019) 

32 (Lundberg, et al., 11 May 2019) 
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a) KernelSHAP 

KernelSHAP is a combination of linear LIME and Shapley values. LIME stands for Local 

Interpretable Model-agnostic Explanations and belongs to the class of surrogate models. 

Surrogate models are trained to approximate the predictions of an underlying ML model.33  

The calculation of KernelSHAP values in a simplified form, follows a 5-step process: 

1) Get the required feature coalitions for the features in the ML model 

2) Sample the feature values of “absent” features with some random values from the    

               background data set (which is a sampled set of the training set) 

3) Make predictions for the selected data rows. Afterwards, you have tabular data with     

               a matrix of feature values (X) and a result vector with the predictions (ypred)  

4) Train a new linear (and thus explainable) regression model (in this case linear LIME)  

               with X as the dependent variables and ypred as the target variable 

5) The regression coefficients of your new linear regression model are your SHAP values! 

To demonstrate this, I use our 3-feature-model from above: 

Figure 36: Kernel SHAP procedure 1 

 

In Step 1, we just get the possible coalitions for our 3-feature-model which has 8 coalitions. 

In Step 2, we need to sample values for the absent features from the background data set as 

“placeholders” for the missing feature values. The sampling is done not just once, but several 

times. We so get not only 8 data rows as in our picture above, but as many as we have 

sampled our missing feature values (above: column “Number of rows”). 

In Step 3, we make predictions with our existing ML model for all coalitions. In the process 

described before, we would now calculate the (average) differences between our n-feature-

models and the n-1-feature-models and weigh these (average) differences with the Shapley 

weights accordingly.  

 
33 (Molnar, 2019) 

Coaltion M z' Number of rows A B C

[0,0,0] 3 0 #feat A samples * 
#feat B samples

sampled value(s) sampled value(s) sampled value(s) prediction values

[0,0,1] 3 1 #feat A samples * 
#feat B samples

sampled value(s) sampled value(s) 8 prediction values

[0,1,0] 3 1 #feat A samples * 
#feat C samples

sampled value(s) 5 sampled value(s) prediction values

[0,1,1] 3 2 #feat A samples sampled value(s) 5 8 prediction values

[1,0,0] 3 1 #feat B samples * 
#feat C samples 6 sampled value(s) sampled value(s) prediction values

[1,0,1] 3 2 #feat B samples 6 sampled value(s) 8 prediction values

[1,1,0] 3 2 #feat C samples 6 5 sampled value(s) prediction values

[1,1,1] 3 3 1 6 5 8 prediction values

Features Model (Average)
Predicts
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But not in KernelSHAP: 

Figure 37: KernelSHAP procedure 2 

 

KernelSHAP just considers the feature values of the rows as matrix of independent variables 

(X) and the model predictions as a target vector (ypred).  

In Step 5, KernelSHAP trains a new linear regression ML model, in this case a linear LIME 

model34, which regresses the X-Matrix against the ypred-vector. The regression coefficients 

for each of the three features A, B and C in this new linear regression model are then the 

SHAP values. 

The weights for each of the 8 “subset contributions” though would not be calculated with the 

formula used in the Shapley values. Instead, Lundberg and Lee use a new formula that they 

call “SHAP kernel”: 

 

 

The SHAP kernel weights are applied to each coalition. Lundberg and Lee show that a linear 

regression with this kernel weights yield the Shapley values.35 

KernelSHAP, like the Shapley values, is also an additive linear explanation model, which is an 

interpretable approximation of the original ML model: 

 

As already noticed, KernelSHAP uses a “Marginal Expectation”-approach, as described 

above, and ignores the dependency structure between present and absent features. 

KernelSHAP therefore suffers from the same problem as all permutation-based 

interpretation methods.36 

 
34 (Lundberg, et al., 25 Nov 2017) 
35 (Lundberg, et al., 25 Nov 2017) 

36 (Molnar, 2019) 

Coaltion M z' Number of rows A B C

[0,0,0] 3 0 #feat A samples * 
#feat B samples

sampled value(s) sampled value(s) sampled value(s) prediction values

[0,0,1] 3 1 #feat A samples * 
#feat B samples

sampled value(s) sampled value(s) 8 prediction values

[0,1,0] 3 1 #feat A samples * 
#feat C samples

sampled value(s) 5 sampled value(s) prediction values

[0,1,1] 3 2 #feat A samples sampled value(s) 5 8 prediction values

[1,0,0] 3 1 #feat B samples * 
#feat C samples 6 sampled value(s) sampled value(s) prediction values

[1,0,1] 3 2 #feat B samples 6 sampled value(s) 8 prediction values

[1,1,0] 3 2 #feat C samples 6 5 sampled value(s) prediction values

[1,1,1] 3 3 1 6 5 8 prediction values

X

WeightsFeatures Model (Average)
Predicts

ypred
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b) TreeSHAP 

TreeSHAP is a model-agnostic method but is specific in the sense that it can only be applied 

to tree-based ML models such as decision trees, random forests and gradient boosted trees. 

TreeSHAP was introduced as a fast “Conditional Expectation”-algorithm. It reduces the 

computational complexity from O(TLM2M) to O(TLD2), by exploiting the characteristics of the 

tree structure of the ML models.37 M is the number of input features, L the number of leaves, 

T the number of trees and D the maximum depth of any tree. 

In the following, I show what we can do with the Python TreeSHAP methods in general. For 

this, I use plots from Lundberg et al38 from their (gradient boosted decision tree) Mortality 

Model that identifies influential features on mortality rates: 

Figure 38: SHAP global plots: example 1 

 

When running the TreeSHAP methods, the SHAP calculations usually are not just done for a 

single data instance, but for several.  

The left bar plot shows the “Global feature importance”, which for each feature, is the 

average of the (absolute) individual SHAP values for all the single data rows. The individual 

SHAP values are clustered in the right beeswarm plot “Local explanation summary”. The 

color indicates if the feature value within its feature vector was high (red) or low (blue). The 

individual SHAP values of the feature “Age”, for instance, show a strong positive correlation 

with mortality rates whereas for the feature “Blood albumin” they show a negative 

correlation. The Shapley values of the feature “Sex” clearly show that the mortality rate in 

the data set is lower for all women than for men if the other feature values are equal.   

The TreeSHAP library thus allows us not only to break down feature contributions for 

individual or local instances, but also an aggregation of these results into a global view. 

Next is a TreeSHAP Scatter Plot that shows the individual SHAP value dependency on the 

values for the feature “Systolic blood pressure” (left graph). Beside it (right graph) the same 

graph is plotted against a second feature “Age” where the value magnitude for the latter is 

represented by the colors red (high value for “Age”) and blue (low values for “Age”):  

 

 
37 (Lundberg, et al., 7 Mar 2019) 38 (Lundberg, et al., 11 May 2019) 



54 
 

Figure 39: SHAP global plots: example 2 

 

This allows us not only to reveal feature dependency structures, but also to distinguish 

between a main and an interaction effect. Interaction effects can be identified in these scatter 

plots if there is a strong vertical dispersion of red and blue dots at the same horizontal 

location. In the above example (right plot) for instance, there is a strong interaction affect 

between the two features “Age” and “Systolic blood pressure” as at a value of 175 for 

“Systolic blood pressure”, the SHAP values strongly diverge dependent on the values for 

“Age”. TreeSHAP methods thus can display the variance in marginal contributions that are 

caused by an interaction effect. 

Next is a so called “force plot” that shows the feature contributions to a prediction value for 

a single (or local) data instance in our Transfer Model. The prediction value here is the 

prediction received from the Scikit-learn “predict_proba”-method that is later converted to 

Fraud-Scores as explained above. The “base value” of 0.10 shown in the plot is the average 

prediction for all instances in the background data set. The individual contribution of each 

feature moves the individual prediction away from this “base value”. All individual feature 

contributions plus the “base value” add up to the prediction of the single data instance (in this 

case 0.88).  

Figure 40: SHAP local plot: Force plot 

 

To simplify, I will elaborate on the contributions to the predictions only for the XGB model of 

the Transfer Model and leave out the results for the RFC and Logit model. For the Logit 

model, there is a comparable LinearSHAP method in the Python SHAP package.  
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C. Feature stability 
In our discussion about the stability of the Transfer Model, we concluded that the Transfer 

Model is stable over time if we base our judgement on the general model results. What was 

missing was the confirmation that the stability also applies to the features of the Transfer 

Model. Only if similar model features contribute to the model results similarly for different 

months, we can claim that the model is indeed stable over time. 

I limit the stability analysis to the comparison between the months of April 2021 and 

September 2020. But this would need to be done for more than two months to claim that the 

feature contributions are indeed stable over time. 

From looking at the TreeSHAP bar plots for the September 2020 (left side of figure 39) and 

April 2021 (right side of figure 39), it becomes clear that the global feature contributions to 

the prediction are very similar for both months: 

Figure 41: SHAP Bar plots for 2020-09 and 2021-04 

 

The feature “zv_1_all_bool_flags_provided_feat” on average has the highest (absolute) 

“predict_proba”-contribution of 0.05 in both months. From the following 18 most important 

features in September 2020, 10 of them are also the most important features in April 2021 

and their SHAP values are comparable.  

From looking at the SHAP beeswarm plots of both months, it also becomes clear that the 

direction of their contribution to the predictions is also comparable:  

Figure 42: SHAP Beeswarm plots for 2020-09 and 2021-04 

 

2020-09 2021-04 

2020-09 2021-04 
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For both months, the feature “zv_1_rat_feat_29” for instance, has higher SHAP values 

(horizontal scale) for lower feature values (blue colored). The same applies to the features 

“zv_1_rat_feat_47”, “zv_1_rat_feat_24”, “zv_1_rat_feat_1”, “zv_1_rat_feat_49”, 

“zv_1_rat_feat_38” and “zv_1_nom_feat_51”. In the opposite direction, namely higher SHAP 

values for higher feature values (red colored), go the features “zv_1_nom_feat_6”, 

“zv_1_nom_feat_52”, “zv_1_nom_feat_4” and “zv_1_nom_feat_9”, also for both months. 

If we assume that this pattern is inherent in other months as well, we indeed now can claim 

that the Transfer Model not only is stable over time in respect to general model results (see 

above) but also in respect to the contribution of its features to model predictions. 
 

D. Tools for analysis 
As stated above, the SHAP tool not only allows for the analysis of dependency structures, but 

also for the analysis of interaction effects: 

Figure 43: Interaction 1 

 

Figure 44: Interaction 2 

 

The features “zv_1_rat_feat_47” and “zv_1_nom_feat_36” (“feature 1”) in the plots above are 

vertically dispersed (y-axis) at comparable locations for their feature values (x-axis) 

dependent on the values of the feature “zv_1_all_bool_flags_provided_feat” (“feature 2”).  



