
Department of Computer Science

Master-Thesis

Constructing a Knowledge Graph by
extracting information from financial

news articles

Rainer Gogel

Student-ID: 1272442

Advisor: Prof. Dr. Joerg Schaefer

Co-Advisor: Prof. Dr. Baris Sertkaya

November 11, 2024

Statutory Declaration

I herewith declare that I have completed this Master-Thesis independently, with-
out making use of other than the specified literature and aids. All parts that were
taken from published and non-published texts either verbally or in substance are
clearly marked as such. This thesis has not been presented to any examination
office before.

Frankfurt am Main, November 10, 2024

Rainer Gogel

Signature

2

Acknowledgements

I would like to express my sincere gratitude to Professor Dr. Joerg Schaefer and
Professor Dr. Baris Sertkaya for their willingness to supervise this Master-Thesis.
I am particularly grateful to Professor Dr. Joerg Schaefer for stepping in as my
primary supervisor at short notice, enabling me to escape an unpleasant situation.

I am also grateful to them for being a part of my academic journey and for their
guidance along the way. Their expertise, passion for their field, and dedication to
imparting knowledge through insightful and inspiring lectures and exercises have
significantly enriched this journey. I am truly grateful for the wonderful learning
experience they have provided.

3

Summary

Reading and understanding news articles takes time and effort and some readers
are only interested in information that is relevant to them. This Master-Thesis
project demonstrates how a user, who is only interested in news about certain
companies and topics, can retrieve such information from financial news articles
in an efficient manner.

The project’s code extracts company names and their Coreference from the news
text, classifies this text into different topic classes and stores this information in
a Knowledge Graph. This way, the user can retrieve the desired information and
discover complex relationships by querying the Knowledge Graph or by communi-
cating with the Knowledge Graph’s ChatBot (Graph Bot).

In the Information Extraction Pipeline, different approaches were studied, im-
plemented in code and compared with each other. One of the key findings was
that Generative LLMs can be used for a wide range of extraction tasks and that
these models often outperform other, more traditional approaches.

Another key finding is that the retrieved information from the Graph Bot should
also be more accurate than answers coming from a typical LLM ChatBot, even if
that LLM ChatBot has a traditional RAG system attached to it. This is because
the Graph Bot’s response is more based and focused on the stored news articles
in the Knowledge Graph and less on next-word probabilities and vector similarities.

Such a Knowledge Graph can be seen as an alternative RAG system that might
replace the more commonly used vector databases there. This is supported by a
recently published and influential research paper by Microsoft [33] that points in
the same direction.

4

Glossary

Anaphora Expression, most often a pronoun or other pro-form, that depends upon
an antecedent expression [92]. 50, 51, 55

ANN Artificial Neural Network. 20, 26, 27, 28, 35, 38, 55, 113

Antecedent Word that establishes the meaning of a pronoun or other pro-form
[93]. 50, 51

BERT Bidirectional Encoder Representations from Transformers, a pretrained
LLM [31]. 17, 29, 54, 74, 100

Cataphora Preceding expression, whose meaning is determined or specified by the
later expression [94]. 51

CNN Convolutional Neural Network. 17

Content Words Content Words possess semantic content and contribute to the
meaning of the sentence. Nouns, verbs, adjectives and adverbs are commonly
considered Content Words [72]. 23

Coreference Two or more expressions refering to the same person or thing [73].
4, 12, 50, 51, 52, 53, 54, 55, 56, 58, 62, 64, 65, 67, 68, 84, 106

Coreference Cluster Cluster of referencers in a semantic equivalence relation with
the same referent [81]. 51, 55, 56, 57, 58, 67

Coreference Resolution Task of finding all expressions that refer to the same
entity in a text [44]. 10, 12, 14, 15, 18, 34, 50, 52, 53, 54, 55, 68, 78, 106, 113

Corpus Collection or dataset of multiple unique documents. 20, 21, 22, 23

CPython Default implementation of the Python programming language. 18

CRF Conditional Random Fields, a type of Markov Network. 37, 38, 113

Cypher Query script language for Knowledge Graphs created by neo4j. 13, 88,
89, 92, 97, 98, 100, 101, 104, 105, 106, 114

5

Document Text that might contain multiple sentences such as a news article. 20,
21, 22, 23, 24

Document Term Matrix Tabular data structure where rows represent references
to documents and columns represent the unique terms of a vocabulary. These
unique terms can be words or tokens and are usually sorted alphabetically.
The table entries are counts of these terms found in the respective document.
20, 21, 24, 71, 72

Function Words Function Words have little semantic meaning and mainly express
grammatical relationships of words within a sentence [75]. 23

Generative LLM A generative LLM that generates text in response to a Prompt
request sent to it. 4, 9, 10, 34, 35, 38, 39, 45, 46, 47, 48, 52, 56, 57, 60, 62,
63, 64, 67, 68, 73, 78, 79, 81, 83, 105, 106, 107

GPE Named entity of type Geo-Political Entity. 36

Graph Bot Chatbot that is attached to the Knowledge Graph. 4, 10, 13, 35, 101,
103, 104, 105, 106, 114

Hallucination Presentation of false or misleading information as facts by an LLM,
see: [76]. 34, 35, 39

HMM Hidden Markov Model. 37, 113

IRI Internationalized Resource Identifier as defined by [90]. 86

ISIN International Securities Identification Number. 90, 94, 96

JSON JavaScript Object Notation. 64, 98

LDA Latent Dirichlet Allocation. 10, 72, 73

Lemmatization Process of converting inflected forms of a word to their lemma or
semantic word root such as is, was, were to be, [77]. 17, 23

LLM Large Language Model. 4, 6, 7, 13, 23, 34, 35, 38, 39, 40, 48, 51, 56, 57, 60,
63, 64, 67, 72, 73, 79, 80, 81, 83, 101, 103, 104, 105, 107

LOC Named entity of type Location. 36, 37, 38, 39, 69

Mention Subjects or entities mentioned in a text to which coreferences exist. 50,
51, 52, 53, 54

6

N-Gram Sequence of N adjacent symbols such as letters in particular order [23].
51

NER Named Entity Recognition. 9, 14, 15, 18, 34, 36, 37, 38, 39, 40, 41, 46, 47,
48, 49, 51, 56, 59, 62, 65, 67, 68, 84, 113

NLP Natural Language Processing. 16, 18, 20, 23, 34, 50, 69, 73

NMF Non-Negative Matrix Factorization, a Matrix decomposition method. 10,
71, 72, 73, 76, 114

ORG Named entity of type Organization. 17, 36, 38, 69

PER Named entity of type Person. 17, 36, 37, 38, 50, 69

POS Part of Speech or word class such as Noun, Verb, Adverb, etc. 17, 18, 51,
56, 57

Prompt Textual instruction sent to an LLM ChatBot in expectation to receive a
desired response. 6, 34, 38, 39, 46, 47, 48, 56, 60, 62, 63, 68, 79, 80, 81, 82,
102, 103, 104, 105, 113

RAG Retrieval Augmented Generation. 4, 34, 35, 105, 106

REGEX Regular Expression. 16, 36, 39, 40, 41, 42, 43, 44, 45, 46, 48, 64, 65

ROBERTA Robustly Optimized BERT Pre-training Approach, a pretrained LLM
[51]. 17

Span Chain of multiple tokens, often a spacy data object [34]. 18, 36, 38, 39, 45,
50, 51, 53, 54, 55, 58, 59, 65

SpanBERT Pretrained LLM, see: [42]. 54, 55

Stemming Process of converting inflected or derived words to their word stem by
removing suffixes such as fishing, fished, fisher to fish [78]. The semantic
meaning can change in the process such as fisher and fish are semantically
different. 23

Stop Words Common words in a natural language that carry neither much se-
mantic nor grammatical information. Stop Word types include articles, con-
junctions, prepositions, pronouns and very common verbs such as is [79].
22

7

SVD Singular Value Decomposition, a Matrix decomposition method. 10, 72, 114

TF-IDF Term-Frequency-times-Inverse-Document-Frequency. 23, 24, 25, 75, 76,
77

Token Word or Sub-Word such as a syllable or a letter, often a spacy data object
[34]. 18, 20, 38, 39, 45, 50, 51, 53, 54, 55, 56, 59, 65

Transformer ANN architecture laid out in the seminal Attention is all you need
paper [98]. 28, 29, 31, 34, 38, 56, 113

Vocabulary Set of unique words in a corpus or, more generally, in a natural lan-
guage such as English. 20, 21, 22, 23, 25, 72, 75

8

Contents

1. Introduction 12
1.1. Overview . 12
1.2. Thesis and Code . 14
1.3. Thesis Outline . 14

2. Project Setup 15
2.1. Data . 15

2.1.1. News Articles . 15
2.1.2. Company Data . 16

2.2. Spacy . 16
2.2.1. Usage . 19

3. Text Representation 20
3.1. Overview . 20
3.2. Definitions . 20
3.3. Traditional Methods . 21

3.3.1. One-Hot-Encoding . 21
3.3.2. Bag-of-Words . 21
3.3.3. Document Similarities . 22
3.3.4. Feature Dimension Reduction 22
3.3.5. TF-IDF . 23

3.4. Word Embeddings1 . 24
3.4.1. Static Word Vectors . 24
3.4.2. Contextual Word Embeddings 28

3.5. Is a Generative LLM all you need? 34

4. NER - Named Entity Recognition 36
4.1. Background . 36

4.1.1. Rule-Based Models . 36
4.1.2. Machine Learning Models 36
4.1.3. Deep Learning Models . 38

4.2. Code-Implementation . 39
4.2.1. Implementation of Pre-Trained Model 39

1This section was mainly taken from [36]

9

4.2.2. Implementation of Rule-Base Model 40
4.2.3. Implementation of Generative LLM model 46
4.2.4. Information Extraction Pipeline 48

5. Coreference Resolution 50
5.1. Background . 50

5.1.1. Definitions . 50
5.1.2. Methods . 51

5.2. Models . 52
5.2.1. Pre-Trained Models . 52
5.2.2. Generative LLM Models . 56

5.3. Code Implementation . 57
5.3.1. Implementation of Pre-Trained Model 57
5.3.2. Implementation of Generative LLM Model 60
5.3.3. Comparing Pre-Trained vs. Generative LLM approach . . . 67
5.3.4. Information Extraction Pipeline 68

6. Topic Modelling 69
6.1. Information Extraction Types . 69
6.2. Traditional Topic Modelling . 70

6.2.1. NMF . 71
6.2.2. SVD . 72
6.2.3. LDA . 72

6.3. Embedding-based Topic Modelling 73
6.3.1. Pre-Trained Topic Models 73
6.3.2. BERTopic . 74

6.4. Topic Modelling with Generative LLMs 78
6.4.1. Comparing Pre-Trained vs. Generative LLM approach . . . 83

6.5. Information Extraction Pipeline . 83

7. Knowledge Graph2 85
7.1. Introduction . 85
7.2. Knowledge Graph Creation . 85
7.3. External Data . 94
7.4. Information Retrieval . 97
7.5. Sentence Embeddings and Sentiment 99
7.6. Graph Bot . 101

8. Conclusion 106

2Part of the Python code for this section was adopted from [37]

10

A. Explanation of MAIN.ipynb file 108

11

1. Introduction

1.1. Overview

The goal of this Master-Thesis project is to extract structured information from
unstructured text and store this information in a Knowledge Graph to facilitate
information retrieval. The unstructured text are financial news articles and the
target information to be extracted is information about certain corporate entities
or companies.
To extract the information, an Information Extraction Pipeline is built that

contains three main components:

Figure 1.1.: Information Extraction Pipeline

� NER: A Named Entity Recognition component that identifies the desired
company names in the text

� Coreference Resolution: A Coreference Resolution component that de-
tects references to previously identified company names

� Topic Modelling: A Topic Modelling component that classifies those sen-
tences in the text, that contain company names and their coreferences, into
different topic classes

The Information Extraction Pipeline yields sentences that contain company
names, their Coreferences and the respective topic for each of these sentences.
This information is then stored in a neo4j [84] Graph database according to the
following schema:

12

Figure 1.2.: Knowledge Graph Schema

There are three Node types in the Knowledge Graph:

� Sentence: the Sentence in which a Company is mentioned

� Topic: the Topic or overarching theme of this Sentence

� Company: the Company entity whose name is mentioned in the Sentence

� Article: the Article of which the Sentence is part of

A Sentence Node thus has three relationships to other Nodes in the Knowledge
Graph:

� is about: a Sentence is about a certain Topic

� is part of : a Sentence is part of an Article

� mentions: a Sentence mentions a Company

This structured representation of the unstructured text does not only allow for
fast retrieval of concrete information, but can also reveal complex relationships
between multiple companies, topics and articles.
The stored information can be retrieved via Cypher queries that can also be

generated by an LLM-based Graph Bot that first converts human text to Cypher
queries and then the results back to human-readable text.