57 
 

In the first plot, in general the SHAP values are higher for lower values of feature 2 whereas 

in the second plot they are lower for lower values of feature 2. At the second plot, at 

extremely high values for feature 1 this interaction effect reverses.  

This kind of analysis could, for example, help fraud investigators to analyze general 

interaction patterns and try to spot individual borrowers whose values for such interacted 

features change.  

In the next figure, I display the September 2020 predictions for two different borrowers, 

whose high “predict_proba”-values are attributed to different features:  

Figure 45: SHAP Force plots for the same month but two different borrowers with comparable predict_probas 

 

 

 

The “predict_proba”-value of 0.88 for the borrower with the ID “k1_val449745” is mainly 

attributed to the values of the features “zv_1_nom_feat_36”, “zv_1_rat_feat_47”, 

“zv_1_nom_feat_50”, “zv_1_nom_feat_4”, “zv_1_nom_feat_6” and “zv_1_rat_feat_15”. 

Whereas for the borrower with the ID “k1_val183595”, the “predict_proba”-value of 0.84 is 

mainly driven by the values of the features “zv_1_all_bool_flag_provided_feat”, 

“zv_1_rat_feat_3”, “zv_1_rat_feat_36”, “zv_1_rat_feat_40” and “zv_1_rat_feat_11”. 

This approach in general provides detailed arguments in the discussion of why a certain 

decision was taken for a particular case, or applied to applicants, why a particular application 

was rejected or accepted. 

Next is a plot for just one borrower whose “predict_proba”-value remained almost constant 

in both months:  

Figure 46: No change: SHAP Force plots for borrower k1_val132441 for 2020-09 and 2021-04 

 2020-09 – k1_val132441 

2020-09 – k1_val449745 

2020-09 – k1_val183595 
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The base values for both months are only slightly different (0.10 and 0.13). But the feature 

contributions that explain the divergence from this base value for the two months do differ.  

In the following plot, the “predict_proba”-value for one borrower jumped from a low 

“predict_proba”-value of 0.08 in September 2020 to a high value of 0.97 in April 2021: 

Figure 47: Big Jump: SHAP Force plot for borrower k1_val310088 for 2020-09 and 2021-04 

 

 

 

The features “zv_1_rat_feat_47” and “zv_1_rat_feat_47” whose values lowered the SHAP 

value in September 2020 were not present in April 2021. As the two important features 

“zv_1_all_bool_flag_provided_feat” and “zv_1_nom_feat_47” were present in both months, 

it was the many small contributions of many other features that raised the “predict_proba”-

value dramatically. Here the investigators are not given a few significant features that they 

can elaborate on but are shown that there are cases where ML intelligence can identify 

suspicious borrowers.   

 

 

 

 

 

 

 

2021-04 – k1_val132441 

2020-09 – k1_val310088 

2021-04 – k1_val310088 
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5. Conclusion 
In this thesis, I have shown the process to extract additional information from new features 

that are not part of an existing ML model (“Original Model”) that is used to detect credit fraud. 

The new features are the independent variables of a new ML model (“Transfer Model”) whose 

dependent variable or target values are the predictions of the Original Model. Through these 

predictions, the Original Model and the Transfer Model are connected. The new Transfer 

Model features reveal their information when the contributions of the new features to the 

predictions of the Original Model are analyzed. This was done by using feature explanation 

techniques.  

The need to develop a Transfer Model arises when new features cannot be integrated into an 

existing ML model. In the case discussed in this thesis, the new features (the payment 

transaction data) could not be integrated into the Original Model because the history of this 

data was not long enough.  

There are several feature explanation techniques available, but the focus was laid on Shapley 

values and the Python SHAP package because of the desire of fraud investigators to analyze 

feature contributions for single data instances or in their case individual borrowers. 

I started with describing the process to develop a typical ML pipeline and the differences to it 

when establishing a Transfer Model. I laid out the software program architecture for this 

pipeline, justified the application of Object-Oriented Programming principles and explained 

in detail how the implemented classes, attributes, methods and data structures work. I also 

showed extracts of this pipeline as program code run in Jupyter Notebooks and its outputs. 

Next, I reasoned why the Transfer Model should do a classification instead of a regression 

modelling and explained the methodology to convert discrete Fraud-Scores of the Original 

Model to binary target values for the Transfer Model. The distinction criterion to qualify as 

“fraud” instead of “no fraud” was set to a Fraud-Score of 90 and the reasons for that decision 

were discussed. The training set was reduced so that the “no fraud” samples did not dominate 

the rare “fraud” samples too much. The Transfer Model in terms of ROC-AUC scores was 

evaluated as having “medium bias” and “low variance”. It was prognosticated that the 

Transfer Model could be improved if additional balance sheet data was used. When the 

Transfer Model was trained with data from two different months, it was found that the two 

sets of ROC-AUC scores were comparable concluding that the Transfer Model was stable over 

time. But this judgement would need to be confirmed by analyzing it over a longer time 

horizon. 

I argued that the assessment of a “stable ML model” also requires that feature contributions 

are stable over time and thus similar for different months. To measure feature contributions, 

I used the TreeSHAP methods of the Python shap package developed by Lundgren et al, but 

first explained the concept of feature importances in general and Shapley values in particular. 

I also showed how fraud investigators could use the TreeSHAP methods and plots to analyze 

individual borrowers. 

By comparing global SHAP values or contributions for the most significant features for the 

two months of April 2021 and September 2020, I concluded that not only the ROC-AUC 

scores but also the feature contributions were similar and thus stable over time.  
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Assuming the required analysis over a longer time horizon would not change this conclusion, 

I would affirm the hypothesis that it is possible to perform model explanations on “out-of-

model” features.  

By using a Transfer Model, fraud investigators could gain additional insights and access to 

additional information sources to which they did not have access before. 
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6. Appendix 

A. List of Abbreviations 

B 

BDAA .......................................................................... Big Data & Advanced Analytics - Commerzbank department 

D 

DBMS ..................................................................................................................... Database Management Systems 

F 

FN  ............................................................................................................................................. False neagtive (rate) 

FP  ................................................................................................................................................. False-Positive rate 

L 

Logit.................................................................................................................................. Logistic Regression Model 

M 

ML ................................................................................................................................................. Machine Learning 

O 

Original Features ........................................................................................ The features used in the Original Model 

Original Model .............................................................. The existent ML model without payment transaction data 

P 

predict_probas ..................................... The predicted probabilities from the Scikit-Learn "predict_proba"-method 

R 

RFC ..................................................................................................................................... Random Forest Classifier 

ROC curve ............................................................. Plot for trade-off between True-Positive and False-Positive rate 

ROC-AUC .......................................................................................................................... Area under the ROC curve 

T 

TN  ................................................................................................................................................ True-Negative rate 

TP  .................................................................................................................................................. True-Positive rate 

Transfer Features ................................................. The features of the Transfer Model (payment transaction data) 

Transfer Model ............................................. The new transfer ML model with payment transaction data features 

X 

XGB ................................................................................... XGBoost Classfier - Extreme Gradient Boosting Classifier 
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D. Program Code 
Please be aware that the following code might contain incorrect line breaks or improper 

indentation because of word formatting conversion errors. 

1. Program Structure 

 

2. Classes ML and Configuration 

class ML: 
    configuration = None 
 
    def __init__(self): 
        self.source_file_path = None 
        self.target_file_path = None 
 
    @classmethod 
    def set_configuration(cls, path_to_config_file: str): 
                                            cls.configuration = Configuration(path_to_config_file) 
 
 
class Configuration: 
    def __init__(self, path_to_config_file: str): 
        self._config = ConfigParser() 
        self._config.read(path_to_config_file) 
 
    def get_config_setting(self, config_section: str, config_name: str, model_type: str = None): 
        try: 
            if model_type is not None: 
                return  eval(self._config[config_section][config_name]).get(model_type) 
            else: 
                return self._config[config_section][config_name] 
        except KeyError: 
            return f'Either section {config_section!r} or var_name {config_name!r} not found. Please check config file!' 
 
    def get_path(self, config_section: str, config_name: str, model_type: str = None) -> str: 
        return join(self.get_config_setting(config_section=config_section, config_name='file_path'), 
                            self.get_config_setting(config_section=config_section, config_name=config_name,model_type=model_type))  

3. Class DataAccessDescriptor 

class DataAccessDescriptor: 
    def __get__(self, obj, objtype=None): 
        file_path = obj.source_file_path.lower() 
        try: 
            if file_path.endswith('.csv'): 
                return pd.read_csv(obj.source_file_path) 
            elif file_path.endswith('.joblib'): 
                return jl.load(obj.source_file_path) 
            else: 
                raise ValueError('FILE NOT RETRIEVED: File extension unknown. Extension must   
                                  be ".csv" or ".joblib" !') 
        except OSError: 
            print(f'File could not be read from file path "{obj.source_file_path}" !') 
 
    def __set__(self, obj, value): 
        file_path = obj.target_file_path.lower() 
        try: 
            if file_path.endswith('.csv'): 
                value.to_csv(obj.target_file_path) 
            elif file_path.endswith('.joblib'): 
                jl.dump(value, obj.target_file_path) 
            else: 
                raise ValueError('FILE NOT SAVED: File extension unknown. Extension must be   
                                 ".csv" or ".joblib" !') 
        except OSError: 
            print(f'File could not be written to file path "{obj.target_file_path}" !') 
 
        print(f'The file was successfully saved as/to: {obj.target_file_path} !')  
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4. Class InsideAccess 

class InsideAccess(ML): 
    _stored_dataframe = DataAccessDescriptor() 
    _stored_fitted_estimator = DataAccessDescriptor() 
    _stored_prediction_input_object = DataAccessDescriptor() 
    _stored_explanation_input_object = DataAccessDescriptor() 
 
    def __init__(self): 
        if super().configuration is not None: 
            super().__init__() 
            self.dataframe = None 
            self.fitted_estimator = None 
            self.data_for_prediction = None 
            self.prediction_input_object = None 
            self.explanation_input_object = None 
        else: 
            raise PermissionError('Configuration and access to configuration file not set yet !') 
 
    def load_dataframe(self, config_section: str, config_name: str, model_type: str = None): 
        self.source_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self.dataframe = self._stored_dataframe 
 
    def save_dataframe(self, config_section: str, config_name: str, model_type: str = None): 
        self.target_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self._stored_dataframe = self.dataframe 
 
    def load_fitted_estimator(self, config_section: str, config_name: str, model_type: str = None): 
        self.source_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self.fitted_estimator = self._stored_fitted_estimator  

    def save_fitted_estimator(self, config_section: str, config_name: str, model_type: str = None): 
        self.target_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self._stored_fitted_estimator = self.fitted_estimator 
 
    def load_data_for_prediction(self, config_section: str, config_name: str, model_type: str=None): 
        self.source_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self.dataframe = self._stored_dataframe 
 
    def save_data_for_prediction(self, config_section: str, config_name: str, model_type: str=None): 
        self.target_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self._stored_dataframe = self.dataframe 
 
    def load_prediction_input_object(self, config_section: str, config_name: str, model_type: str = None): 
        self.source_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self.prediction_input_object = self._stored_prediction_input_object 
 
    def save_prediction_input_object(self, config_section: str, config_name: str, model_type: str = None): 
        self.target_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self._stored_prediction_input_object = self.prediction_input_object 
 
    def load_explanation_input_object(self, config_section: str, config_name: str, model_type: str = None): 
        self.source_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self.explanation_input_object = self._stored_explanation_input_object 
 
    def save_explanation_input_object(self, config_section: str, config_name: str, model_type: str = None): 
        self.target_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self._stored_explanation_input_object = self.explanation_input_object  
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5. Class OutsideAccess 

class OutsideAccess(ML): 
    _stored_prediction_dataframe = DataAccessDescriptor() 
    _stored_result_dataframe = DataAccessDescriptor() 
    _stored_quantile_portfolio = DataAccessDescriptor() 
    _stored_transfer_model_input_object = DataAccessDescriptor() 
 
    # These are the aggregated results (ONE concatenated pd.DataFrame for each) from the   
    individual instances: 
    result_dataframe = None 
    quantile_portfolio = None 
 
    def __init__(self): 
        if super().configuration is not None: 
            super().__init__() 
            self.prediction_dataframe = None 
            self.transfer_model_input_object = None 
        else: 
            raise PermissionError('Configuration and access to configuration file not set yet !') 
 
    # Must be at the class level as attribute is class attribute 
    def load_result_dataframe(self, config_section: str, config_name: str, model_type: str=None): 
        self.source_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        OutsideAccess.result_dataframe = self._stored_result_dataframe 
 
    # Must be at the class level as attribute is class attribute 
    def save_result_dataframe(self, config_section: str, config_name: str, model_type: str=None): 
        self.target_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self._stored_result_dataframe = OutsideAccess.result_dataframe  

    # Must be at the class level as attribute is class attribute 
    def load_quantile_portfolio(self, config_section: str, config_name: str, model_type: str=None): 
        self.source_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        OutsideAccess.quantile_portfolio = self._stored_quantile_portfolio 
 
    # Must be at the class level as attribute is class attribute 
    def save_quantile_portfolio(self, config_section: str, config_name: str, model_type: str=None): 
        self.target_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self._stored_quantile_portfolio = OutsideAccess.quantile_portfolio 
 
    def load_prediction_dataframe(self, config_section: str, config_name: str, model_type: str=None): 
        self.source_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self.prediction_dataframe = self._stored_prediction_dataframe 
 
    def save_prediction_dataframe(self, config_section: str, config_name: str, model_type: str=None): 
        self.target_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self._stored_prediction_dataframe = self.prediction_dataframe 
 
    def load_transfer_model_input_object(self, config_section: str, config_name: str, model_type: str = None): 
        self.source_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self.transfer_model_input_object = self._stored_transfer_model_input_object 
 
    def save_transfer_model_input_object(self, config_section: str, config_name: str, model_type: str = None): 
        self.target_file_path = self.configuration.get_path(config_section, config_name, model_type) 
        self._stored_transfer_model_input_object = self.transfer_model_input_object  
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6. Class Model 

class Model(InsideAccess): 
 
    def __init__(self): 
        super().__init__() 
        self.key_name_in_dataframes = None 
        self.second_key_name_in_dataframes = None 
        self.name_of_target = None 
        self.train_set_row_index = None 
        self.test_set_row_index = None 
        self.X = None 
        self.X_train = None 
        self.X_test = None 
        self.y = None 
        self.y_train = None 
        self.y_test = None 
        self.model = None 
        self.unfitted_estimator = None 
        self.estimator_is_pipeline = False 
        self.hyper_params = None 
        self.group = None 
        self.are_features_excluded = False 
        self.features_in_training = None 
        self._set_key_target_features_has_run = False 
        self._set_estimators_and_parameters_has_run = False 
        self._train_test_split_has_run = False 
 
    def set_dataframe(self, dataframe: pd.DataFrame): 
        check_parameter_is_of_type(parameter=dataframe, parameter_type=pd.DataFrame) 
        self.dataframe = dataframe 
 
    def set_key_target_features(self, key: str, target: str, features: list = None, 
                                features_excluded_in_training: List[str] = None, second_key: str = None): 
        self._check_dataframe_is_set() 
        self._check_key_is_in_dataframe(key) 
        check_parameter_is_of_type(parameter=key, parameter_type=str) 
        self.key_name_in_dataframes = key 
        check_parameter_is_of_type(parameter=target, parameter_type=str) 
        self.name_of_target = target 
        if features is None: 
            features = [feat for feat in self.dataframe.columns if feat is not self.name_of_target] 
        else: 
            check_parameter_is_of_type(parameter=features, parameter_type=list) 
            features = [feat for feat in features if feat is not self.name_of_target] 
        self.X = self.dataframe.loc[:, features] 
        self.y = self.dataframe.loc[:, target] 
        if features_excluded_in_training is not None: 
            check_parameter_is_of_type(parameter=features_excluded_in_training, parameter_type=list) 
            self.are_features_excluded = True 
            self.features_in_training = [feat for feat in features if feat not in  
                                         features_excluded_in_training] 
        else: 
            self.features_in_training = features 
        if second_key is not None: 
            check_parameter_is_of_type(parameter=second_key, parameter_type=str) 
            self.second_key_name_in_dataframes = second_key 
        self._set_key_target_features_has_run = True 
 
    def set_estimator_and_parameters(self, unfitted_estimator, hyper_params_dict_name_in_config: str): 
        hyp_params = eval(self.configuration.get_config_setting(config_section='Model.Hyperparams', 
                          config_name=hyper_params_dict_name_in_config)) 
        unfit_est = unfitted_estimator 
        if unfit_est.__class__.__name__ == 'LogisticRegression': 
            hyp_params = make_param_grid_for_pipe_gridsearch('estimator', hyp_params) 
            unfit_est = self._make_pipeline(unfitted_estimator=unfit_est) 
            self.estimator_is_pipeline = True 
        self.hyper_params = hyp_params 
        self.unfitted_estimator = unfit_est 
        self._set_estimators_and_parameters_has_run = True  
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Class Model continued 

    def train_test_split_dataframe(self, group: list or str = None): 
        self._check_set_key_target_features_has_run() 
        if self.X is not None and self.y is not None: 
            test_set_size = float( 
                self.configuration.get_config_setting(config_section='Model.General',  
                                                      config_name='test_set_size')) 
            if group is not None: 
                self.group = group 
                X_group = self.X.loc[:, self.group] 
            else: 
                X_group = None 
            self.train_set_row_index, self.test_set_row_index = next( 
                GroupShuffleSplit(n_splits=1, test_size=test_set_size, random_state=None).split(X=self.X,  
                                                                               y=self.y, groups=X_group)) 
            self._set_train_test_set_rows() 
        else: 
            raise ValueError('Features and target not set yet. Set them first before splitting into train- 
                              /test-sets !') 
        self._train_test_split_has_run = True 
 
    def train_model_and_cross_validate(self): 
        self._check_dataframe_is_set() 
        self._check_set_key_target_features_has_run() 
        self._check_set_estimators_and_parameters_has_run() 
        self._check_train_test_split_has_run() 
        if all(attr is not None for attr in 
               [self.X_train, self.y_train, self.unfitted_estimator, self.train_set_row_index]): 
            if self.group is not None: 
                X_train_group = self.X_train.loc[:, self.group] 
            else: 
                X_train_group = None 
            num_cv_folds = int( 
                self.configuration.get_config_setting(config_section='Model.General',  
                                                      config_name='num_cv_folds')) 
            grid_search_iterator = GroupKFold(n_splits=num_cv_folds).split(X=self.X_train, y=self.y_train, 
                                                                           groups=X_train_group) 
            scoring = eval(self.configuration.get_config_setting(config_section='Model.General',  
                           config_name='scoring')) 
            grid_search = GridSearchCV(estimator=self.unfitted_estimator, param_grid=self.hyper_params,  
                                       scoring=scoring, 
                                       n_jobs=None, 
                                       cv=grid_search_iterator, refit=scoring[0], return_train_score=True,  
                                       verbose=0) 
            self._exclude_features_in_train_test_set() 
            self.model = grid_search.fit(self.X_train, self.y_train) 
            self.fitted_estimator = self.model.best_estimator_ 
        else: 
            raise ValueError('Missing input for either X, y, train_set_row_index and/or estimator. Please    
                              set those first !') 
 
    def under_sample_dataframe(self, sampling_strategy: str or float): 
        if not self._train_test_split_has_run: 
            under_sampler = RandomUnderSampler(sampling_strategy=sampling_strategy) 
            self.X, self.y = under_sampler.fit_resample(self.X, self.y) 
        else: 
            raise TypeError('train_test_split_dataframe()-method has already run. sampling not possible  
                             anymore !') 
 
    def save_test_set(self, config_section: str, model_type: str = None): 
        self.target_file_path = self.configuration.get_path(config_section, 'X_test', model_type) 
        self._stored_dataframe = self.X_test 
        self.target_file_path = self.configuration.get_path(config_section, 'y_test', model_type) 
        self._stored_dataframe = self.y_test 
 
    def get_cv_results(self) -> pd.DataFrame: 
        return pd.DataFrame(data=self.model.cv_results_).T 
 
    def get_test_set_roc_auc_score(self) -> float: 
        return roc_auc_score(self.y_test, self.fitted_estimator.predict_proba(self.X_test)[:, 1]) 
 
    def generate_prediction_input(self): 
        self.prediction_input_object = PredictionInput(key_name_in_dataframes=self.key_name_in_dataframes, 
                                                       model_best_estimator=self.fitted_estimator,  
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Class Model continued 

    def generate_explanation_input(self): 
        self.explanation_input_object = ExplanationInput(model_best_estimator=self.fitted_estimator, 
                                                         X=self.X, X_train=self.X_train, X_test=self.X_test, 
                                                         key_name_in_dataframes=self.key_name_in_dataframes,                                      
                                                         second_key_name_in_dataframes=self.second_key_name_in_dataframes) 
 
    def _set_train_test_set_rows(self): 
        self.X_train = self.X.iloc[self.train_set_row_index, :] 
        self.y_train = self.y.iloc[self.train_set_row_index] 
        self.X_test = self.X.iloc[self.test_set_row_index, :] 
        self.y_test = self.y.iloc[self.test_set_row_index] 
 
    def _exclude_features_in_train_test_set(self): 
        if self.are_features_excluded: 
            self.X_train = self.X_train.loc[:, self.features_in_training] 
            self.X_test = self.X_test.loc[:, self.features_in_training] 
 
    def _check_dataframe_is_set(self): 
        if self.dataframe is None: 
            return FileNotFoundError('dataframe is not set yet !') 
 