13

1.2. Thesis and Code

This Master-Thesis consists of two separate parts, the written thesis and the ac-
companying Python code.

Python Code The Python code can be found in the following GitHub repository:

https://github.com/rainergo/UASFRA-MS-Thesis

The code could be used as a template for a production use case, but mainly serves
to support this Master-Thesis and to present the process rather than the result.
All functionalities of the code are aggregated and condensed in the Jupyter Note-
book

MAIN.ipynb

located in the root directory of the repository and explained in Appendix A. This
Notebook runs the entire pipeline from text to Knowledge Graph.

Target Use Case The Python code is targeted at a user with a particular focus
on financial news of publicly listed European companies in German language. This
focus is driven by my professional background in finance and personal interest in
this field.

1.3. Thesis Outline

This thesis will be divided into multiple chapters. In the chapter after this intro-
duction, I describe the source and nature of the text data.
Thereafter, I will describe the spacy [34] Python library and how it was used,
followed by an introduction to text representation.
In the fourth chapter, I start with a description of Named Entity Recognition
(NER) and how that pipeline component was implemented in code.
The same approach applies to the Coreference Resolution and Topic Modelling
chapters thereafter.
In the Knowledge Graph chapter, I show how the previously extracted data is fed
into the neo4j database and how information retrieval algorithms can reveal some
complex relations between news articles, companies and topics.
I conclude with what I learned from this project and where in hindsight I would
approach tasks differently.

14

https://github.com/rainergo/UASFRA-MS-Thesis

2. Project Setup

This chapter will describe the project’s data sources and the Python library spacy,
which was extensively used for the NER and Coreference Resolution components
in the Information Extraction Pipeline.

2.1. Data

The data consists of News Articles and Company Data. The dataset requirements
are derived from the project’s domain focus as outlined in section 1.2. This requires
that

� news articles must be in German language.

� news articles should mention companies, at least potentially.

� companies must be publicly listed on a stock exchange.

� companies must be based in Europe.

� such company and news articles data must be publicly available.

2.1.1. News Articles

Many news article datasets are available on platforms such as Kaggle [7], but it
seems that only a few of them are in German [7]. Most of the German news
datasets that I analyzed are either not rooted in the financial domain, outdated
for copyright reasons or deal with macroeconomic policies or broader economic
trends rather than company news.

As I could not find proper data that fits the outlined objectives, I decided to
scrape the information from financial news providers.

Sources The data was scraped from the websites of EQS-News [19] and dpa-AFX
[18], both business news hubs that aggregate multiple news sources. The text in the
html-files were converted to text files, cleaned and read into pandas [8] DataFrames.
The type of the news articles includes ad-hoc news, press releases, corporate news

15

and regulatory filings. These could be published by companies themselves or media
outlets such as newspapers, news agencies or other broadcasters.

Data Description Of the news articles, the article text, the article title and some
other metadata such as publication dates, authors, etc. were scraped. The news
articles contained many irregularities, errors, misspellings and phrases that were
not part of the actual news.
Multiple regular expression (REGEX) patterns and techniques were applied to
clean the text. Most of the errors and undesired phrases of the text could be
removed, but not all. So the subsequent models must handle them.
The news article dates range from May 1, 2023 through May 31, 2024 and its
frequency is daily. The daily data was aggregated on a monthly basis and the
pandas DataFrames were stored as Apache parquet [9] files.

2.1.2. Company Data

OpenBB [15] is an open source framework that aspires to replicate the function-
alities of the Bloomberg Terminal, a costly financial service product by the media
company Bloomberg [10]. OpenBB offers a wide range of functionalities, connects
data providers and is the data source for the company data used in the project.
Data for companies, that are publicly listed on bourses in

� France

� Germany

� Great Britain

� Spain

� Italy

� The Netherlands

and that are members of the main stock indexes there, were downloaded and stored
in an Apache parqet file. This file contains unique company names and their stock
ticker symbols for slightly above 2500 companies.

2.2. Spacy

Spacy [34] is a modular, open-source Python library that is commonly used for a
wide range of NLP-related tasks. For popular languages like English and German,
spacy offers pre-trained pipelines (see Fig.2.1) in different sizes and versions.

16

Figure 2.1.: Spacy Pipeline

The model sizes range from Small to Medium and Large, with bigger models
usually performing better than smaller ones.
The spacy-trained Transformer model for English is based on ROBERTA [51],

the one for German on BERT-German [31]. The TOK2VEC [34] embeddings for
the non-Transformer models (suffixes: sm, md, lg) are memory-efficient Multi-
Hash embeddings [57] with a CNN encoding layer [34].

Pipeline Components After downloading the models, by default, the modular
pipeline consists of a:

� Tokenizer: Segments text into tokens

� POS-Tagger: Assigns POS tags such as NOUN or VERB

� Dependency-Parser: Assigns syntactic dependency labels between POS-
tags and sets sentence boundaries

� Lemmatizer: Assigns base forms or lemmas (see: Lemmatization)

� Entity-Recognizer: Detects and labels named entities such as ORG or
PER

� Custom Components: Proprietary components implemented by the user

� Pipeline Plugins: External applications that are developed by others as a
spacy pipeline component

The Dependency-Parser and Entity-Recognizer modules in the pipeline were
separately trained with task-specific datasets and plugged back into the pipeline
[34] (see Fig.2.1).

17

Custom Component With a spacy Custom Component, users can implement
their own custom algorithms and functions. Compared to a pure Python imple-
mentation, these Custom Components are usually faster as they are optimized
with CPython in the background. This functionality was extensively used in the
project as the NER and Coreference Resolution pipeline components (see Fig.1.1)
were implemented with such Custom Components.

Pipeline Plugins Spacy Pipeline Plugins are applications and standalone pack-
ages that are developed by other software developers to be used as a spacy pipeline
component. Such registered plugins enhance the spacy ecosystem and can easily
be added by referencing it in the add pipe()-function. One such plugin studied
in the project is the package Crosslingual-Coreference (”xx coref”) [21] that was
loaded with the

nlp.add pipe(”xx coref”)

function.

Custom Extensions Users can also attach custom extensions to spacy’s Tokens
and Spans in a Doc-Object (see Fig.2.1) which allows them to tag or label certain
words or expressions in the text to further process them later. In the project,
such custom extensions were also used extensively. For instance: For a company
identified in the Span or Token of a document (Doc-object), the company name
and company symbol (stock tocker symbol) were attached to the custom extensions
comp name and comp symbol as in the following example:

doc. .comp name = ”Adidas AG”

doc. .comp symbol = ”ADS.DE”

Later on, all companies in a Doc-object can be collected and further processed.

Modularity and Custom Pipeline The Tokenizer -component is always required
in the pipeline, but all other components (see Fig.2.1) can easily be removed from
it if they are not needed for a specific NLP-task. For instance, if only a POS-tagger
is needed to identify Nouns, it can be enabled with the select pipes()-method which
also disables all other components except for the Tokenizer :

nlp.select pipes(enable=”tagger”)

18

2.2.1. Usage

The spacy Custom Pipeline was build with Python modules that can be found in
the following directory:

src/B spacy pipeline

In the spacy pipe build module and SpacyPipeBuild class, the method build pipe()
(Python-Code 1) controls the pipeline’s components:

60 case _, _:

61 raise ValueError(f'spaCy model for Natural language "{natural_language}" and task

"{spacy_task}" could not be loaded.')↪→

62 return nlp, vectorizer

63

64 def build_pipe(self):

65 if self.spacy_task != SpacyTask.BASIC:

66 self.func_init_extensions()

67 match self.spacy_task:

68 case SpacyTask.ALL:

69 self.nlp.select_pipes(enable=[self.vectorizer.factory_name])

70 self.api_parser()

71 match self.ner_method:

72 case ExtractionType.TRADITIONAL:

73 self.func_own_regex_search()

74 # self.api_entity_ruler()

75 self.func_comp_name_token_regex_match()

76 case ExtractionType.PRETRAINED:

77 self.api_ner()

78 match self.coref_method:

79 case ExtractionType.PRETRAINED:

80 self.func_coref_resolve_pretrained()

81 case ExtractionType.GENERATIVE_LLM:

Python-Code 1: Function: build pipe()

A pipeline component can be replaced by substituting it with the desired module
function depending on the specific task. All module functions are defined in the
SpacyPipeBuild class.

Other Python Libraries Beside spacy, other important Python libraries were
used, but these will be described within their particular scope in the subsequent
chapters.

19

3. Text Representation

3.1. Overview

The key question in text processing and NLP is how to encode text into numbers so
that computers can understand them. The process is also known as Vectorization
[55] and there are two main approaches to vectorize text.
The first and more traditional approach is to encode word or Token occurrence
counts. A more modern approach is to train Artificial Neural Networks (ANN)
to get text embeddings that also incorporate syntax and semantics. In the next
subsections, I will explain these encoding techniques as they form the foundation
for most of the subsequent chapters.

3.2. Definitions

In NLP, the terms Corpus, Vocabulary and Document are often interpreted dif-
ferently which requires clarification. In this thesis, a Document is defined as text
that might contain multiple sentences such as a news article in the data described
above. All news articles in the entire data set constitute the Corpus which refers
to a collection of documents. All unique words in a Corpus represent the Vocabu-
lary. A Document Term Matrix is a tabular data structure where rows represent
references to documents and columns represent the unique terms of a vocabulary.
Such terms or Tokens can either be words or sub-words and in a Document Term
Matrix represent its features. The data entries in the Document Term Matrix are
the feature values and show if or how often the term appears in the respective
document.
A simplified example can be seen in Fig.3.1 and in Fig.3.2:

20

Figure 3.1.: Sample Documents

The text in each row is a Document though in this example only contains one
sentence each and the Corpus here constitutes all six Documents.

Figure 3.2.: Document Term Matrix

The Document Term Matrix is shown in Fig.3.2 where the header row represents
the Vocabulary. The data entries in the table are the counts for each Vocabulary
term in each Document.

3.3. Traditional Methods

3.3.1. One-Hot-Encoding

Each Document in the Fig.3.1 can be represented by the respective row in Fig.3.2
when interpreted as a vector.

⃗document0 = [0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0]

If such vectors only contain binary ones and zeros, i.e. if they do not count word
occurrences but only indicate if a word is present or not, such vectors are called
One-Hot encoded vectors.

3.3.2. Bag-of-Words

The Document Term Matrix shown in Fig.3.2 also contains word counts as can be
seen from the Document in the last row:

⃗document5 = [2 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0]

21

Such vectors are known as Bag-of-Word vectors as they account for the frequency
of a word in a Document.

3.3.3. Document Similarities

After vectorization, it is possible to calculate similarities between sentences math-
ematically. One common way to do that is to calculate the cosine similarity of the
desired vectors which is the cosine of the angles between the two vectors [68]:

cosine similarity ab =
a⃗ · b⃗ T

|⃗a| · |⃗b|
(3.1)

For instance: The cosine similarity between document 0 and document 1 of the
Sample Documents (Fig.3.1) is calculated by:

cosine similarity 01 =
⃗document0 · ⃗document1

T

| ⃗document0| · | ⃗document1|
= 0.60

The high cosine similarity of 0.60 is also attributed to the fact that both docu-
ments contain the same words

[I, had, a, time, in]

some of which are considered Stop Words that do not carry much semantic infor-
mation.

3.3.4. Feature Dimension Reduction

Usually a Document contains far fewer terms than a Vocabulary which results
in sparse vectors where many features have zero values. Sparse vectors not only
increase the computational complexity and the risk to overfit a Machine Learning
model, but also are a sign that some important information in the data is missing
[67]. For this reason, it is common practice to reduce the Vocabulary and so the
vector and feature dimension.