    def _check_train_test_split_has_run(self): 
        if self._train_test_split_has_run is False: 
            raise TypeError('Run train_test_split_dataframe() first !') 
 
    def _check_set_key_target_features_has_run(self): 
        if self._set_key_target_features_has_run is False: 
            raise TypeError('Run set_key_target_features() method first !') 
 
    def _check_set_estimators_and_parameters_has_run(self): 
        if self._set_estimators_and_parameters_has_run is False: 
            raise TypeError('Run set_estimators_and_parameters_has_run() method first !') 
 
    def _check_key_is_in_dataframe(self, key: str): 
        if key not in self.dataframe.columns: 
            return ValueError('key is not in dataframe !') 
 
    def _make_pipeline(self, unfitted_estimator): 
        all_columns = self.features_in_training 
        impute_dict = eval(self.configuration.get_config_setting(config_section='Model.CV.Preprocessing', 
                                                                 config_name='impute')) 
        winsorize_dict = eval(self.configuration.get_config_setting(config_section='Model.CV.Preprocessing', 
                                                                    config_name='winsorize')) 
        scale_dict = eval(self.configuration.get_config_setting(config_section='Model.CV.Preprocessing', 
                                                                config_name='scale')) 
        imp_cols = all_columns if impute_dict.get('impute_columns') == 'All' else  
                                                                    impute_dict.get('impute_columns') 
 
        imp_str = impute_dict.get('impute_strategy') 
        imp_knn_num_neigh = impute_dict.get('impute_knn_num_neighbors') 
        win_cols = all_columns if winsorize_dict.get('winsorize_columns') == 'All' else winsorize_dict.get( 
                                                                                       'winsorize_columns') 
        win_lower = winsorize_dict.get('winsorize_lower_bound') 
        win_upper = winsorize_dict.get('winsorize_upper_bound') 
        scale_cols = all_columns if scale_dict.get('scale_columns') == 'All' else  
        scale_dict.get('scale_columns') 
        scale_str = scale_dict.get('scale_strategy') 
        scale_min_max = scale_dict.get('scale_min_max_range') 
        scale_rob_range = scale_dict.get('scale_robust_quantile_range') 
        pipe = make_preprocessing_pipeline_for_cv_with_function( 
            unfitted_estimator=unfitted_estimator, 
            impute_columns=imp_cols, 
            winsorize_columns=win_cols, 
            scale_columns=scale_cols, 
            impute_strategy=imp_str, 
            impute_knn_num_neighbors=imp_knn_num_neigh, 
            scale_strategy=scale_str, 
            scale_min_max_range=scale_min_max, 
            scale_robust_quantile_range=scale_rob_range, 
            winsorize_lower_bound=win_lower, 
            winsorize_upper_bound=win_upper) 
        return pipe  

 

 



70 
 

7. Class TransferModel 

class TransferModel(Model): 
 
    def __init__(self): 
        super().__init__() 
        self.transfer_model_targets = None 
        self.cutoff_columns = None 
        self._set_transfer_model_inputs_has_run = False 
 
    def set_transfer_model_inputs(self, transfer_model_input: TransferModelInput): 
        check_parameter_is_of_type(parameter=transfer_model_input, parameter_type=TransferModelInput) 
        check_parameter_is_of_type(parameter=transfer_model_input.name_of_target, parameter_type=str) 
        check_parameter_is_of_type(parameter=transfer_model_input.transfer_model_targets,  
                                   parameter_type=pd.DataFrame) 
        logging.warning( 
            f" Please be aware that the dataframe of the TransferModel MUST NOT CONTAIN the target column as  
               the" 
            f" target column is generated within the transfer model itself. Please check !") 
        # transfer_model_targets contain the columns: key (i.e. "orig_key_1") and quantiles from all models 
        self.name_of_target = 'TRANS_TARGET_of_' + transfer_model_input.name_of_target 
        self.transfer_model_targets = transfer_model_input.transfer_model_targets  # contains "key" at first  
                                                                                     column 
        self.key_name_in_dataframes = transfer_model_input.key_name_in_dataframes 
        self._create_target_column() 
        self._combine_targets_with_features() 
        self._set_transfer_model_inputs_has_run = True 
 
    def set_key_target_features(self, key: str = None, target: str = None, features: list = None, 
                                features_excluded_in_training: List[str] = None, second_key: str = None): 
        # We must invalidate the parameters "key", "second_key" and "target" as they are already set with 
        # the set_transfer_model_inputs()-method 
        self._check_set_transfer_model_inputs_has_run() 
        self._check_dataframe_is_set() 
        super().set_key_target_features(key=self.key_name_in_dataframes, 
                                        target=self.name_of_target, 
                                        features=features, 
                                        features_excluded_in_training=features_excluded_in_training, 
                                        second_key=self.second_key_name_in_dataframes) 
 
    def _create_target_column(self): 
        estimators_for_cutoff =  
                      eval(self.configuration.get_config_setting(config_section='Transfer.Model.Cutoff', 
                                                                 config_name='estimators_for_cutoff')) 
        cutoff_threshold =  
                      float(self.configuration.get_config_setting(config_section='Transfer.Model.Cutoff', 
                                                                  config_name='cutoff_threshold')) 
        self.cutoff_columns = [name for name in self.transfer_model_targets.columns if 
                               any(name_part in name for name_part in estimators_for_cutoff)] 
        self.transfer_model_targets[self.name_of_target] = np.where( 
           (self.transfer_model_targets[self.cutoff_columns] >= cutoff_threshold).all(axis='columns'), 1, 0) 
 
    def _combine_targets_with_features(self): 
        num_rows_before_merge = len(self.dataframe.index) 
        key_and_target_columns = self.transfer_model_targets.loc[:, [self.key_name_in_dataframes,  
                                                                     self.name_of_target]] 
        self.dataframe = pd.merge(self.dataframe, key_and_target_columns, on=self.key_name_in_dataframes, 
                                  how='inner') 
        num_rows_after_merge = len(self.dataframe.index) 
        if num_rows_before_merge != num_rows_after_merge: 
            logging.warning( 
                f" Please be aware that the number of dataframe rows was reduced from  
                   {num_rows_before_merge!s}" 
                f" rows to {num_rows_after_merge!s} rows as the targets did not contain all " 
                f" {self.key_name_in_dataframes}'s that were in the dataframe!") 
 
    def _check_set_transfer_model_inputs_has_run(self): 
        if not self._set_transfer_model_inputs_has_run: 
            raise ValueError('Run set_transfer_model_inputs() method first !')  
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8. Class Prediction 

class Prediction(OutsideAccess): 
    quantile_columns = list() 
 
    def __init__(self, prediction_input: PredictionInput): 
        check_parameter_is_of_type(parameter=prediction_input, parameter_type=PredictionInput) 
        super().__init__() 
        self.model_estimator = prediction_input.model_best_estimator 
        self.estimator_is_pipeline = prediction_input.estimator_is_pipeline 
        self.X_train_test_columns = prediction_input.features_in_training 
        self.key_name_in_dataframes = prediction_input.key_name_in_dataframes 
        self.name_of_target = prediction_input.name_of_target 
        self.instance_result_dataframe = None 
        self.quantile_portfolio_keys = None 
        self.instance_quantile_portfolio = None 
        self.unique_quantiles = None 
        self._calculate_quantiles_has_run = False 
        self._predict_probas_has_run = False 
        self._add_results_to_aggregate_has_run = False 
 
    def predict_probas(self): 
        self._check_prediction_dataframe_is_set() 
        if self.instance_result_dataframe is None: 
            self._instantiate_instance_result_dataframe() 
        adjusted_data_for_prediction = self.prediction_dataframe.loc[:, self.X_train_test_columns] 
        predict_probas = self.model_estimator.predict_proba(adjusted_data_for_prediction)[:, 1] 
        pred_proba_column_name = self._get_pred_proba_column_name() 
        self.instance_result_dataframe[pred_proba_column_name] = predict_probas 
        self._predict_probas_has_run = True 
 
    def set_quantile_keys(self, quantile_portfolio: pd.DataFrame = None): 
        if quantile_portfolio is None: 
            self._check_quantile_portfolio_is_set() 
            self.quantile_portfolio_keys = self.quantile_portfolio[self.key_name_in_dataframes].tolist() 
        else: 
            check_parameter_is_of_type(parameter=quantile_portfolio, parameter_type=pd.DataFrame) 
            self.quantile_portfolio_keys = quantile_portfolio[self.key_name_in_dataframes].tolist() 
 
    def _check_quantile_portfolio_is_set(self): 
        # This is the "Prediction" class attribute "quantile_portfolio" 
        if self.quantile_portfolio is None: 
            return FileNotFoundError('quantile_portfolio is not set yet !') 
 
    def calculate_quantiles(self): 
        self._check_instance_result_dataframe_is_set() 
        self._check_predict_probas_has_run() 
        pred_proba_column_name = self._get_pred_proba_column_name() 
        # Transfer predict_probas() from monthly prediction data into the instance_quantile_portfolio 
        self.instance_quantile_portfolio = \ 
            self.instance_result_dataframe[ 
            self.instance_result_dataframe[self.key_name_in_dataframes].isin(self.quantile_portfolio_keys)] 
        num_bins = 1000 
        # Calculate quantile bins in the instance_quantile_portfolio 
        quantile_bin = pd.qcut(self.instance_quantile_portfolio[pred_proba_column_name], num_bins,  
                               labels=None, duplicates='drop', precision=5) 
        # Calculate quantiles in the instance_quantile_portfolio 
        quantile = pd.qcut(self.instance_quantile_portfolio[pred_proba_column_name], num_bins, labels=False, 
                           duplicates='drop', precision=5) * 0.10 
        bin_col_name = pred_proba_column_name + '_bin' 
        quantile_col_name = pred_proba_column_name + '_quantile' 
        # Store quantile_col_name for later usage in the transfer model. Storage must be at the 
        # Prediction class level (not the instance level),  otherwise individual instances cannot be 
        # aggregated consistently 
        Prediction.quantile_columns.append(quantile_col_name) 
        # Add bin and quantile values to the quantile_portfolio 
        self.instance_quantile_portfolio[bin_col_name] = quantile_bin 
        self.instance_quantile_portfolio[quantile_col_name] = quantile 
        # Pack both (bin and quantile values) into a DataFrame and remove duplicates 
        self.unique_quantiles = pd.DataFrame(data={bin_col_name: quantile_bin, 
                                                quantile_col_name: quantile}).drop_duplicates(inplace=False) 
        # Allocate quantile bins from the instance_quantile_portfolio into the instance_result_dataframe  
        self.instance_result_dataframe[bin_col_name] =  
                                            pd.cut(self.instance_result_dataframe[pred_proba_column_name], 
                                                              bins=quantile_bin.cat.categories, 
                                                              duplicates='drop', include_lowest=True,  
                                                              right=True, 
                                                              precision=5) 
        # Now also allocate the quantiles corresponding to the bins into the instance_result_dataframe 
        self.instance_result_dataframe = pd.merge(self.instance_result_dataframe, self.unique_quantiles, 
                                                  on=bin_col_name, 
                                                  how='left') 
        self._calculate_quantiles_has_run = True 
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Class Prediction continued 

    def get_pred_proba_for_key(self, key_value: str) -> str or KeyError: 
        self._check_instance_result_dataframe_is_set() 
        self._check_predict_probas_has_run() 
        try: 
            pred_proba_column_name = self._get_pred_proba_column_name() 
            return self.instance_result_dataframe[ 
                    self.instance_result_dataframe[self.key_name_in_dataframes] == key_value][ 
                    pred_proba_column_name].values[0] 
        except KeyError: 
            return f'"predict_proba" not found for {self.key_name_in_dataframes}: {key_value!s} !' 
 