Remove Stop Words

Stop Words include articles, conjunctions, prepositions, pronouns and very com-
mon verbs such as is. They appear in most Documents and thus do not contribute
to distinguish them. Beside commonly known Stop Words in a Corpus, there might
be additional domain-specific Stop Words such as the word for the currency unit
Euro in finance-related Documents.

22

Remove Function Words

NLP differentiates between Content Words and Function Words. Function Words
help to construct the grammatical relationships in a sentence whereas Content
Words serve to carry their semantic meaning. In Topic Modelling, the target is to
extract semantics. Thus, Function Words are less relevant and can be removed.

Reduce words to their Lemmas and Stems

Words appear in many different inflectional forms such as verb tenses (past, present
and future) and pluralizations. Lemmatization is the process to convert all such
forms to the lemma or root of the word [77]. This process removes some contextual
information but usually well preserves the semantic meaning of the text. Stemming
reduces a word to its word stem by clipping off some suffix chars. Contrary to
Lemmatization, this process can change the semantic meaning of the word (for
instance: fisher�fish) and thus must be applied carefully. Nevertheless, both
methods drastically reduce the size of the Vocabulary.

Others

Other methods to reduce the Vocabulary include the removal of non-words such
as punctuation chars and numbers from the text. If nouns in a specific domain
carry proportionally more information than other words, it might be beneficial to
remove all non-noun words.

3.3.5. TF-IDF

It is known from Information Theory that low probability terms carry much more
information than high probability terms [74]. Low probability terms are those
words that appear very seldom in a Corpus or in the Documents that were used
to train commonly used LLMs. If such low probability words appear much more
frequently in a certain Document than in the related Corpus, this might be an
indication that this word is important to understand the context of the particular
Document. This is the concept of TF-IDF:

23

TF-IDF = TF ∗ IDF

TF =
number of times the term appears in the document

total number of terms in the document

IDF = log (
number of documents in the corpus

number of documents in the corpus containing the term
)

(3.2)

The Term Frequency (TF) is the frequency a target word appears in a given
Document. In a Bag-of-Word approach (Sec.3.3.2), this number would go into the
Document Term Matrix, but in TF-IDF, it is first multiplied by the Inverse Docu-
ment Frequency (IDF). The IDF is the logarithm of the number of all Documents
divided by the number of those Documents that contain the target word. If the
frequency of the target word in all Document is low, then the IDF will be high
and this will increase the weight of the target word in the Document Term Ma-
trix. This can be seen from the Document Term Matrix in Fig.3.3 when TF-IDF
vectorization was used:

Figure 3.3.: Document Term Matrix with TF-IDF

Words that appear only once in all Documents (for instance the word apple)
have a higher weight in the TF-IDF Document Term Matrix than words that
appear very often (for instance the word ate).

3.4. Word Embeddings1

3.4.1. Static Word Vectors

As explained in section 3.3.1, words can be represented as one-hot encodings as
also shown in the example in Fig.3.4.

1This section was mainly taken from [36]

24

Figure 3.4.: One-Hot example

The first disadvantage of this approach is the computational inefficiency as each
word in our simple example in Fig.3.4 would require a sparse six-column vector
with five 0’s and only one 1. The second disadvantage is that this approach does
not encode syntactical or semantic word similarities as similar words would have
different and unrelated vector representations.

Manually crafted features

To encode syntactical or semantic word commonalities, one could think about
word characteristics or attributes and manually encode the magnitude of those
attributes for each word as shown in Fig.3.5. A horse is an animal, one can ride
it, it has four legs and is usually peaceful.
This is very similar to the Vocabulary in the TF-IDF and Bag-of-Word approach
outlined in Section 3.3.5, but differes from it in that the features here do not
represent actual words but contextual concepts. The feature animal only has
values in its respective vector position, not when the word animal itself appears,
but only when the contextual concept of an animal appears.

Figure 3.5.: Manually Crafted Features

The word horse would then be represented as a vector of values for each of these
handcrafted features (Fig.3.6):

25

Figure 3.6.: Word vector for the word horse

This approach ensures that related words are represented similarly as their values
in the respective vector position are close to each other. Such similarities can also
be calculated numerically by applying the cosine similarity method, see Equation
3.1. The cosine similarities between each pair of words in Figure 3.5 are depicted
in Fig.3.7.

Figure 3.7.: Exemplary Cosine Similarity Matrix based on Fig.3.5.

The cosine similarity for the word pair horse and apple, for instance, yields a
value of 0.42. For the word pair apple and banana however, this value is 1.0, owing
to the fact that both are fruits and in our simple example have the same feature
values at each index position of their word vector.

Learned features

Manually crafting feature values for every word in a vocabulary is cumbersome at
best. Better than crafting features by hand is to have a machine learning model
to learn these features and feature values. This is the word2vec approach Mikolov
et al. proposed in their seminal papers in 2013 [56, 55]. A shallow, two-layer ANN
(Fig.3.8) is trained with sentences that contain a masked word to be predicted
(target or dependent variable) based on its non-masked adjacent words (input or
independent variables) in that sentence.

26

Figure 3.8.: word2vec: Masked words learned by a shallow, two-layer ANN.

The number of learned features depends on the number of neurons in the middle
layer and the learned weights represent the respective feature values. The learned
features do not have names as before (like animal, rich, food, etc.) and thus cannot
be interpreted semantically by humans (easily) (Fig.3.9).

Figure 3.9.: The learned parameters/weights represent the feature values.

The problem with static word embeddings

The learned word vectors are also known as word embeddings and work well for
tasks such as measuring similarities between individual words. But they often fail

27

when the scope goes beyond just words towards the semantic meaning of whole
sentences. A sentence is simply not just a chain of individual and independent
words, but a construct containing interdependencies.
One of these word-wise interdependencies are homophones, i.e. words that are

spelt the same but have different meanings. The meaning of the word bank in the
sentence he withdraws money from his bank is strongly affected by the surrounding
words withdraws and money as they clearly suggest that bank in that sentence
refers to a financial institution. In contrast, the meaning of the same word bank
in the sentence he was fishing in the river from a sand bank is strongly affected by
the words river and sand (Fig.3.10).

Figure 3.10.: Homophone bank dependent on its context

When humans read these sentences, they derive the meaning of the word bank
by paying attention to these adjacent words [54].
There are more interdependencies in sentences than homophones, but in general

it can be said that the meaning of a word depends on its respective context. Word
embeddings such as word2vec [56, 55] are static in the sense that they treat equal
words alike without taking their context into account. This is one of the reasons
why static word embeddings such as word2vec often fail to understand the meaning
of sentences.

3.4.2. Contextual Word Embeddings

It can surely be said, that in 2017 a single research paper changed the world:
Attention is all you need by Vasvani et al. [98] laid out a new ANN-architecture
dubbed Transformer that is able to embedd text contextually. Transformers em-
brace the human attention principle discussed above, i.e. the ability to infer the
meaning of a word by paying attention to its adjacent words in that sentence.

28

Transformer Architecture

The Transformer architecture consists of Encoder (left blocks in Fig.3.11) and De-
coder (right blocks in Fig.3.11) stacks. The Encoder and Decoder stacks each have
N layers depending on the model version and size. In the basic pre-trained BERT
[31] model (bert-base-uncased), which was one of the first models to implement the
Transformer architecture, N is equal to 12, i.e. has 12 layers.

Figure 3.11.: Transformer Architecture: Encoder and Decoder

For encoding text, only the Encoder part of the Transformer is needed. For
generating text, the Decoder part is also needed (Fig.3.11).

Self-Attention

The central element in the architecture of Transformers is the self-attention mech-
anism in the Multi-Head-Attention module depicted in Fig.3.12.

29

Figure 3.12.: Multi-Head Attention. Image from: [31] and [59]

In the Multi-Head-Attention module, three different matrices named Query ,

Key and Value are learned in the training phase based on one and the same
static embeddings of the input words (Fig.3.13).

Figure 3.13.: InputEmbeddings · LinearLayer = Query , Key , Value

The next step in the Multi-Head Attention module during both, training and
inference (in a downstream task), is the matrix multiplication depicted in Fig.3.14
to produce the Attention Filter . It has the same dimension ([5, 5] for the given
sentence) as the length of the input text.

30

Figure 3.14.: Query · Key = Attention Filter

The task of the Attention Filter is to identify those adjacent words in a sentence
that help determine the context for and the meaning of a given word.
In the sample sentence time flies like an arrow, a human reader would probably

pay attention to the words arrow and time to determine the context and the
meaning of the word flies. A well-trained Attention Filter would thus probably
have higher values at the coordinate crossing for the word flies (2nd row), time
(1st column) and arrow (5th column).
The next step in the calculation process during training and inference is the

most important and the main reason why Transformers can embedd context: The
multiplication of the Attention Filter with the Value matrix.

Figure 3.15.: Attention Filter · Value = Filtered Value

The Value matrix is assumed to contain encoded information about the syntax

31

and semantics of the input text though still static at this stage. The Attention Filter
multiplies the Value matrix carrying over those values to the Filtered Value ma-
trix that are important to understand the context of the words. As the Attention Filter
is different for every sentence depending on its context, the resulting Filtered Value
matrix contains the context-dependent embeddings.
To stress this important point, an example will be given that focuses on just

one coordinate of the Filtered Value matrix: the 2nd row and the 1st column as
shown in Fig.3.16.

Figure 3.16.: Filtered Value : time flies like an arrow

time flies like an arrow It is assumed that the Attention Filter has identified
the words time and arrow to be important context words for the word flies in
the sentence time flies like an arrow. The Attention Filter thus shows exemplary
values of 0.33 for each of these context words and the word flies itself, and a value
of 0.00 for the remaining words like and an.
It is further assumed that the first column of the Value matrix represents a

semantically interpretable feature that humans would describe as food-like (like
the column food in the handcrafted feature table in Fig.3.5). If a given word in
a wider sense has something to do with food, it is assumed that the values in the
first column of the Value matrix are positive, else zero or negative. In Fig.3.16,
the exemplary food feature values for the word time and arrow are -2.00 as both
words are assumed to have nothing to do with food. The exemplary food feature
value for the word flies itself is assumed to be 0.00 (as some flies might be edible
insects and to make the point clearer). The dot product of the 2nd row of the
Attention Filter with the 1st column of the Value matrix so yields a value of
-1.3 at the 2nd row and 1st column of the Filtered Value matrix (see Fig.3.16).

32

The 2nd row of the Filtered Value matrix already represents the contextualized
or dynamic word embedding vector of the word flies in the sentence time flies like
an arrow. Whereas the food feature value in the Value matrix for the word flies
was 0.00, this value at the same coordinate in the Filtered Value matrix has
changed to -1.3. This change in the vector representation of the word flies can be
entirely attributed to the negative food feature value contributions coming from

the words time and arrow in the Value matrix.

fruit flies like a banana The same analysis is now done for the sentence fruit
flies like a banana shown in Fig.3.17.

Figure 3.17.: Filtered Value : fruit flies like a banana

Here, the assumption is that the Attention Filter has identified the words fruit
and banana to be important context words for the word flies, assigning the same
exemplary values of 0.33 to them, like before. The exemplary food feature values
for the word fruit and banana are now assumed to be +2.00 as both words are
strongly related to the idea of food. The exemplary food feature value for the
word flies itself has not changed as it is indirectly coming from the static Input
Embeddings. Every unique word (representation) in the Value matrix is the same
for all sentences. The dot product of the 2nd row of the Attention Filter with
the 1st column of the Value matrix now yields a positive value of +1.3 (see
Fig.3.17), again coming from a value of 0.00 in the Value matrix. This change
in the vector representation of the word flies in the Filtered Value matrix can
be entirely attributed to the positive food feature value contributions coming from

the words fruit and banana in the Value matrix.

Different embeddings for same word depending on context The application
of this principle to not only one column (here the food feature column), but to

33

all 64 columns of the Value and Filtered Value matrices, ensures that different
semantic and syntactic aspects of word inter-dependencies are accounted for. The
Filtered Value matrix is where all the attention magic plays out. Whereas the
Value matrix can be considered a static word embedding, the Filtered Value
matrix truly is a dynamic representation of words as it depends on the context
words that are identified by the Attention Filter and that are different for every
sentence. The embedding vector of the word flies in the Filtered Value matrix
is different for the two sentences because the adjacent words to flies are different
and so is its context.
This means that Transformer-based models can encode human language semantics
and syntax much better than previous models.

3.5. Is a Generative LLM all you need?

Generative LLMs A recent trend in NLP seems to be the increasing use of
Generative LLMs, like OpenAI’s GPT models, for all kinds of NLP-related tasks
such as NER or Coreference Resolution. Instead of developing, pretraining or fine-
tuning custom models using traditional programming languages, algorithms and
datasets, researchers and practitioners seem to increasingly focus on engineering
Prompts to let Generative LLMs perform the task.

RAG Systems RAG systems are sometimes added to such Generative LLMs in
order to improve their accuracy. RAG stands for Retrieval Augmented Generation
and is a means to enrich a Prompt with relevant information. Proprietary docu-
ments are typically chunked and loaded into a vector database to add context and
information to the Prompt. RAG systems typically rely on vector similarity mea-
sures such as cosine similarity (see Section 3.3.3). The text of a user question is
converted to an embedding vector for which a similar embedding vector is searched
in the vector database. The text document with the highest cosine similarity is
processed and formulated as an answer to the user’s question.

The Hallucination problem Although LLMs, with contextual word embeddings
at its core, have revolutionized the NLP-world, Hallucination, or the presentation
of false or misleading information as facts [76], still remains a problem and for
some researchers is even inevitable [100].
Hallucinations are often caused by the conflict between the user’s intent and the

characteristics of LLMs:

� Good LLMs, and good Machine Learning models in general, are supposed
to generalize well but are not supposed to memorize their training data

34

� Generative LLMs generate their text based on the highest probability for the
next word

� These probabilities hinge on the data fed to the LLM during training or
retrieved from RAG-systems

Generalization means that the LLM outputs text that fits learned patterns, but
does not output the training (or RAG) text itself. Even if the training data was all
true and factual (which is unlikely), the generated output text would most likely
be different. Even if a certain, factually correct text was part of the training data,
an LLM ChatBot will most likely not return the same text. Next word generation
based on probabilities means, that of all candidate words the one word with the
highest probability is taken, even if that probability itself is very low.
For a creative goal such as writing novels or poetry, this might not be a problem

and often is a desired characteristic. For the goal of retrieving or generating text
that contains correct and accurate facts, this might be damaging as demonstrated
by the ChatGPT-Lawyer -case [58], where a lawyer cited fake legal cases that were
generated by ChatGPT.
Domain-specific training data and RAG-systems can decrease Hallucination

rates, but not entirely. A recent study [53] by Yale and Stanford researchers
revealed that even domain-specifically trained, Generative LLMs with extensive
RAG-systems attached to them, showed Hallucination-rates of between 17 and 33
percent.

Questions in regard to LLMs Two of the questions for this project are driven
by this problem. The first question is:

Given the problem of hallucinations, how do Generative LLMs perform versus
tradional methods on the task of information extraction?

In the Information Extraction Pipeline, different approaches will be studied, imple-
mented in code and compared with each other. This covers traditional rule-based
and pre-trained ANN models, but also models based on Generative LLMs.

In the Knowledge Graph part, a ChatBot (Graph Bot) will be attached to the
Knowledge Graph. This is to elaborate on the question

Can Knowledge Graphs be used as an alternative to traditional RAG-systems?

A recent research by Microsoft [33] does point in this direction, but does this also
apply to this project and its data?

In the next chapter, the project and Information Extraction Pipeline will start
with extracting named entities.

35

4. NER - Named Entity Recognition

A named entity is an object that can be referred to and tagged with a predefined
entity class label to which the object belongs. The most common entity classes and
tags are PER for persons, ORG for organizations, LOC for geographical locations
and GPE for geopolitical entities. The task of Named Entity Recognition (NER)
is to find Spans of text that constitute such entity classes or tags [45].

4.1. Background

This section will give an overview over the models that have been used previously
and the current state-of-the-art models.

4.1.1. Rule-Based Models

Rule-based models were the earliest attempts to recognize named entities in text.
They often used lexical patterns, syntactic features, and domain-specific knowledge
such as the following:

Rule: If a token is capitalized and the next token is a noun, then the first token
is likely a person name.

While Machine Learning (see 4.1.2) or Deep Learning approaches (4.1.3) domi-
nate the academic debate and research, production use cases today still use hand-
crafted rules and query techniques [45] to find named entities. One of the reasons
for that is the ambiguity and similarity of entity names and types that confuses
even the best NER models available. For instance, A.G. Edwards could be both,
a PER or an ORG and the company Blue Shark could be falsely identified as
an animal. Another reason is that in some use cases only certain entity types or
already known entity names shall be found. In such cases, it often makes sense
to comb through a text with REGEX patterns or apply other handcrafted query
strategies.

4.1.2. Machine Learning Models

There are different types of Machine Learning models for the NER task.

36

Hidden Markov Models Hidden Markov Models or HMMs [45] are applied to
sequences of observations and their respective hidden states. In the field of NER,
the observations are the words in a text sequence and their hidden states are the
NER-tags such as PER or LOC to be predicted.

Figure 4.1.: HMM: transition/emission probabilities: ptrans, pemit

Conditional Random Fields CRFs [45] belong to the family of HMMs and
try to address the shortcomings of HMMs when it comes to text sequences. The
first problem with a standard HMM is that transition and emission probabilities
(Fig.4.1) are static whereas in text, they are dynamic. The emission probability
that the name of a PER is Peter depends on the context and therefore is dynamic
as is the probability that a LOC comes two words after a PER. The second problem
is that dependencies are limited in a standard HMM meaning that previous hidden
states have no direct impact on observations farther away in the sequence. In a
text sequence though, the NER tag of the first word in a sentence might have an
impact on a word that sits at the end of a sentence.

Figure 4.2.: Linear Chain CRF

A linear chain CRF (Fig.4.2) overcomes this limitation by allowing emission

37

probabilities from a hidden state (i.e. a NER tag) to previous and subsequent
observations (i.e. words) but, to avoid computational complexity, prohibits tran-
sition probabilities to previous and subsequent hidden states. The network of
emission probabilities and the mapping from the words to the respective NER tag
is modeled via k different feature functions f j:

f(Hi) :
k∑

j=1

w⃗j · fj(Oi, Hi−1, Hi, i) (4.1)

Each feature function has different hidden-state-to-observation connections and
the model is trained with all vectors wj as a trainable matrix. The conditional
probability of a certain state Hi (or NER-tag) given the observation Oi (or word)
and a normalization factor Z is calculated by:

p(Hi | Oi) =
1

Z
· exp

nwords∑
l=1

k∑
j=1

w⃗j · fj(Oi, Hi−1, Hi, i) (4.2)

Words as input to a CRF model can come in the form of an encoded index from
a lookup table or as embedded word vectors [45].

4.1.3. Deep Learning Models

The advent of LLMs also changed the field of NER fundamentally. Today all lead-
ing NER-models are based on Transformer architectures [22]. Transformers, or in
more general terms, ANN-based models can be distinguished between pre-trained
models and Generative LLMs. Whereas pre-trained models are supervised general
purpose ANNs that are fine-tuned for a specific NER task, Generative LLMs use
the decoder part of a Transformer architecture to generate text in response to a
NER-specific Prompt request.

Pre-Trained Models There are multiple pre-trained models available such as
bert-base-NER [49] or NER-BERT [52], but the one model that stands out in terms
of performance and multilingual support is GliNER [101]. GliNER is a light-weight
Transformer model based on the deBERTa-v3 [39] architecture with additional
layers for Span and entity representations. It was trained with texts from numerous
domains and thousands of entity types [101] which allows custom entity labels
beyond the ones typically found in NER models (i.e. ORG, PER, LOC, etc.).
GliNER maximizes a combined Token-Span-Entity embedding matching score in
a computationally efficient way to achieve an O(n log n) complexity. Because it is
available as a spacy wrapper module, it can easily be added to a spacy pipeline.

38

spacy itself until recently also had a well-performing NER component in their
pre-trained pipelines (i.e.en core web sm, etc.) but performance-wise had to sur-
render to more recent and specialized models such as GliNER.
GliNER’s multilingual spacy wrapper was used in the project and later compared

against a traditional REGEX model.

Generative LLMs Besides using LLMs such as the ones from OpenAI directly
by sending Prompt requests, there are also dedicated architectures and indirect
ways to extract the named entities from text.
Wang et al [99] in 2023 introduced GPT-NER that transforms the Span labeling

task into a text generation task. For instance, the task of finding LOC entities in
the input text Columbus is a city, is transformed to generate the text sequence
@@Columbus## is a city, where the special Tokens @@ and ## surround the
entity to be extracted [99]. Before returning the result to the user, the Prompt
also asks the Generative LLM to self-verify its findings thus decreasing the problem
of Hallucinations. The text is then searched for the special Tokens and the model
returns the entity in between them.
In the same year, Ashok and Lipton [12] introduced PromptNER, which focuses

on a specific set of entity types. The Prompt provides the model with annotated
examples and forces it to justify its findings with the entity type definitions pro-
vided.
Most other approaches that I came across, use Generative LLMs for NER in a

similar way or concentrate on specific industries or domains.

4.2. Code-Implementation

4.2.1. Implementation of Pre-Trained Model

As GliNER [101] is available as a registered spacy plugin (see Section 2.2), the
implementation of it in a spacy pipeline is straightforward. The name of the
plugin is just referenced in the spacy function enable pipe(”gliner spacy”) within
the api gliner() function (see Python-Code 2)

39

149 def api_gliner(self, spacy_comp: SpacyComp = SpacyComp.GLINER):

150 config = {"labels": ["organization"], "gliner_model": "urchade/gliner_multi"}

151 if spacy_comp.factory_name in self.nlp.disabled:

152 self.nlp.enable_pipe(name=spacy_comp.factory_name)

153 else:

154 if self.nlp.has_pipe(spacy_comp.custom_name):

155 print('api gliner already has pipe gliner')

156 self.nlp.remove_pipe(spacy_comp.custom_name)

157 self.nlp.add_pipe(spacy_comp.custom_name, config=config)

158 print(f'"GLINER" api initialized')

Python-Code 2: api gliner()

and this function is then added to the build pipe() method (see line 110 of
Python-Code 3) in the SpacyPipeBuild class, as outlined in Section 2.2.1.

99 case SpacyTask.NER:

100 match self.ner_method:

101 case ExtractionType.TRADITIONAL:

102 self.nlp.select_pipes(enable=[self.vectorizer.factory_name,

SpacyComp.MORPHOLOGIZER])↪→

103 # self.api_parser()

104 self.func_own_regex_search()

105 # self.api_entity_ruler()

106 self.func_comp_name_token_regex_match()

107 # self.func_check_spacy_ent_with_fuzzy_match()

108 case ExtractionType.PRETRAINED:

109 self.nlp.select_pipes(enable=[self.vectorizer.factory_name])

110 self.api_gliner()

111 case ExtractionType.GENERATIVE_LLM:

112 pass

113 self.func_sentencizer() # Must be in for correct sentence splitting

Python-Code 3: build pipe()

4.2.2. Implementation of Rule-Base Model

REGEX As stated previously, in some use cases it might make sense to use rule-
based models (see 4.1.1) for NER. Pre-trained LLMs, that incorporate syntactical
and semantic information in their embeddings, are required if entity names are
unknown and must be determined in a probabilistic way. As the company names

40

are provided in advance in this project, rule-based methods such as REGEXs can
be tried for NER.
For REGEX to find desired company names in a text, REGEX patterns need

to be created first.
REGEX patterns can consist of multiple components and these components can

either be mandatory or optional. One such example is the following:

(Hello)\s?(World)*

The first capturing group contains the word Hello and the second the word
World. The second group and the space in between the words are optional as
these terms are followed by an asterix or a question mark which are quantifiers.
The first group is mandatory as an optional quantifier, such as ?, *, {0, n}, is
missing. In this example, the expression Hello or Hello World would match the
pattern, but the expressions World or Hi World would not.
Company names can consist of one or multiple words. To distinguish company

names from each other and from non-company names, the company name must be
recognizable and distinct. If a company name consists of more than one word, the
central question for REGEX patterns is which words in the company name must
be mandatory and which can be optional. Let’s consider the following company
name example:

Deutsche Telekom AG

A REGEX pattern must include at least the first two words combined as the
words Deutsche and Telekom alone are not distinct and are commonly used words.
Let’s consider another example:

Apple Inc.

Here, the same logic applies: The pattern must include the legal term Inc. as
otherwise the pattern could find a fruit instead of the company Apple whereas in
the next example the legal term could be optional:

2CRSI S.A.