    def add_results_to_aggregate(self): 
        # Here we have to aggregate at the OutsideAccess class level (not the Prediction instance level), 
        # otherwise individual instances cannot be aggregated consistently and the results cannot be saved 
        self._check_predict_probas_has_run() 
        self._check_calculate_quantiles_has_run() 
        try: 
            if OutsideAccess.result_dataframe is None: 
                OutsideAccess.result_dataframe = self.instance_result_dataframe 
            else: 
                OutsideAccess.result_dataframe = pd.merge(OutsideAccess.result_dataframe, 
                                                          self.instance_result_dataframe, 
                                                          on=self.key_name_in_dataframes, 
                                                          how='left') 
            if OutsideAccess.quantile_portfolio is None: 
                OutsideAccess.quantile_portfolio = self.instance_quantile_portfolio 
            else: 
                OutsideAccess.quantile_portfolio = pd.merge(OutsideAccess.quantile_portfolio, 
                                                            self.instance_quantile_portfolio, 
                                                            on=self.key_name_in_dataframes, 
                                                            how='left') 
        except ValueError: 
            print('Could not aggregate results. Check if instance and class dataframes have same shape !') 
        self._add_results_to_aggregate_has_run = True 
 
    def generate_transfer_model_inputs(self): 
        # Here we get the (aggregated) OutsideAccess class attributes, as the instance attributes only 
        # contain individual (not aggregated) instance results and quantiles 
        self._check_add_results_to_aggregate_has_run() 
        transfer_model_target_columns = self.quantile_columns.copy() 
        transfer_model_target_columns.insert(0, self.key_name_in_dataframes) 
        targets = self.result_dataframe.loc[:, transfer_model_target_columns] 
        self.transfer_model_input_object = TransferModelInput(transfer_model_targets=targets, 
                                                              name_of_target=self.name_of_target, 
                                                         key_name_in_dataframes=self.key_name_in_dataframes) 
 
    def _check_instance_result_dataframe_is_set(self): 
        if self.instance_result_dataframe is None or \ 
                self.key_name_in_dataframes not in self.instance_result_dataframe.columns: 
            return FileNotFoundError('instance_result_dataframe is not set yet !') 
 
    def _check_prediction_dataframe_is_set(self): 
        if self.prediction_dataframe is None: 
            return FileNotFoundError('prediction_dataframe is not set yet !') 
 
    def _check_features_in_prediction_dataframe(self): 
        feat_not_in = [feat for feat in self.X_train_test_columns if feat not in  
                       self.prediction_dataframe.columns] 
        if len(feat_not_in) > 0 or self.key_name_in_dataframes not in self.prediction_dataframe.columns: 
            raise TypeError( 
                f'Either the required features {feat_not_in!r} or the key {self.key_name_in_dataframes}' 
                f' are missing in the prediction_dataframe !') 
 
    def _instantiate_instance_result_dataframe(self): 
        self._check_prediction_dataframe_is_set() 
        self._check_features_in_prediction_dataframe() 
        self.instance_result_dataframe = pd.DataFrame(self.prediction_dataframe.loc[:,  
                                                      self.key_name_in_dataframes]) 
 
    def _check_calculate_quantiles_has_run(self): 
        if not self._calculate_quantiles_has_run: 
            raise ValueError('Run calculate_quantiles() method first !') 
 
    def _check_predict_probas_has_run(self): 
        if not self._predict_probas_has_run: 
            raise ValueError('Run predict_probas() method first !') 
 
    def _check_add_results_to_aggregate_has_run(self): 
        if not self._add_results_to_aggregate_has_run: 
            raise ValueError('Run add_results_to_aggregate() method first !')  

    def _get_pred_proba_column_name(self): 
        if self.estimator_is_pipeline: 
            estimator_name = 'Pipeline_' + self.model_estimator.named_steps['estimator'].__class__.__name__ 
        else: 
            estimator_name = self.model_estimator.__class__.__name__ 
        return 'predict_probas_' + estimator_name  
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9. Classes Explanation and Shap 

class Explanation(InsideAccess): 
 
    def __init__(self, explanation_input: ExplanationInput): 
        check_parameter_is_of_type(parameter=explanation_input, parameter_type=ExplanationInput) 
        super().__init__() 
        self.model_estimator = explanation_input.model_best_estimator 
        self.X = explanation_input.X 
        self.X_train = explanation_input.X_train 
        self.X_test = explanation_input.X_test 
        self.key_name_in_dataframes = explanation_input.key_name_in_dataframes 
        self.second_key_name_in_dataframes = explanation_input.second_key_name_in_dataframes 
        self.keys = None 
        self.key_values = None 
 
 
class Shap(Explanation): 
    def __init__(self, explanation_input: ExplanationInput): 
        super().__init__(explanation_input=explanation_input) 
        self.shap_explainer_object = None 
        self.shap_explanation_object = None 
        self.shap_explanation_data = None 
        self.shap_explanation_data_all = None 
        self.global_explanation_object = None 
        self.global_base_value = None 
        self.global_shap_values = None 
        self.shap_data_set = None 
        self._create_shap_objects_has_run = False 
        self._calc_global_explanation_has_run = False 
 
    def create_shap_objects(self): 
        self._get_shap_explanation_data() 
        self._calc_keys() 
        self._calc_key_values() 
        self._reduce_shap_explanation_data_rows() 
        # Create SHAP-Explainer and SHAP-Explanation objects 
        """ As of May 2021, the scikit-learn-method "predict_proba" is not yet supported for estimators  
        other than XGBClassifier. The following error message occurs if "model_output" is set to  
        "predict_proba" (Quote): 
        "Exception: Unrecognized model_output parameter value: predict_proba! If model.predict_proba is a 
        valid function open a github issue to ask that this method be supported. If you want 'predict_proba' 
        just use 'probability' for now " (Quote end). Thus: Instead of "predict_proba" I use "probability"  
        In case the estimator is not XGBClassifier. """ 
        if self.model_estimator.__class__.__name__ == 'XGBClassifier': 
            model_output = 'predict_proba' 
        else: 
            model_output = 'probability' 
        shap_background_data_num_samples =  
                    int(self.configuration.get_config_setting(config_section='Model.Explanation',                                                                     
                                                            config_name='shap_background_data_num_samples')) 
        masker = shap.maskers.Independent(data=self.X_train, 
                                          max_samples=shap_background_data_num_samples) 
        self.shap_explainer_object = shap.explainers.Tree(model=self.model_estimator, 
                                                          data=masker, 
                                                          feature_names=self.X_train.columns.to_list(), 
                                                          feature_perturbation="interventional", 
                                                          model_output=model_output) 
        self.shap_explanation_object = self.shap_explainer_object(self.shap_explanation_data) 
        self._create_shap_objects_has_run = True 
 
    def calc_global_explanation(self, target_class: int = 1): 
        self._check_create_shap_objects_has_run() 
        check_parameter_is_of_type(parameter=target_class, parameter_type=int) 
        # Define global variables for class = target class (usually the target class is 1 (or in seldom  
        # cases 0)) 
        self.global_explanation_object = self.shap_explanation_object[:, :, target_class] 
        self.global_base_value = self.shap_explainer_object.expected_value[target_class] 
        self.global_shap_values = pd.DataFrame(data=self.shap_explanation_object.values[:, :, target_class], 
                                               index=self.shap_explanation_data.index, 
                                               columns=self.shap_explanation_data.columns) 
        self._calc_global_explanation_has_run = True 
 
    def _check_index_is_in_shap_explanation_data(self, key_value, second_key_value=None): 
        key_value_index = self._get_index_of_key_value(key_value=key_value,  
                                                       second_key_value=second_key_value) 
        if key_value_index not in self.shap_explanation_data.index: 
            raise ValueError(f'KEY ERROR: The {self.key_name_in_dataframes} = {key_value!s} cannot be found  
                             f’in the shap_explanation_data and thus also not in the global_shap_values. The  
                             f'{self.key_name_in_dataframes} = {key_value!s} was probably excluded when the                
                             data size was reduced to the size given in the config-file as                      
                             "shap_max_num_explanation_data_rows" !')  
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Class Shap continued 

    def get_local_shap_values_from_global(self, key_value, second_key_value=None) -> np.ndarray: 
        self._check_create_shap_objects_has_run() 
        self._check_calc_global_explanation_has_run() 
        self._check_index_is_in_shap_explanation_data(key_value=key_value,  
                                                      second_key_value=second_key_value) 
        key_value_index = self._get_index_of_key_value(key_value=key_value,  
                                                       second_key_value=second_key_value) 
        return self.global_shap_values[self.global_shap_values.index == key_value_index] 
 
    def get_local_shap_values_from_method(self, key_value, second_key_value=None, 
                                          target_class: int = 1) -> pd.DataFrame: 
        self._check_create_shap_objects_has_run() 
        self._check_calc_global_explanation_has_run() 
        self._check_index_is_in_shap_explanation_data_all(key_value=key_value,  
                                                          second_key_value=second_key_value) 
        key_value_index = self._get_index_of_key_value(key_value=key_value,  
                                                       second_key_value=second_key_value) 
        data_row_to_calc_shap_for = self.shap_explanation_data_all[ 
                                        self.shap_explanation_data_all.index == key_value_index].to_numpy() 
        data_row_shap_values =  
                            self.shap_explainer_object.shap_values(data_row_to_calc_shap_for)[target_class] 
        return pd.DataFrame(data=data_row_shap_values, 
                            index=self.shap_explanation_data_all.index[ 
                                self.shap_explanation_data_all.index == key_value_index], 
                            columns=self.shap_explanation_data_all.columns) 
 