The term 2CRSI itself is so significant and distinct, that the probability of the
same term referring to something else than the given company, is very low.
The optionality of a word in a company name is important for two reasons:

� Company names are typically fully mentioned at the beginning of a text but
in later sentences might be referred to with just one part of their name.

41

� Company mentions could also be part of a noun term.

Let’s consider the following sentences:

ACCENTRO Real Estate AG today published their better than expected earnings.
Accentro had a good first quarter, the Accentro-stock climbed 3% on the stock exchange.

A REGEX pattern that has no optionality for the words Real Estate AG would
only match the first company mention, but would not match the second and third.
So a good REGEX pattern might look like this:

(?:\bACCENTRO|Accentro\b)\s*(?i:\bReal\b)?\s*(?i:\bEstate\b)?\s*(?i:\bAG\b)?

The central word Accentro could be upper or title cased, the words Real, Estate,
AG are optional and their case could be any. The \b means beginning and end of
a word and the spaces in between the words are optional. With such a pattern,
all three mentions of the company name in the above example will be matched.

Implementation Details As the number of companies to be searched for exceeds
2500, manually creating such regular expression patterns would be very time-
consuming. The function

create and save entity patterns()

in the module spacy input in the B spacy pipeline folder is particularly dedicated
to algorithmically transform company names to REGEX patterns.
They work as follows:

1. The function splits the company name into a list of words.

2. Each word in this list is classified into one of the following classes:

Binding: A conjunction term that links two other words such as and,
+, -, & like in Smith & Wesson, Busch+Lombard AG or Basic-Fit N.V., etc.

Person Name Initials such A.G. in A.G. Edwards.

Person Names: For that, a list of 5000 German and English common
first and last names are searched for.

Legal Terms such as AG, NV, GmbH, etc for which a legal term list
was compiled.

Industry Hints: Words that give a hint to the industry the company
operates in such as buildings, capital, carbon, care, casino, catering,
etc.

42

Number Terms such as 11880 in 11880 Solutions.

Significantly Cased Words such as SUESS or MicroTec

Number and Letter Words such as 4imprint in 4imprint Group plc..

Articles such as The in The New York Times.

Common Words: If the word is commonly used according to a list of
5000 most common words in English and German or if the word is in a list
of common company name prefixes and suffixes such as Global or Group.

Unknown Words: Words that do not belong to one of the other classes
above.

3. Once all words of a company name are classified, combination patterns of up
to five words are created.

The classification task often is carried out with the help of regular expression
patterns itself and Python string functions.

As a three-word example, let’s assume the company name is:

4imprint Group plc.

In the first step, the company name gets split into: [4imprint, Group, plc]. In the
second step, each of the three words is classified: 4imprint is classified as a Number
and Letter word, Group is classified as a Common Word and plc is classified as
Legal Term.
Number and Letter Words are considered unique and distinct so all other words

in that company name can be optional. The resulting regular expression pattern
is:

(?:\b4imprint|4Imprint\b)\s*(?i:\bGroup\b)?\s*(?i:\bplc\b)?

Let’s consider a four-word example:

Advanced Bitcoin Technologies AG

In the first step, the company name again gets split into: [Advanced, Bitcoin,
Technologies, AG] In the second step, Advanced is classified as a Common Word
as is the word Technologies. Bitcoin is classified as an Industry Hint and AG as
a Legal Term. No word from these classes is considered unique and distinct, but
the legal classifier is not needed as there is more than one word in the company
name. So the algorithm determines that the first three words are mandatory in
the REGEX pattern and the legal term is optional:

(?:\bAdvanced\b)\s*(?:\bBitcoin\b)\s*(?:\bTechnologies\b)\s*(?i:\bAG\b)?

43

Pattern Naming and Multithreading The patterns are saved as JSONL-files
and are later loaded by a spacy pipeline component that tries to find matches for
the patterns in the text. As the number of companies and thus the number of
patterns exceeds 2500, two questions arise:

1. How can matches of patterns be mapped to the individual company identi-
fiers and names?

2. How can over 2500 patterns be efficiently run against each text?

Each REGEX pattern gets a name that is derived from the company’s unique
identifier which is the company stock ticker symbol.
The function symbol to groupname convert()

62 @staticmethod

63 def symbol_to_groupname_convert(symbol: str, named_group_prefix: str = 'SYMB_',

64 do_reverse: bool = False) -> str:

65 CONVERTER_MAP = {".": "_DOT_", "-": "_DASH_"}

66 REVERSE_CONVERTER_MAP = {v: k for k, v in CONVERTER_MAP.items()}

67 if do_reverse:

68 if not symbol.startswith(named_group_prefix):

69 raise ValueError(f"Named group to be converted must start "

70 f"with symbol: {named_group_prefix}")

71 symbol = symbol[len(named_group_prefix):]

72 conversion_dict = REVERSE_CONVERTER_MAP

73 else:

74 if symbol.startswith(named_group_prefix):

75 raise ValueError(f"Named group already converted as "

76 f"it starts with symbol: {named_group_prefix}")

77 symbol = named_group_prefix + symbol

Python-Code 4: symbol to groupname convert()

first converts the company symbol to a regular expression name which is then
prefixed to the pattern that was created above.
For instance: The stock ticker symbol for the company Advanced Bitcoin Tech-

nologies AG is ABT.DU. The function converts this to a pattern-eligible name
which is SYMB ABT DOT DU and with it prefixes the regular expression pat-
tern that was created above:

(?P<SYMB ABT DOT DU>(?:
(?:\bAdvanced\b)\s*(?:\bBitcoin\b)\s*(?:\bTechnologies\b)\s*(?i:\bAG\b)?))

44

A match against this pattern returns a Python re match object that, among
other information, contains the pattern’s name. The pattern’s name then can be
re-converted to the company symbol which is attached as extension to the matching
Span or Token in the Doc-object of the spacy pipeline.
To make this process computationally efficient, the matching algorithm is run

concurrently. The function run re finditer concurrently() runs the Python re func-
tion finditer in parallel and the spacy pipeline component OwnRegexSearch applies
this concurrent function to each article text:

8 def run_re_finditer_concurrently(pattern_list: list, text: str) -> Generator:

9 """ The function here must have exactly one parameter. """

10 with (concurrent.futures.ThreadPoolExecutor(max_workers=len(pattern_list))

11 as executor):

12 future_to_result = [executor.submit(re.finditer, pattern, text)

13 for pattern in pattern_list]

14 futures_done = concurrent.futures.as_completed(fs=future_to_result,

15 timeout=None)

16 for future in futures_done:

17 try:

18 data = list(future.result())

19 except (Exception, TimeoutError):

20 print(f'Fetching concurrent.future failed for future: {future}')

Python-Code 5: run re finditer concurrently()

This match algorithm, that runs over 2500 patterns on each article text, on
my standard machine only takes around 500 milliseconds on average per text to
execute.

Comparing Rule-Based vs. Pre-Trained vs. Generative LLMs With 500 mil-
liseconds per text, the rule-based method with REGEX is approximately as fast as
the respective GliNER component in spacy’s pre-trained pipeline. The REGEX
algorithm does not find all companies in the text and is particularly sensitive
to misspelled company names, too little optionality in the REGEX pattern or if
company names only consist of one, very common word.
But in most cases, it is as accurate as spacy’s pre-trained GliNER pipeline com-

ponent and in some cases, particularly if the company name is peculiar and can
be confused with subjects from other domains, it is more accurate. Some short-
comings of the regex approach can be cured if non-working patterns are manually
adjusted. For instance: The company name

Schott Pharma AG & Co. KgaA

45

contains the person name Schott which is uncommon and thus not found in the ex-
isting list of person names for the classification task in the create and save entity patterns()
function. The name Schott also starts with a capital letter and is thus considered
unique and distinct for which the algorithm allows the other words in the company
name to be optional. The REGEX pattern could be adjusted by manually adding
the name Schott to the list of common person names or by requiring the word
Pharma to be mandatory.

4.2.3. Implementation of Generative LLM model

For the sake of comparing different approaches, I also tried a Generative LLM
for the NER task. Asked to find named entities in a text, ChatGPT using the
OpenAI 4o-mini model with a simple Prompt, already found most of the entities
in a sample text:

Figure 4.3.: ChatGPT NER Prompt - Part 1

46

Figure 4.4.: ChatGPT NER Prompt - Part 2

Figure 4.5.: ChatGPT JSON Response

But this Generative LLM-approach for NER was inferior to the rule-based

47

REGEX approach because:

� It found less entities.

� It found entities that were not searched for.

� The latency was higher as the request had to be sent to the OpenAI server
first.

� The position indexes for the found entities were all wrong so locating them
would have required an extra step or the usage of OpenAI function tools
which would have increased the latency even further.

� It was more costly as OpenAI charges fees for using their LLMs.

� The results were very volatile and unstable as they differed from request to
request.

Some of these shortcomings can probably be cured by:

� fine-tuning the Prompt.

� providing more few-shot examples.

� using function tools that are available from most LLM-providers such as
OpenAI.

� providing a list of entities that shall be searched for.

� using local, open-source LLMs and frameworks such as Llama3 [4] running
on Ollama [6] installed on a local machine.

Nevertheless, the rule-based approach with REGEX already delivered very good
results and in my assessment is best suited if the company names are given. This
would change if they were not given as then the creation of REGEX patterns
was not possible and a choice would need to be made between a pre-trained and
fine-tuned model or a Generative LLM-approach.

4.2.4. Information Extraction Pipeline

After the NER component has run, the spacy pipeline has attached the found
company information to the respective custom extensions:

48

Figure 4.6.: spacy pipeline after NER component

49

5. Coreference Resolution

5.1. Background

In linguistics, Coreference occurs when two or more expressions refer to the same
person or thing [73]. In the sample sentence of Fig.5.1, the expression he refers
to a PER with the name Philip and the word it refers to the musical instrument
bass, a thing.

Figure 5.1.: Coreferences. Image from: [34]

Coreference Resolution is considered one of the most challenging tasks in NLP
and until recently was deemed an unsolved problem [62]. The fundamental problem
is the complex and ambiguous nature of natural language text, the requirement for
a deep language understanding and the use of background knowledge in detecting
Coreferences [62].

5.1.1. Definitions

In the sample sentence of Fig.5.1, there are four Mentions of which three are Tokens
[Philip, he, it] and one is a Span [the bass] consisting of more than one Token.
Mentions often consist of long Spans such as The New York Times or Bayerische
Motoren Werke AG. Finding Coreferences in a text thus often is considered a
Span-based task. The Mention Philip is the Antecedent for the Mention it. As
the name Philip comes before it, it is the Anaphora for Philip. If Philip came

50

after it, one would usually refer to it as Cataphora. The sample sentence has two
Coreference Clusters or Coreference chains: [Philip, he], [the bass, it].

5.1.2. Methods

Mention Detection The first step to detect Coreferences is Mention detection
[44]. Earlier methods used grammatical parsers and named entity taggers on the
text and, based on that, extracted Spans that meet certain criteria as Mention-
candidates. More recent Mention detection systems go even further and extract
literally all N-Gram Spans of Tokens or words up to N=10, regardless of their
grammatical attributes [44]. Due to the computational complexity of this approach
of

O(number of tokens4) (5.1)

for N=2 (Bi-Grams) [47], there is a need to filter out unlikely Spans.

Rule Based Methods Earlier systems used rules to filter out non-coreferential
pronouns like it in sentences such as It is likely that These rule-based systems
relied on regular expressions, dictionaries of key-verbs/-adjectives, POS and NER
tags and other grammatical or syntactical rules. Rule-based systems, however,
generally underperform more modern systems that incorporate a learning process
[44].

Feature Based Methods The next step thus were standard Machine Learn-
ing models that used decision trees, support vector machines and binary classifiers
[50]. Theoretically, such models are capable to not only identify potential Mentions
but also whether such Mentions are indeed Coreferences. One common approach
of such Classifiers is to implement a Mention-Pair-Architecture that predicts if
a given Span pair of an Anaphora and an Antecedent are Coreferences or not
[44]. Another Classifier architecture type is the Mention-Rank-Architecture that
chooses the highest-scoring Antecedent for each Anaphora. Entity-based architec-
tures enhanced their feature set by adding Mention-distances, syntactic, symantic,
rule-based and lexical attributes to predict if a Token belongs to a certain Coref-
erence Cluster [14].
Nevertheless, correctly detecting co-referential Mentions remained difficult, mainly

due to the model’s lack for a deep language understanding [44].

Neural Network Based Methods A major breakthrough came with the ad-
vent of LLMs as contextual embeddings allowed to semantically compare Mentions.
Consider the following phrases:

51

1: Make a payment! You can make [it] in advance. [anaphoric]

2: Go west! You can make [it] in Hollywood. [non-anaphoric]

Idea based on: [44]

Whereas the it in the second phrase is non-anaphoric and part of the idiom
make it, the it in the first phrase is anaphoric and refers to a payment. With
contextual word-embeddings, the vectors for payment and it ideally should be
similar in the first sentence whereas the vector for it in the second sentence should
significantly differ to any other word vector in that phrase. The capability to
detect the Mentions payment and it as Coreferences should thus increase with
contextual word embeddings.

5.2. Models

Coreference models can also be distinguished into three classes: Rule-Based, Pre-
Trained and Generative LLM models. As rule-based models factually are non-
existent nowadays, the focus in the following chapter will be on Pre-Trained and
Generative LLM models.

5.2.1. Pre-Trained Models

Research All descriptions of the currently most performant pre-trained Corefer-
ence models are laid out in publicly available research papers. Unfortunately, not
all models are implemented in code and easily available as Python package. This
includes the two currently most performing [64] pre-trained Coreference models
by Google Research [13] and Vladimir Dobrovolskii [32]. As the model training
of unimplemented Coreference research papers would go beyond the scope of this
thesis, I will shortly describe only those research papers for which a pre-trained
Python package exists.

e2e: End-to-end Neural Coreference Resolution In 2017, Lee et al.[47] pro-
posed an LSTM [40] model with a Mention-Rank-Architecture where parsers and
taggers are not required. The model consists of two parts as shown in Fig.5.2 and
5.3:

52

Figure 5.2.: End-to-end Neural Coreference Resolution: Part 1

In the first part (Fig.5.2), the LSTM calculates Span-embeddings and assigns
corresponding Mention scores. e2e is a supervised model trained with hand-labeled
data. Only the top M-ranked Spans with the highest Mention scores are considered
potential Mentions and are further processed. The concatenation of the Token
embedding vectors creates the contextual Span-representation vectors.

Figure 5.3.: End-to-end Neural Coreference Resolution: Part 2

In the second part of the model in Fig.5.3, Antecedent scores are computed
from pairs of Span-representations. The final Coreference score is computed by
summing the two Mention scores of the Spans and their pairwise Antecedent score.
This calculation method avoids the computational inefficient evaluation of all (non-
filtered-out) Span pairs and ensures, that the Span-pairs with the highest similarity
yield the highest Coreference score.

53

c2f: Higher-order Coreference Resolution with Coarse-to-fine Inference In
2018, Lee et al. further improved their own model by changing the inference
procedure of the Mention-Rank-Architecture[48] to refine Span representations.
This improved both, the computational complexity and the performance of the
model.

BERT for Coreference Resolution In 2019, Joshi et al. [43] reused the
Mention-Rank-Architecture of Lee et al.[47] but substituted the LSTM-embeddings
with BERT-embeddings [31] and later with SpanBERT-embeddings [42]. Span-
BERT was designed to better represent Spans of text and is a pre-training method
that extends the BERT-model by masking contiguous random Spans, rather than
random Tokens [42]. SpanBERT is applicable to a wide range of tasks such as
question answering, relation extraction and Coreference Resolution. For their
Coreference-model, they applied the SpanBERT-method on a Coreference task
and a Coreference training set [42]. The model achieves an F1-score of 77.7 for the
SpanBERT-base and 79.6 for the SpanBERT-large [43], currently ranking among
the five best Coreference Resolution models [64].

s2e: Coreference Resolution without Span Representations In 2021, Kirstain
et al.[46] came up with a different architecture that focused on Tokens instead of
Spans.

Figure 5.4.: Bilinear function: start/end Mention embeddings: ms, me

The model computes Mention scores as bi-affine products over the start and
end Token representations (ms, me) with vs, ve and Bm as trainable matrices
(Fig.5.4).

Figure 5.5.: Bilinear function: start/end Antecedent embeddings: as, ae

Similarly, it also extracts start and end Token representations (as, ae) for the
antecedent scoring function with Bm as another trainable matrix (Fig.5.5). This

54

calculation is equivalent to computing a bilinear transformation between the con-
catenation of each Span’s boundary Tokens’ representations, but bypasses the need
to create n2 explicit Span representations (for Bi-Gram Span) und thus reduces
complexity [46]. The model is the fastest of all known Coreference models and,
with an F1-score of 80.4, currently ranks fourth [64] in regard to prediction per-
formance.

Available Models Based on these research papers, the following Python modules
are available:

AllenNLP AllenNLP [35] is an AI platform supported by the Allen Institute
for Artificial Intelligence [1]. AllenNLP offers multiple pre-trained models and
a pip-installable Python module [35]. Among the models offered is a pre-trained
Coreference Resolution model that is based on the c2f-model by Lee et al.[48]. The
GloVe embeddings in the original paper [48] have been substituted with SpanBERT
embeddings [2]. Unfortunately, since 2022 the AllenNLP ecosystem is in mainte-
nance mode. Dependencies to more recent Python versions are not upgraded and
the most recent training for the coref-spanbert-large-model goes back to March
2021. Additionally, AllenNLP only offers pre-trained models for English but not
for German.

F-COREF F-COREF is a Python implementation and an adopted version of
the s2e-model by Kirstain et al. [46]. F-COREF predicts Coreference Clusters 29
times faster than the AllenNLP model and requires only 15% of its GPU memory
use, with only a small drop in performance (78.5 vs 79.6 average F1) [60]. Unfor-
tunately, F-COREF currently only has a pre-trained model for English but not for
German.

Coreferee Coreferee [41] is a pip-installable Python package that uses a mix-
ture of ANNs and programmed language-specific rules. It focuses heavily on de-
tecting Anaphoras and noun phrases and thus depends on the grammatical and
syntactical capabilities of spacy [34]. The likelihood scores for anaphoric pairs are
calculated by utilizing the contextualized vectors of the underlying and pre-trained
spacy models. Specific language packages other than English exist for German,
Polish and French and must be downloaded individually.

Crosslingual-Coreference The Crosslingual-Coreference model [21] builds on
the AllenNLP-Coreference model [2] but modifies its coref resolved -method. It in-
vestigates all the Coreference Clusters found by the AllenNLP-Coreference model,

55

but only considers Coreference Clusters that contain a noun phrase [5]. To de-
termine if a Coreference Cluster contains a noun phrase, it uses the POS-tagger
of pre-trained models from spacy [34] that are also available in languages other
than English. If the model parameter is set to minilm, the LLM used in resolving
Coreference Clusters is multilingual and pre-trained by Microsoft [3]. As such, this
model can be applied multilingual, i.e. to English and German.

Evaluated Pre-Trained Models As only the Coreferee [41] and Crosslingual-
Coreference model [21] are available for the German language, in the project only
those two pre-trained models were evaluated against each other. I tried both
extensively with multiple texts, and the Crosslingual-Coreference model [21] clearly
outperformed the Coreferee [41] model. It found more Coreference mentions and
had a lower entity confusion rate in texts that contained multiple entities. The
Crosslingual-Coreference model [21] was later compared against a Generative LLM
approach.

5.2.2. Generative LLM Models

Pre-Trained AND Generative Besides using Generative LLMs and Prompt re-
quests directly, there are also dedicated architectures and indirect ways to extract
Coreferences from text. In the previous section, the Coreference model by Google
Research [13] was classified as a pre-trained model, but it could also be classi-
fied as a Generative LLM model as the boundaries between these two types are
increasingly blurry.
The pre-trained Google model [13] is a sequence-to-sequence model that uses

both stacks of the Transformer architecture, i.e. the encoder and the decoder. It
so generates new text based on an input sequence where the input sequence is an
untagged string and the output sequence the input string plus tags attached to it.
The tags contain the desired Coreference annotations. The model is trained with
the aim to annotate the input string with the respective Coreference tags.
This approach is very similar to the one Wang et al [99] use in their model for

the NER task (see 4.1.3).
Whereas the Google [13] model introduces some extra layers to an encoder-

decoder stack, Zhang et al [102] use a plain pre-trained encoder-decoder (text-to-
text) T5 model [65] and finetune it in a supervised way with annotated examples.
The source sequence contains the input string and the target sequence the Coref-
erence-annotated input string. During finetuning, the classification task uses the
usual source-target sequence pair and tries to minimize the cross-entropy loss given
the per-Token labels [102].

56

Models used As stated previously, neither the Google [13] model nor the Zhang
et al [102] model are (easily) available as a Python module. I therefore tested the
Generative LLM approach directly as described in the next section.

5.3. Code Implementation

5.3.1. Implementation of Pre-Trained Model

As stated previously (see Section 5.2.1), the Crosslingual-Coreference model [21]
is based on the deprecated AllenNLP-Coreference model [2], depends on the POS-
tagger from a certain spacy version and uses a fine-tuned and pre-trained Microsoft
LLM that was last updated in 2021. It has some issues for Python versions greater
than 3.10 and dependency conflicts to other Python libraries in the project that
could not be resolved.
I thus decided to run the Crosslingual-Coreference model [21] in an isolated

environment using Docker. The files for building the Docker container can be found
in the /src/D coref/img xx coref files directory that also contains a Dockerfile and
a requirements.txt file. The Docker container is accessible by using http requests.
The Crosslingual-Coreference model [21] in the Docker container is run as a

spacy pipeline-component that attaches found Coreference Clusters to spacy’s Doc-
object custom extensions. The Coreference Clusters are nested Python lists in the
format

[[[cl1 start1, cl1 end1], [cl1 start2, cl1 end2]], [[cl2 start1, cl2 end1], [cl2 start2, cl2 end2]]]

where character start and end index positions for each word in a Coreference
Cluster are shown.
The function spread comp ext to coref cluster spans() in Python-Code 6

57

348 def spread_comp_ext_to_coref_cluster_spans(self, coref_clusters: list[list[list[int]]], doc:

Doc):↪→

349 search_matches: list[SearchMatch] = []

350 for ent in doc.ents:

351 if (comp_name := getattr(ent._, SpacyExt.COMP_NAME.value)) != self.init_mark:

352 comp_symbol = getattr(ent._, SpacyExt.COMP_SYMBOL.value)

353 comp_start_char: int = ent.start_char

354 comp_end_char: int = ent.end_char

355 for cluster in coref_clusters:

356 cluster_has_overlap =

self._is_valid_coreference(comp_start_char=comp_start_char,

comp_end_char=comp_end_char, cluster=cluster, doc=doc)

↪→

↪→

357 if cluster_has_overlap:

358 for cluster_item in cluster:

359 cl_item_start_char = cluster_item[0]

360 cl_item_end_char = cluster_item[1]

361 cl_item_text = doc.text[cl_item_start_char:cl_item_end_char]

362 # Note: exclude conditions here

363 cl_item_is_excluded: list = [term for term in

self.excluded_coreferences if term.lower() in

cl_item_text.lower().split()]

↪→

↪→

364 if not cl_item_is_excluded:

365 search_match: SearchMatch = SearchMatch(comp_name=comp_name,

comp_symbol=comp_symbol, text=cl_item_text,

label=self.comp_label, start_idx=cl_item_start_char,

end_idx=cl_item_end_char, idx_refer_to=IDXReferTo.CHARS)

↪→

↪→

↪→

366 search_matches.append(search_match)

367 else:

368 continue

369 return search_matches

Python-Code 6: spread comp ext to coref cluster spans()

first checks if any Coreference Cluster word overlaps with a spacy custom ex-
tension Span that has a company name and company symbol attached to it. If
this is the case, it creates a new instance of the SearchMatch class with the same
company name and company symbol for every other member of the Coreference
Cluster.
Before setting the found Coreferences to the spacy custom extensions, the func-

tion resolve span conflicts and set new ents() in Python-Code 7

58

92 def resolve_span_conflicts_and_set_new_ents(self, doc: Doc, matches: list[SearchMatch],

set_in: SpacyComp, overwrite_own_ext: bool = True) -> Doc:↪→

93 if not matches:

94 return doc

95 ents = sorted(list(doc.ents), key=lambda span: span.start)