    def compare_local_shap_from_global_with_local_shap_from_method(self, key_value, second_key_value=None, 
                                                                   target_class: int = 1) -> pd.Series or  
                                                                   pd.DataFrame: 
        """ As also noted in the Notebook files in "FRAUD" (old), there is an issue with the local shap  
        values as there is a difference between local shap values coming from global and local shap values   
        coming from the method. With this method, the difference can be shown. The error should be corrected  
        in newer versions of shap. """ 
        local_from_global = self.get_local_shap_values_from_global(key_value=key_value, 
                                                                   second_key_value=second_key_value) 
        local_from_method = self.get_local_shap_values_from_method(key_value=key_value, 
                                                                   second_key_value=second_key_value, 
                                                                   target_class=target_class) 
        if local_from_global.shape == local_from_method.shape: 
            print('The difference in shap-values between local_from_method and local_from_global is shown  
                   here.' 
                  'The SHAP-value for the following feature(s) should be higher(+)/lower(-) by this amount  
                   in the ' 
                  'local_from_global-Plots: ') 
            diff_method_global = (local_from_method - local_from_global).T 
            return diff_method_global[diff_method_global.values != 0] 
        else: 
            return f'The DataFrames are different in their shape: Shape of local_from_global is ' \ 
                   f'{local_from_global.shape} and shape of local_from_method is {local_from_method.shape}.  
                   ' \ 
                   f'They thus cannot be compared !' 
 
    def plot_global_bars(self, num_feat_shown: int = 12, save_plot_as_pdf: bool = False): 
        self._check_create_shap_objects_has_run() 
        self._check_calc_global_explanation_has_run() 
        shap.plots.bar(shap_values=self.global_explanation_object, max_display=num_feat_shown, show=False) 
        if save_plot_as_pdf: 
            plot_name = 'global_bar_plot_' + self.model_estimator.__class__.__name__ + '.pdf' 
            plt.savefig(plot_name, format='pdf', dpi=1200, bbox_inches='tight') 
 
    def plot_global_beeswarm(self, num_feat_shown: int = 12, save_plot_as_pdf: bool = False): 
        self._check_create_shap_objects_has_run() 
        self._check_calc_global_explanation_has_run() 
        shap.plots.beeswarm(shap_values=self.global_explanation_object, max_display=num_feat_shown,  
                            show=False) 
        if save_plot_as_pdf: 
            plot_name = 'global_beeswarm_plot_' + self.model_estimator.__class__.__name__ + '.pdf' 
            plt.savefig(plot_name, format='pdf', dpi=1200, bbox_inches='tight') 
 
    def plot_global_heatmap(self, num_feat_shown: int = 12, save_plot_as_pdf: bool = False): 
        self._check_create_shap_objects_has_run() 
        self._check_calc_global_explanation_has_run() 
        shap.plots.heatmap(shap_values=self.global_explanation_object, max_display=num_feat_shown) 
        if save_plot_as_pdf: 
            plot_name = 'global_heatmap_plot_' + self.model_estimator.__class__.__name__ + '.pdf' 
            plt.savefig(plot_name, format='pdf', dpi=1200, bbox_inches='tight')  
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Class Shap continued 

    def plot_global_scatter_for_features(self, feature_name_one: str, 
                                         display_only_feat_one: bool = True, 
                                         feature_name_two: str = None, 
                                         save_plot_as_pdf: bool = False): 
        """ Adjusted quote from the SHAP website: "If 'feature_name_two' is 'None' and  
        'display_only_feat_one' is ‘True', this plot only scatters the SHAP values for 'feature_name_one'.   
         If 'feature_name_two' is 'None' and 'display_only_feat_one' is 'False', then the scatter plot  
        points are colored by the feature that seems to have the strongest interaction effect with the first  
        feature. If 'feature_name_two' is another feature name,then the scatter plot points are colored by  
        this second feature." """ 
        self._check_create_shap_objects_has_run() 
        self._check_calc_global_explanation_has_run() 
        check_parameter_is_of_type(parameter=feature_name_one, parameter_type=str) 
        if feature_name_two is None and display_only_feat_one: 
            color = None 
        elif feature_name_two is None and not display_only_feat_one: 
            color = self.global_explanation_object 
        else: 
            check_parameter_is_of_type(parameter=feature_name_two, parameter_type=str) 
            color = self.global_explanation_object[:, feature_name_two] 
        shap.plots.scatter(shap_values=self.global_explanation_object[:, feature_name_one], 
                           color=color, 
                           show=False) 
        if save_plot_as_pdf: 
            plot_name = 'global_scatter_plot_' + self.model_estimator.__class__.__name__ + '.pdf' 
            plt.savefig(plot_name, format='pdf', dpi=1200, bbox_inches='tight') 
 
    def plot_local_force(self, key_value, second_key_value=None, target_class: int = 1, 
                         contribution_threshold: float = 0.02, 
                         save_plot_as_pdf: bool = False): 
        local_shap_values = self.get_local_shap_values_from_method(key_value=key_value, 
                                                                   target_class=target_class, 
                                                                   second_key_value=second_key_value) 
        key_value_index = self._get_index_of_key_value(key_value=key_value,  
                                                       second_key_value=second_key_value) 
        shap.plots.force(base_value=np.around(self.global_base_value, decimals=2), 
                         shap_values=np.around(local_shap_values.to_numpy(),decimals=2), 
                         feature_names=self.shap_explanation_data_all.columns.to_list(), 
                         features=np.around(self.shap_explanation_data_all[ 
                             self.shap_explanation_data_all.index == key_value_index], decimals=2), 
                         matplotlib=True, show=False, contribution_threshold=contribution_threshold) 
        if save_plot_as_pdf: 
            plot_name = 'local_force_plot_' + self.model_estimator.__class__.__name__ + key_value + '.pdf' 
            plt.savefig(plot_name, format='pdf', dpi=1200, bbox_inches='tight') 
 
    def plot_local_bars_from_global(self, key_value, second_key_value=None, 
                                    num_feat_shown: int = 12, 
                                    save_plot_as_pdf: bool = False): 
        local_explanation_object = self._get_local_explanation_object(key_value=key_value, 
                                                                      second_key_value=second_key_value) 
        shap.plots.bar(local_explanation_object, max_display=num_feat_shown, show=False) 
        if save_plot_as_pdf: 
            plot_name = 'local_bar_plot_' + self.model_estimator.__class__.__name__ + key_value + '.pdf' 
            plt.savefig(plot_name, format='pdf', dpi=1200, bbox_inches='tight') 
 
    def plot_local_waterfall_from_global(self, key_value, second_key_value=None, 
                                         num_feat_shown: int = 12, 
                                         save_plot_as_pdf: bool = False): 
        local_explanation_object = self._get_local_explanation_object(key_value=key_value, 
                                                                      second_key_value=second_key_value) 
        shap.plots.waterfall(local_explanation_object, max_display=num_feat_shown) 
        if save_plot_as_pdf: 
            plot_name = 'local_waterfall_plot_' + self.model_estimator.__class__.__name__ + key_value +  
                        '.pdf' 
            plt.savefig(plot_name, format='pdf', dpi=1200, bbox_inches='tight') 
 
    def _get_local_explanation_object(self, key_value, second_key_value=None): 
        self._check_create_shap_objects_has_run() 
        self._check_calc_global_explanation_has_run() 
        self._check_index_is_in_shap_explanation_data(key_value=key_value,   
                                                      second_key_value=second_key_value) 
        key_value_index = int(self._get_index_of_key_value(key_value=key_value,  
                                                           second_key_value=second_key_value)) 
        row_number = self._get_row_number_of_global_shap_values(index=key_value_index) 
        local_explanation_object = self.global_explanation_object[row_number, :] 
        return local_explanation_object  
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Class Shap continued 

    def get_info_about_key_vals(self, key_value, second_key_value=None): 
        key_value_index = self._get_index_of_key_value(key_value=key_value,  
                                                       second_key_value=second_key_value) 
        if second_key_value is not None: 
            info_text_0 = f'INFO: The {self.key_name_in_dataframes} = {key_value} with ' \ 
                          f'{self.second_key_name_in_dataframes} = {second_key_value} ' 
        else: 
            info_text_0 = f'INFO: The {self.key_name_in_dataframes} = {key_value} ' 
        if key_value_index in self.shap_explanation_data.index: 
            info_text_1 = f'IS in the shap_explanation_data (reduced data set) ' 
        else: 
            info_text_1 = f'IS NOT in the shap_explanation_data (reduced data set) ' 
        if key_value_index in self.shap_explanation_data_all.index: 
            info_text_2 = f'and IS in the shap_explanation_data_all !' 
        else: 
            info_text_2 = f'and IS NOT in the shap_explanation_data_all !' 
        if key_value_index not in self.shap_explanation_data.index and key_value_index not in  
                                                                   self.shap_explanation_data_all.index: 
            info_text_3 = f' Thus, the searched data is NOT in the provided "{self.shap_data_set}" data set  
                          !' 
        else: 
            info_text_3 = '' 
        print(info_text_0 + info_text_1 + info_text_2 + info_text_3) 
 
    def _get_index_of_key_value(self, key_value, second_key_value) -> int or ValueError: 
        if self.second_key_name_in_dataframes is not None and second_key_value is None: 
            raise FileNotFoundError( 
                f'Please provide a parameter value for the second_key "{self.second_key_name_in_dataframes}"  
                !') 
        if self.second_key_name_in_dataframes is None and second_key_value is not None: 
            raise TypeError( 
                f'The parameter value for the second_key cannot be processed! ' 
                f'Please omit the parameter value {second_key_value} !') 
        if second_key_value is None: 
            condition = (self.key_values == key_value) 
        else: 
            condition = (self.key_values[self.key_name_in_dataframes] == key_value) & \ 
                        (self.key_values[self.second_key_name_in_dataframes] == second_key_value) 
        if len(self.key_values[condition]) == 1: 
            return self.key_values[condition].index[0] 
        else: 
            raise ValueError( 
                f'Either the row values for {self.key_name_in_dataframes} = {key_value} and ' 
                f'{self.second_key_name_in_dataframes} = {second_key_value} were not found or the row index   
                for the ' 
                f'first is different from the row index of the latter. Please check your entries !') 
 