96 matches = sorted(matches)

97 for m in matches:

98 # Note: Do start_idx and end_idx refer to word- or char-indexes ?:

99 if m.idx_refer_to == IDXReferTo.WORDS:

100 new_ent = Span(doc, m.start_idx, m.end_idx, label=m.label)

101 elif m.idx_refer_to == IDXReferTo.CHARS:

102 new_ent = doc.char_span(m.start_idx, m.end_idx, label=m.label,

alignment_mode='expand')↪→

103 else:

104 raise ValueError('idx_refer_to must be set to clarify whether start/end refers to

word or char indexes.')↪→

105 # Note: Remove old ents that overlap with new ents:

106 old_ents_shall_be_substituted: bool = True

107 old_ents_to_be_removed: list[Span] = []

108 if ents:

109 for old_ent in ents:

110 if old_ent.start > new_ent.end or old_ent.end <= new_ent.start:

111 continue

112 else:

113 if getattr(old_ent._, SpacyExt.SET_IN.value) == self.init_mark:

114 # Note: Case1: old_ent is set by spacy's SpacyComp.NER.factory_name

115 old_ents_to_be_removed.append(old_ent)

116 elif getattr(old_ent._, SpacyExt.SET_IN.value) != self.init_mark and

(new_ent.start <= old_ent.start and new_ent.end >= old_ent.end):↪→

117 # Note: Case2: old_ent is set by OWN FUNCTION but IS FULLY WITHIN

BORDERS of new_ent↪→

118 if overwrite_own_ext:

119 old_ents_to_be_removed.append(old_ent)

120 else:

121 old_ents_shall_be_substituted = False

122 break

123 else:

124 # Note: Case3: All other cases such as: old_ent is set by own function

but IS NOT within borders of new_ent, etc.↪→

125 old_ents_shall_be_substituted = False

126 break

127 # Note: Set new_ent ONLY IF ALL old_ents WERE NOT SET PREVIOUSLY BY OWN FUNCTION OR IF

old_ent is fully WITHIN BORDERS of new_ent:↪→

Python-Code 7: resolve span conflicts and set new ents()

checks if the respective spacy Token or Span already has these extensions set
by the previous NER component of the pipeline. Only if this is not the case, the

59

custom extension is set with the information from the SearchMatch instances.

5.3.2. Implementation of Generative LLM Model

To implement the Generative LLM model directly as reasoned in Section 5.2.2, the
Python LangChain [71] library was used. LangChain is a modular LLM framework
where components such as Prompts, LLMs, Agents and Tools can be chained
together to build an LLM pipeline.
The latest LangChain version 0.3 uses Pydantic version 2 [70], a mandatory type

checking library, that had unresolvable dependency conflicts with existing libraries
in the project. For this reason, I also isolated the Generative LLM approach by
using Docker. The files for building the Docker container can be found in the
/src/D coref/img llm extract coref files directory that, among other files, contains
a Dockerfile and a requirements.txt file.

Data Model In the mentioned directory, there is also a Python file named
data models.py (see Python-Code 8) that lays out the desired format of the LLM
response and the format of messages in the Prompt. This is important because
Generative LLMs usually suffer to deliver the generated text response in an appro-
priate format such as JSON so that it can be further processed by an algorithm.

60

4 from pydantic import BaseModel, Field

5

6

7 class Coreference(BaseModel):

8 """ Coreferences occur when one or more expressions or mentions in a text refer to a company

name at another position in that text.↪→

9 For example: In the text 'Steve Jobs founded Apple. The company was very successful. Today it

is a media company.' the mention 'company' in the second sentence and the mention 'it' in the

third sentence are coreferences to the company name 'Apple'.

↪→

↪→

10 The 'coref_text'-attribute is the substring of the found coreference within the text string.

11 The 'coref_with_surrounding'-attribute is the coreference substring plus its surrounding

characters to the left and right that can include up to two words on each side. """↪→

12 coref_text: Optional[str] = Field(default=None, description='The coreference substring in the

text string')↪→

13 coref_with_surroundings: Optional[str] = Field(default=None, description='The coreference

substring plus its characters to the left and right in the text string up to two words on

each side.')

↪→

↪→

14

15

16 class ClusterHead(BaseModel):

17 """ The cluster head is the anchor text of a coreference cluster to which coreferences refer.

18 The cluster head always is the name of a company which is provided in the user message.

19 The 'head_index_start'- and the 'head_index_end'-attributes are integer values that mark the

start and end position of the cluster head substring within the text."""↪→

20 head_text: Optional[str] = Field(default=None, description='The string characters of the

cluster head which is a company name')↪→

21 head_index_start: Optional[int] = Field(default=None, description='The position index of the

first character of the cluster head substring')↪→

22 head_index_end: Optional[int] = Field(default=None, description='The position index of the

last character of the cluster head substring plus one')↪→

23

24

25 class Cluster(BaseModel):

26 """ A coreference cluster consists of one cluster head in a text and one or more coreferences

at another position in that text that co-refer to this cluster head.↪→

27 For example: In the text 'Steve Jobs founded Apple. The company was very successful. Today

it is a media company.' the coreference 'company' in the second sentence and the coreference

'it' in the third sentence co-refer to the cluster head which is 'Apple'.

↪→

↪→

28 """

29 cluster_id: Optional[int] = Field(default=None, description='The identification number of the

cluster provided by the user. Always return the same number that was provided by the

user.')

↪→

↪→

30 text: Optional[str] = Field(default=None, description='The text to search in')

31 cluster_head: Optional[ClusterHead] = Field(default=None, description='The cluster object

which is is provided in the user message')↪→

32 coreferences: Optional[list[Coreference]] = None

33

34

35 class DataContainer(BaseModel):

36 data_list: list[Cluster] = []

Python-Code 8: Data Model Coref LLM Extract

61

Python-Code 8 shows the data model which consists of four Python classes that
all inherit from Pydantic’s BaseModel. This way, Pydantic in the background
checks instances of these classes for their type (such as Integer, Float, String, etc.)
and raises an error if the value of the respective instance variable does not comply
with it.

Prompt The Prompt for the Generative LLM model contains examples (few-
shots) in the form of instances of these Pydantic classes. Instances of the class
Cluster contain the article text, an instance of the class ClusterHead and poten-
tially multiple instances of the class Coreference.
Instances of the ClusterHead class are created with the information that was pre-

viously extracted by the pipeline’s NER component: the company name (head text)
and the start (head index start) and end (head index end) position of this company
name within the article text.
Instances of the class Coreference contain the Coreference string (coref text) and

the Coreference string with two words on the right and left (coref with surroundings).
As an example, let’s say that the article text is

Siemens manufactures trains. It is located in Munich.

then the according few-shot example in the Prompt would be

Cluster(cluster id=1, text=”Siemens manufactures trains. It is located in Munich.”,
cluster head=ClusterHead(head text=”Siemens”, head index start=0, head index end=7),

coreferences=[Coreference(coref text=”It”, coref with surroundings=”manufactures trains. It is
located”)])

The question is why the Coreference class does not include position indexes of
the found Coreference word within the text similar to the head index start and
head index end variables for the company name. Then the subsequent algorithm
could easily locate the Coreference words in the text and attach them to the
respective custom extensions of the Doc-object in the spacy pipeline.
I tried to force the Generative LLM to return those position integer values for

Coreferences it found but the model, even equipped with the respective tools in the
LangChain pipeline, did not succeed. I assume that this could also be the reason
why Wang et al [99] had their NER model generate string annotations instead of
returning text position indexes such as

@@Columbus## is a city

for the input sequence Columbus is a city (see Section 4.1.3).
I also could have asked the Generative LLM to annotate the Coreference it found

with the same symbols such as:

62

Siemens manufactures trains. @@It## is located in Munich.

But the problem was that the article text, even after cleaning, already contained
such symbols (i.e.@ and#) so that a subsequent algorithm could potentially have
confused them.
The few-shot examples provided to the Generative LLM can be found in:

src/D coref/img llm extract coref files/examples.py

Response Format The Pydantic classes are not only used for few-shot exam-
ples in the Prompt, but also for defining the response format. The LangChain
pipeline or chain is defined in
src/D coref/img llm extract coref files/coref langchain.py :

19 class CorefLangchain:

20 def __init__(self, prompt_template: str, model_name: str = "gpt-4o"):

21 nest_asyncio.apply()

22 self.prompt = PromptTemplate(template=prompt_template,

23 input_variables=["text", "cluster_id", "cluster_head"])

24 self.llm = ChatOpenAI(temperature=0, model=model_name,

openai_api_key=os.getenv('OPENAI_API_KEY'))↪→

25 self.llm = self.llm.with_structured_output(schema=Cluster)

26 self.chain = self.prompt | self.llm

27 self.examples: list[BaseMessage] = convert_examples_to_messages()

28

29 async def _run_chain(self, text: str, cluster_id: int, cluster_head: dict):

30 return await self.chain.ainvoke({"text": text, "cluster_id": cluster_id, "cluster_head":

cluster_head, "examples": self.examples})↪→

31

32 # Define a function to run multiple chains concurrently

33 async def _run_multiple_chains(self, container: DataContainer) -> list[Cluster]:

34 data_list: list[Cluster] = container.data_list

35 tasks = [self._run_chain(text=cluster.text,

cluster_head=cluster.cluster_head.model_dump(), cluster_id=cluster.cluster_id) for

cluster in data_list]

↪→

↪→

36 results = await asyncio.gather(*tasks)

37 return results

38

39 def get_coreferences(self, container: DataContainer) -> list[Cluster]:

40 return asyncio.run(self._run_multiple_chains(container=container))

Python-Code 9: LangChain pipeline for COREF

The LangChain chain is built in line 26 of the above code and connects a filled
PromptTemplate with an LLMmodule, in this case OpenAI’s ChatOpenAI module
running their gpt-4o model.

63

In line 25, the ChatOpenAI module via the function

with structured output(schema=Cluster)

is bound to Pydantic’s Cluster class, as discussed previously. This forces the
LLM to return its response in a format that is compliant with that class. As
the Generative LLM approach is run via a Docker container and http requests,
the Pydantic class instances are converted to serializable Python dictionaries and
JSON and back to Pydantic class instances in the process.

Processing the LLM Response Ideally, the response from the LLM is in the
desired format and, among other information, contains the values for the variables
coref text and coref with surroundings. They will now be converted to values that
can be attached as custom extensions in the Doc-object of the spacy pipeline by
the following function:

418 def convert_llm_response_to_matches(self, llm_response: list[dict], unique_ents_with_cust_exts: list[EntsWithCustExts]):

419 """ Unfortunately, Generative LLMs do not extract substring indices for their extractions well. So this must be done here.

"""↪→
420 matches: list[SearchMatch] = []

421 for cluster, unique_ent in zip(llm_response, unique_ents_with_cust_exts):

422 try:

423 text: str = cluster['text']

424 coreferences: list[dict] = cluster['coreferences']

425 for coref in coreferences:

426 coref_with_surroundings: str = coref['coref_with_surroundings']

427 coref_text: str = coref['coref_text']

428 pattern_outer: str = rf"(?:{re.escape(coref_with_surroundings)})"

429 pattern_inner: str = rf"(?:{re.escape(coref_text)})"

430 for m_outer in list(re.finditer(pattern_outer, text)):

431 if m_outer:

432 text_outer: str = m_outer.group(0)

433 start_outer: int = m_outer.start()

434 m_inner: list[re.Match] = list(re.finditer(pattern=pattern_inner, string=text_outer))

435 if m_inner:

436 start_inner = m_inner[0].start()

437 end_inner = m_inner[0].end()

438 start = start_outer + start_inner

439 end = start_outer + end_inner

440 search_match: SearchMatch = SearchMatch(comp_name=unique_ent.comp_name,

comp_symbol=unique_ent.comp_symbol, text=coref_text, label=self.comp_label, start_idx=start,

end_idx=end, idx_refer_to=IDXReferTo.CHARS)

↪→
↪→

441 matches.append(search_match)

442 except:

443 # ToDo: Logger

444 print(exc_info_formatter(msg='convert_llm_response_to_matches failed.'))

445 return matches

Python-Code 10: Convert LLM response to Matches

The Coreference position index within the text are determined by using REGEX
functions and patterns.