    def _get_row_number_of_global_shap_values(self, index: int) -> int: 
        check_parameter_is_of_type(parameter=index, parameter_type=int) 
        return np.where(self.global_shap_values.index == index)[0][0] 
 
    def _get_shap_explanation_data(self): 
        self.shap_data_set = self.configuration.get_config_setting(config_section='Model.Explanation', 
                                                                   config_name='shap_data_for_explanation') 
        if self.shap_data_set == 'train': 
            self.shap_explanation_data = self.shap_explanation_data_all = self.X_train 
        elif self.shap_data_set == 'test': 
            self.shap_explanation_data = self.shap_explanation_data_all = self.X_test 
        elif self.shap_data_set == 'monthly': 
            self._check_data_for_prediction_is_set() 
            self.shap_explanation_data = self.shap_explanation_data_all = self.data_for_prediction.loc[:, 
                                                                          self.X_train.columns.tolist()] 
        else: 
            raise FileNotFoundError(f'ERROR: {self.shap_data_set} not found or it is not a valid  
                                                                            shap_data_set name!') 
 
    def _calc_keys(self): 
        if self.second_key_name_in_dataframes is None: 
            self.keys = self.key_name_in_dataframes 
        else: 
            self.keys = list((self.key_name_in_dataframes, self.second_key_name_in_dataframes)) 
 
    def _calc_key_values(self): 
        if self.shap_data_set == 'monthly': 
            self._check_data_for_prediction_is_set() 
            self.key_values = self.data_for_prediction.loc[:, self.keys] 
        else: 
            self.key_values = self.X.loc[:, self.keys]  
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Class Shap continued 

    def _reduce_shap_explanation_data_rows(self): 
        max_num_data_rows_config = \ 
            int(self.configuration.get_config_setting(config_section='Model.Explanation', 
                                                      config_name='shap_max_num_explanation_data_rows')) 
        num_data_rows_in_shap_explanation_data = len(self.shap_explanation_data.index) 
        num_data_rows = min(max_num_data_rows_config, num_data_rows_in_shap_explanation_data) 
        if num_data_rows != num_data_rows_in_shap_explanation_data: 
            print(f'The size of the shap_explanation_data is now reduced from  
                  {num_data_rows_in_shap_explanation_data}' 
                  f' rows to {num_data_rows} rows !') 
        randomized_rows_list = random.sample(self.shap_explanation_data.index.to_list(), num_data_rows) 
        randomized_index = self.shap_explanation_data.index.isin(randomized_rows_list) 
        self.shap_explanation_data = self.shap_explanation_data[randomized_index] 
 
    def _check_data_for_prediction_is_set(self): 
        if self.data_for_prediction is None: 
            raise TypeError('"data_for_prediction" not set yet. Please load it first !') 
 
    def _check_shap_dataset_is_set(self): 
        if self.shap_explanation_data is None: 
            raise TypeError('"shap_explanation_data" not set yet. Please run create_shap_objects()-method  
                            first !') 
 
    def _check_create_shap_objects_has_run(self): 
        if not self._create_shap_objects_has_run: 
            raise TypeError('Run create_shap_objects() method first !') 
 
    def _check_calc_global_explanation_has_run(self): 
        if not self._calc_global_explanation_has_run: 
            raise TypeError('Run calc_global_explanation() method first !')  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 
 

10. functions.py 

PredictionInput = namedtuple('PredictionInput', ( 
    'key_name_in_dataframes', 'model_best_estimator', 'estimator_is_pipeline', 'features_in_training', 
    'name_of_target')) 
TransferModelInput = namedtuple('TransferModelInput', 
                                ('transfer_model_targets', 'name_of_target', 'key_name_in_dataframes')) 
ExplanationInput = namedtuple('ExplanationInput', ( 
    'model_best_estimator', 'X', 'X_train', 'X_test', 'key_name_in_dataframes', 
    'second_key_name_in_dataframes')) 
 
 
def check_parameter_is_of_type(parameter: any, parameter_type: object): 
    error_message = f'Provided parameter {parameter!s} is not of required type {parameter_type!s}. Please  
                    check !' 
    if isinstance(parameter_type, list): 
        if not type(parameter) in parameter_type: 
            raise TypeError(error_message) 
    else: 
        if not type(parameter) is parameter_type: 
            raise TypeError(error_message) 
 
 
def dataframe_col_name_to_num_list(dataframe: pd.DataFrame, col_names: list) -> list: 
    check_parameter_is_of_type(parameter=dataframe, parameter_type=pd.DataFrame) 
    check_parameter_is_of_type(parameter=col_names, parameter_type=list) 
    return [dataframe.columns.get_loc(col) if (type(col) == str) else col for col in 
            col_names] 
 
 
def check_list_has_elements(parameter_list: list): 
    if len(parameter_list) == 0: 
        raise IndexError(f'Provided parameter "{parameter_list!s}" has no elements. Please check !') 
 
 
def get_key_values_where_index_is_in_both_dataframes(df_one: pd.DataFrame, df_two: pd.DataFrame,  
                                                     key_in_df_one: str, 
                                                     second_key_in_df_one: str = None) -> list: 
    check_parameter_is_of_type(parameter=df_one, parameter_type=pd.DataFrame) 
    check_parameter_is_of_type(parameter=df_two, parameter_type=pd.DataFrame) 
    check_parameter_is_of_type(parameter=key_in_df_one, parameter_type=str) 
    if second_key_in_df_one is None: 
        return df_one[df_one.index.isin(df_two.index)][key_in_df_one].values.tolist() 
    else: 
        check_parameter_is_of_type(parameter=second_key_in_df_one, parameter_type=str) 
        return df_one[df_one.index.isin(df_two.index)].loc[:, [key_in_df_one,  
                                                           second_key_in_df_one]].values.tolist() 
 
 
def make_param_grid_for_pipe_gridsearch(name_of_step_in_pipe: str, est_params: dict, 
                                        existent_pipe_param_grid: dict = None): 
    # Parameters of pipelines can be set using ‘__’ plus the name of the parameter: 
    parameter_grid = {} 
    new_grid = {name_of_step_in_pipe + '__' + k: v for k, v in est_params.items()} 
    if existent_pipe_param_grid: 
        parameter_grid.update(existent_pipe_param_grid) 
    parameter_grid.update(new_grid) 
    return parameter_grid 
 
 
def winsorize_for_function_transformer(np_array, lower_bound: float = 0.00, upper_bound: float = 1.00): 
    # Columns are not passed here as they are passed in the transformer tuple. 
    # As the transformer currently (March 2021) only works on numpy arrays and cannot iterate over columns, 
    # we must adjust the winsorize-function here. 
    lower = np.quantile(np_array, lower_bound, axis=0, interpolation='higher') 
    upper = np.quantile(np_array, upper_bound, axis=0, interpolation='lower') 
    np_array = np.clip(np_array, lower, upper) 
    return np_array  
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functions.py continued 

def make_preprocessing_pipeline_for_cv_with_function(unfitted_estimator, 
                                                     impute_columns: list = None,  
                                                     winsorize_columns: list = None, 
                                                     scale_columns: list = None, 
                                                     impute_strategy: str = 'median',  
      impute_knn_num_neighbors: int = 3, 
                                                     scale_strategy: str = 'standard', 
                                                     scale_min_max_range: tuple = (0, 1), 
                                                     scale_robust_quantile_range: tuple = (25, 75), 
                                                     winsorize_lower_bound: float = 0.00, 
                                                     winsorize_upper_bound: float = 1.00) -> Pipeline: 
    # (integers) Possible impute_strategies = ['median', 'mean', 'most_frequent', 'constant', 'knn'] 
    impute_set = set(impute_columns) if impute_columns is not None else set() 
    winsorize_set = set(winsorize_columns) if winsorize_columns is not None else set() 
    scale_set = set(scale_columns) if scale_columns is not None else set() 
    impute_winsorize_scale_set = impute_set & winsorize_set & scale_set 
    impute_winsorize_scale_list = list(impute_winsorize_scale_set) 
    impute_only_list = list(impute_set - winsorize_set - scale_set) 
    scale_only_list = list(scale_set - impute_set - winsorize_set) 
    winsorize_only_list = list(winsorize_set - impute_set - scale_set) 
    impute_scale_list = list(impute_set.intersection(impute_set, scale_set) - impute_winsorize_scale_set) 
    impute_winsorize_list = list(impute_set.intersection(winsorize_set) - impute_winsorize_scale_set) 
    winsorize_scale_list = list(winsorize_set.intersection(scale_set) - impute_winsorize_scale_set) 
 
    # No1: Imputers 
    if impute_strategy == 'knn': 
        impute_function = KNNImputer(n_neighbors=impute_knn_num_neighbors, missing_values=np.nan) 
    else: 
        impute_function = SimpleImputer(strategy=impute_strategy, copy=False, missing_values=np.nan) 
 
    # No2: Winsorizer 
    # Takes function, in this case the function winsorize_for_function_transformer() from above 
    winsorize_function = FunctionTransformer(func=winsorize_for_function_transformer, 
                                             kw_args={'lower_bound': winsorize_lower_bound, 
                                                      'upper_bound': winsorize_upper_bound}) 
 
    # No3: Scalers 
    scalers = {'standard': StandardScaler(copy=False, with_mean=True, with_std=True), 
               'robust': RobustScaler(with_centering=True, with_scaling=True, 
                                      quantile_range=scale_robust_quantile_range, copy=False,  
                                      unit_variance=False), 
               'maxabs': MaxAbsScaler(copy=False), 
               'minmax': MinMaxScaler(feature_range=scale_min_max_range, copy=False, clip=False), 
               'power': PowerTransformer(copy=False, method='yeo-johnson', standardize=True)} 
    scale_function = scalers.get(scale_strategy, 'Error: The scale_function could not be found') 
    preprocess_pipeline_steps = [] 
    if len(impute_winsorize_scale_list) > 0: 
        impute_winsorize_scale = Pipeline( 
            steps=[('impute', impute_function), 
                   ('winsorize', winsorize_function), 
                   ('scale', scale_function)]) 
        impute_winsorize_scale_tuple = ('impute_winsorize_scale', impute_winsorize_scale,  
                                         impute_winsorize_scale_list) 
        preprocess_pipeline_steps.append(impute_winsorize_scale_tuple) 
 
    if len(impute_winsorize_list) > 0: 
        impute_winsorize = Pipeline( 
            steps=[('impute', impute_function), 
                   ('winsorize', winsorize_function)]) 
        impute_winsorize_tuple = ('impute_winsorize', impute_winsorize, impute_winsorize_list) 
        preprocess_pipeline_steps.append(impute_winsorize_tuple) 
 
    if len(impute_scale_list) > 0: 
        impute_scale = Pipeline( 
            steps=[('impute', impute_function), 
                   ('scale', scale_function)]) 
        impute_scale_tuple = ('impute_scale', impute_scale, impute_scale_list) 
        preprocess_pipeline_steps.append(impute_scale_tuple) 
 
    if len(winsorize_scale_list) > 0: 
        winsorize_scale = Pipeline( 
            steps=[('winsorize', winsorize_function), 
                   ('scale', scale_function)]) 
        winsorize_scale_tuple = ('winsorize_scale', winsorize_scale, winsorize_scale_list) 
        preprocess_pipeline_steps.append(winsorize_scale_tuple) 
 
    if len(impute_only_list) > 0: 
        impute_only_tuple = ('impute_only', impute_function, impute_only_list) 
        preprocess_pipeline_steps.append(impute_only_tuple) 
 
    if len(winsorize_only_list) > 0: 
        winsorize_only_tuple = ('winsorize_only', winsorize_function, winsorize_only_list) 
        preprocess_pipeline_steps.append(winsorize_only_tuple) 
 
    if len(scale_only_list) > 0: 
        scale_only_tuple = ('scale_only', scale_function, scale_only_list) 
        preprocess_pipeline_steps.append(scale_only_tuple) 
 
    preprocess_transformer = ColumnTransformer(transformers=preprocess_pipeline_steps, remainder='passthrough') 
 
    if preprocess_transformer: 
        return Pipeline(steps=[('preprocess_transformer', preprocess_transformer), ('estimator', unfitted_estimator)]) 
    else: 
        raise ValueError( 
            'The preprocess_transformer contains no data. preprocess_transformer is: '.format(preprocess_transformer))  
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11. config.ini 

[DEFAULT] 
base_path = not disclosed for confidentiality reasons 
 
[Model.General] 
test_set_size = 0.3 
num_cv_folds = 5 
scoring = ['roc_auc'] 
 
[Model.CV.Preprocessing] 
# In the respective columns, fill in the feature names in parenthesis ('') separated by comma (,) 
# If all columns shall be processed, replace empty list bracket by 'All' 
impute = {'impute_columns': [], 'impute_strategy': 'median', 'impute_knn_num_neighbors': 3} 
winsorize = {'winsorize_columns': [], 'winsorize_lower_bound': 0.00, 'winsorize_upper_bound': 1.00 } 
scale = {'scale_columns': 'All', 'scale_strategy': 'standard', 'scale_min_max_range': (0, 1), 'scale_robust_quantile_range': 
(25, 75)} 
 
[Model.Hyperparams] 
logit = {'C': [0.1], 'class_weight': [None], 'dual': [False], 'fit_intercept': [True], 'intercept_scaling': [1], 'l1_ratio': 
[None], 'max_iter': [100], 'multi_class': ['auto'], 'n_jobs': [None], 'penalty': ['l2'], 'random_state': [None], 'solver': 
['lbfgs'], 'tol': [0.0001], 'verbose': [0], 'warm_start': [False]} 
rfc = {'bootstrap': [True], 'ccp_alpha': [0.0], 'class_weight': [None], 'criterion': ['gini'], 'max_depth': [None], 
'max_features': ['log2'], 'max_leaf_nodes': [None], 'max_samples': [None], 'min_impurity_decrease': [0.0], 
'min_impurity_split': [None], 'min_samples_leaf': [10], 'min_samples_split': [20], 'min_weight_fraction_leaf': [0.0], 
'n_estimators': [100], 'n_jobs': [None], 'oob_score': [False], 'random_state': [None], 'verbose': [0], 'warm_start': [False]} 
xgb = {'objective': ['binary:logistic'], 'base_score': [None], 'booster': [None], 'colsample_bylevel': [None], 
'colsample_bynode': [None], 'colsample_bytree': [None], 'gamma': [None], 'gpu_id': [None], 'importance_type': ['gain'], 
'interaction_constraints': [None], 'learning_rate': [None], 'max_delta_step': [None], 'max_depth': [None], 'min_child_weight': 
[10], 'missing': [np.nan], 'monotone_constraints': [None], 'n_estimators': [200], 'n_jobs': [None], 'num_parallel_tree': 
[None], 'random_state': [None], 'reg_alpha': [None], 'reg_lambda': [None], 'scale_pos_weight': [None], 'subsample': [None], 
'tree_method': [None], 'validate_parameters': [None], 'verbosity': [None]} 
 
[Model.Explanation] 
shap_background_data_num_samples = 100 
# For what set shall SHAP-values be calculated? test set ("test"), train set ("train") or monthly ("monthly") data?: 
shap_data_for_explanation = train 
shap_max_num_explanation_data_rows = 20000 
 
[Original.Model.Training] 
file_path = %(base_path)s/OriginalModel/Training/ 
learn_data_preprocessed = orig_anonym_learn_data_preprocessed.csv 
 
[Original.Model.Monthly] 
file_path =  %(base_path)s/OriginalModel/Monthly/ 
data_for_prediction = prediction_data_anonym_202009.csv 
result_dataframe = result_dataframe_anonym.csv 
quantile_portfolio = quantile_portfolio_anonym_202009.csv 
prediction_input_object =  {'RFC': 'prediction_input_object_rfc.joblib', 'Logit': 'prediction_input_object_logit.joblib', 
'XGB': 'prediction_input_object_xgb.joblib'} 
 
[Original.Model.Models] 
file_path =  %(base_path)s/OriginalModel/Models/ 
logit = logit_anonym.joblib 
rfc = rfc_anonym.joblib 
xgb = xgb_anonym.joblib 
 
[Original.Model.Explanation] 
file_path = %(base_path)s/OriginalModel/Explanation/ 
explanation_input_object =  {'RFC': 'explanation_input_object_rfc.joblib', 'Logit': 'explanation_input_object_logit.joblib', 
'XGB': 'explanation_input_object_xgb.joblib'} 
 
[Transfer.Model.Cutoff] 
estimators_for_cutoff = ['RandomForestClassifier', 'LogisticRegression', 'XGBClassifier'] 
cutoff_threshold = 90.0 
 
[Transfer.Model.Training] 
file_path =  %(base_path)s/TransferModel/Training/ 
learn_data_raw_part_1 = zv_1_anonym_202009.csv 
learn_data_raw_part_3 = zv_3_anonym_202009.csv 
learn_data_preprocessed = zv_1_3_anonym_preprocessed_202009.csv 
learn_data_feat_engineered = zv_1_3_anonym_feat_engineered_202009.csv 
transfer_model_input_object = {'RFC': 'transfer_model_input_object_rfc.joblib', 'Logit': 
'transfer_model_input_object_logit.joblib', 'XGB': 'transfer_model_input_object_xgb.joblib'} 
 
[Transfer.Model.Models] 
file_path =  %(base_path)s/TransferModel/Models/ 
logit = logit_anonym.joblib 
rfc = rfc_anonym.joblib 
xgb = xgb_anonym.joblib 
 
[Transfer.Model.Explanation] 
file_path = %(base_path)s/TransferModel/Explanation/ 
explanation_input_object =  {'RFC': 'explanation_input_object_rfc_202009.joblib', 'Logit': 
'explanation_input_object_logit_202009.joblib', 'XGB': 'explanation_input_object_xgb_202009.joblib'}  

 

 

 



81 
 

12. feature indexes 

ensemble_index = ['orig_key_1', 'orig_key_3', 'orig_key_2', 'orig_feat_133', 'orig_feat_36', 
                  'orig_feat_99', 'orig_feat_3', 'orig_feat_74', 'orig_feat_97', 'orig_feat_5', 
                  'orig_feat_109', 'orig_feat_21', 'orig_feat_104', 'orig_feat_22', 'orig_feat_78', 
                  'orig_feat_147', 'orig_feat_187', 'orig_feat_7', 'orig_feat_4', 'orig_feat_2', 
                  'orig_feat_145', 'orig_feat_75', 'orig_feat_82', 'orig_feat_60', 'orig_feat_88', 
                  'orig_feat_1', 'orig_feat_29', 'orig_feat_98', 'orig_feat_76', 'orig_feat_124', 
                  'orig_feat_47', 'orig_feat_25', 'orig_feat_144', 'orig_feat_155', 'orig_feat_31'] 
 
logit_index = ['orig_key_1', 'orig_key_3', 'orig_key_2', 'orig_feat_36', 'orig_feat_187', 
               'orig_feat_239', 'orig_feat_526', 'orig_feat_602', 'orig_feat_39', 'orig_feat_590', 
               'orig_feat_530', 'orig_feat_155', 'orig_feat_527', 'orig_feat_528', 'orig_feat_579', 
               'orig_feat_29', 'orig_feat_60', 'orig_feat_50', 'orig_feat_237', 'orig_feat_392', 
               'orig_feat_546', 'orig_feat_569', 'orig_feat_511', 'orig_feat_354', 'orig_feat_47', 
               'orig_feat_16', 'orig_feat_25', 'orig_feat_28', 'orig_feat_591', 'orig_feat_345', 
               'orig_feat_488', 'orig_feat_72', 'orig_feat_474', 'orig_feat_348', 'orig_feat_62', 
               'orig_feat_346', 'orig_feat_603', 'orig_feat_363', 'orig_feat_4', 'orig_feat_303', 
               'orig_feat_552', 'orig_feat_572', 'orig_feat_7', 'orig_feat_485', 'orig_feat_323', 
               'orig_feat_107', 'orig_feat_631', 'orig_feat_547', 'orig_feat_409', 'orig_feat_466', 
               'orig_feat_643', 'orig_feat_571', 'orig_feat_182', 'orig_feat_356', 'orig_feat_604', 
               'orig_feat_31', 'orig_feat_573', 'orig_feat_421', 'orig_feat_26', 'orig_feat_338', 
               'orig_feat_465', 'orig_feat_171', 'orig_feat_109', 'orig_feat_594', 'orig_feat_640', 
               'orig_feat_252', 'orig_feat_621', 'orig_feat_534', 'orig_feat_623', 'orig_feat_203', 
               'orig_feat_646', 'orig_feat_543', 'orig_feat_124', 'orig_feat_42', 'orig_feat_248', 
               'orig_feat_164', 'orig_feat_365', 'orig_feat_58', 'orig_feat_126', 'orig_feat_24', 
               'orig_feat_599', 'orig_feat_5', 'orig_feat_128', 'orig_feat_322', 'orig_feat_377', 
               'orig_feat_328', 'orig_feat_184', 'orig_feat_629', 'orig_feat_176', 'orig_feat_650', 
               'orig_feat_567', 'orig_feat_144', 'orig_feat_378', 'orig_feat_468', 'orig_feat_98', 
               'orig_feat_376', 'orig_feat_563', 'orig_feat_371', 'orig_feat_514', 'orig_feat_440', 
               'orig_feat_544', 'orig_feat_472']  