64

First, the position indexes of the coref with surroundings text within the article
text, and afterward the coref text within the coref with surroundings text are de-
termined. A REGEX search for the coref text in the article text alone would not be
sufficient, because the coref text could be a common word such as it, which might
occur multiple times in the text without being a Coreference. The two required
words to the left and right of the actual Coreference word ensure a text sequence
of at least five Tokens which is unlikely to occur twice in the given article text.
The process for each Coreference yields a Python re Match object that contains

the start and end index of the coref text within the article text.
Before the information is attached to the Token or Span custom extensions of the

Doc-object, the function resolve span conflicts and set new ents() again checks if
there is an overlap with custom extension values that were already set by the
previous NER pipeline component (see: Python-Code 7).

Collecting Entities Once the spacy pipeline has run, the company information
stored in the custom extensions, is collected.
It could be that a news article contains multiple sentences each mentioning

multiple companies. The functions

get ents with custom extension() and get sentences with custom extensions()

collect the company information fom the custom extensions in the spacy Doc-
object and store them in a Python dictionary:

49 @staticmethod

50 def get_ents_with_custom_extension(ents: Doc.ents) -> list[EntsWithCustExts]:

51 ents_with_custom_extension: list[EntsWithCustExts] = [EntsWithCustExts(start_char=ent.start_char, end_char=ent.end_char,

ent_text=ent.text, comp_name=getattr(ent._, SpacyExt.COMP_NAME.value), comp_symbol=getattr(ent._,

SpacyExt.COMP_SYMBOL.value), set_in=getattr(ent._, SpacyExt.SET_IN.value)) for ent in ents if getattr(ent._,

SpacyExt.COMP_NAME.value) != ConfigBasic.spacy_init_mark]

↪→
↪→
↪→

52 return ents_with_custom_extension if ents_with_custom_extension else None

53

54 @staticmethod

55 def get_sentences_with_custom_extensions(processed_doc: Doc) -> list[dict]:

56 sents_with_cust_ext_ents: list[dict] = []

57 for doc_sent in processed_doc.sents:

58 if doc_sent.ents:

59 ents_with_cust_ext: list[EntsWithCustExts] = PipeFunc.get_ents_with_custom_extension(ents=doc_sent.ents)

60 if ents_with_cust_ext:

61 sent_with_cust_ext_ents = {'sentence': doc_sent.text, 'entities': [asdict(ent) for ent in ents_with_cust_ext]}

62 sents_with_cust_ext_ents.append(sent_with_cust_ext_ents)

63 return sents_with_cust_ext_ents

Python-Code 11: Collection of custom extension information

They make sure that multiple company mentions in a sentence are accounted
for. The resulting nested Python list of dictionaries is compiled for every article
containing company information and structurally looks like this sample:

65

1 [

2 {

3 "entities": [

4 {

5 "comp_name": "Hypoport SE",

6 "comp_symbol": "HYQ.DE",

7 "df_index": 12,

8 "start_char": 504,

9 "end_char": 515,

10 "ent_text": "Hypoport",

11 "set_in": "own_regex_search"

12 },

13 {

14 "comp_name": "JDC Group AG",

15 "comp_symbol": "JDC.DE",

16 "df_index": 12,

17 "start_char": 583,

18 "end_char": 595,

19 "ent_text": "JDC Group AG",

20 "set_in": "own_regex_search"

21 }

22],

23 "sentence": "Digitalplattform-Experte Marcus Rex, der zuvor bei Hypoport SE die

Versicherungsaktivitaeten leitete, verstaerkt den Vorstand der JDC Group AG als neuer CSO

CMO."

↪→

↪→

24 },

25 {

26 "entities": [

27 {

28 "comp_name": "JDC Group AG",

29 "comp_symbol": "JDC.DE",

30 "df_index": 12,

31 "start_char": 1627,

32 "end_char": 1650,

33 "ent_text": "Technologieunternehmens",

34 "set_in": "llm_coref_resolve"

35 }

36],

37 "sentence": "Der Fokus des Technologieunternehmens liege zunaechst auf dem Ausbau des

Vertriebs in Asien."↪→

38 }

39]

Python-Code 12: Company information for article text

Sentences that contain more than one company mention within each dictionary
store the information in another list of Python dictionaries. For sentences that

66

contain only one company mention, this list only contains one item.

Topic Sentences The news articles are stored in a parquet file to be converted
to a pandas DataFrame as described in Section 2. Each row in the DataFrame
contains one article and each list of Python dictionaries, as shown in the Python-
Code 12, is stored in one cell of the ner coref column as object.

To do Topic Modelling on sentences as described in the next chapter, the nested
list of Python dictionaries (Python-Code 12) must be flattened first to have one
sentence in each row of the DataFrame. This is what the

convert nested ner coref dict()

function in the Python file main process.py does:

78 @staticmethod

79 def convert_nested_ner_coref_dict(df: pd.DataFrame) -> pd.DataFrame:

80 df['art_id'] = df.index

81 df = df.explode('ner_coref').reset_index(drop=True)

82 df['top_sent'] = df['ner_coref'].str['sentence'].astype(object).replace(np.nan, pd.NA)

83 df['top_sent_masked'] = df['ner_coref'].apply(SpacyProcess.mask_sent)

84 return df

Python-Code 13: Un-Nesting NER and COREF Information

Before inserting new rows into the DataFrame, the function in line 80 inserts
a new art id column that is just the row index of the DataFrame. As each row
contains just one article, the new column preserves the article identification of
the soon-to-be expanded DataFrame. The pandas DataFrame function explode in
line 51 then creates new rows for each dictionary (shown in Python-Code 12) and
pandas string accessor method in line 52 finally inserts the sentences into the new
column top sent.

5.3.3. Comparing Pre-Trained vs. Generative LLM approach

The Generative LLM approach outperforms the pre-trained Crosslingual-Coreference
model [21] on the sample text I tested them with. The latter model performs well
if the article text mentions only one company, but links Coreferences to the wrong
company if multiple companies are mentioned. Here, the pre-trained Crosslingual-
Coreference model [21] might show its lack for contextual understanding as the
underlying LLM is only used for finding and resolving Coreference Clusters (see:

67

Section 5.2.1). The Generative LLM is not perfect either as it does not find all
Coreferences, but those that are found are mostly correct. In addition, the Genera-
tive LLM was only provided with four few-shot examples in the Prompt and adding
more examples would probably improve the model further. I thus have decided to
use the Generative LLM approach for the task of Coreference resolution.

5.3.4. Information Extraction Pipeline

After the Coreference Resolution component has run, the spacy pipeline has at-
tached the found company information to the respective custom extensions that in
a subsequent step will be stored as a list of dictionaries as shown in Python-Code
12:

Figure 5.6.: spacy pipeline after COREF component

In the example, it contains the company name Siemens coming from the NER
component and the Coreference company coming from the Coreference Resolution
component.

68

6. Topic Modelling

6.1. Information Extraction Types

Information Extraction in NLP can be subdivided into multiple fields [61], among
them:

� Relation Extraction: Extraction and classification of relations between
named entities

� Event Extraction: Extraction of a temporal Event

� Topic Modelling: Assigment of a topic to a short text or document

The initial expectation for this project was to extract information from the
article sentences in the form of triples:

Triple: Subject – Relation – Object

where either the Subject or the Object would be a corporate entity (ORG).
If the Subject were a company, the Object could either be another company or

any other common named entity type from the set of ORG, PER or LOC, and
vice versa.
The assumption was that these Subjects and Objects would appear in the same

sentence as in the following example:

69

Figure 6.1.: Triple: Subject: Person - Relation: Founded - Object: Apple

After investigation of the news articles, it became clear that the limitation to
only extract Relation triples was too restrictive. Many article sentences only con-
tained one common named entity type or described an Event rather than a rela-
tionship between entities.
In some other sentences, Subjects or Objects could have been assigned to a

wider and less common set of entity types such as Product, Money or Law, but
this would have required to enlarge the set with many new custom entity types to
cover the most fundamental themes in the finance domain.
It would also have meant to increase the complexity of the Knowledge Graph

and deviate from the goal of the project, which was to extract information from
news articles with a focus on particular companies. To answer the central question

What is the company news all about?

a more general and more comprehensive extraction type was needed.
Topic Modelling can be done on the sentence level and does not require entity

pairs. Topics can cover Events as well as Relations between entities and a wide
array of finance themes. Extracting information via Topic Modelling thus seems
more appropriate for the data and task given than Relation Extraction.

6.2. Traditional Topic Modelling

Most of the traditional Topic Modelling methods are based on absolute (Bag-of-
Word: Section 3.3.2) or relative (TF-IDF: Section 3.3.5) word counts as discussed
in Section 3.

70

They also return topics in the form of most frequent words where the user must
first read the words per topic to get a sense of what the topic is all about, see
Figure 6.2.

Figure 6.2.: 10 Topics and their most frequent words. Source: [11]

6.2.1. NMF

In the Non-Negative Matrix Factorization method (NMF), the most frequent words
are retrieved by doing a matrix decomposition of the Document Term Matrix (see
Section 3.2) which in the following Figure is dubbed Documents-Words Matrix :

Figure 6.3.: NMF: Source: [11]

71

The Documents-Topics matrix in the middle of Figure 6.3 maps Documents to
Topics whereas the Words-Topics matrix on the right maps topics to their features,
i.e. the words in the Vocabulary. In most implementations, a rank parameter (or
n components parameter in Scikit-Learn’s implementation [69]) can be provided
so that the word dimension of the Document Term Matrix first gets reduced before
it is decomposed. Because of this, NMF can also be used as a dimension reduction
method [69]. To get the most frequent words, each row in the Words-Topics matrix
is sorted by its highest values with their respective column indexes being looked up
in the Vocabulary. The number of topics can be chosen arbitrarily but a smaller
number will ”throw” more words into one topic which makes the decomposition
less exact [11].

6.2.2. SVD

A very similar method is the Singular Value Decomposition (SVD) that decom-
poses the Document Term Matrix into three matrices:

Figure 6.4.: SVD: Source: [11]

The nice thing about the SVD is that the quadratic Topics-Topics matrix (third
matrix from left in Figure 6.4) on its diagonal contains the singular values which
express the importance of each topic in a document. A higher singular value
indicates a topic that captures more of the variance (or information) in the corpus
[11]. From the most right Words-Topic matrix, the most important words per
topic again can be extracted as described above (Section 6.2.1).

6.2.3. LDA

Latent Dirichlet Allocation (LDA), before the arrival of LLMs, had been the most
prominent method for Topic Modelling [11]. LDA, contrary to the previous meth-
ods above, is a probabilistic method that is based on the assumption that each
Document contains a mix of a few different topics. The method starts by randomly

72

allocating words to each topic and also allocating topics to each document accord-
ing to a Dirichlet distribution (Dirichlet prior) [11]. It then tries to re-create the
words from the original document with stochastic sampling. At the end of the
optimization process, LDA also returns topics as a list of most frequent words as
the NMF and LDA methods do, but with a different distribution.

6.3. Embedding-based Topic Modelling

As with most other fields in NLP, the advent of LLMs also changed the way Topic
Modelling can be approached today. As the input data or features of traditional
Topic Models are static words, they do to not take into account the word’s changing
contextual meaning in different sentences, as already discussed in Section 3.4.
Thus, it is no wonder that today’s best performing Topic Models are all embedding-
based [63].
LLMs can be used for Topic Modelling either with Pre-Trained or with Gener-

ative LLMs.

6.3.1. Pre-Trained Topic Models

Topic Modelling can be considered a classical text classification task and there are
many pre-trained, publicly available models on HuggingFace [20] (see Figure 6.5)
or other platforms, even for multilingual text.

Figure 6.5.: Hugging Face Topic Models. Source: [20]

73

Unfortunately, the pre-trained Topic Models on Hugging Face [20] are either
trained on labels that are very broadly categorized (see Figure 6.6) or very tightly
confined to a narrow domain or language.

Figure 6.6.: Hugging Face Topic Models - Typical labels. Sources: [16][17]

After extensively researching the domains of these models, I conclude that none
of them fits the corporate financial news domain and the given data very well.
It could be possible to fine-tune a model and I would expect the performance of

such models to be quite good. But fine-tuning would require to label and compile
a lot of training samples which would go beyond the scope of this thesis.

6.3.2. BERTopic

Another kind of pre-trained model is BERTopic [38]. BERTopic is similar to tra-
ditional models in that it returns a most-common-word list per topic for which the
user must define a topic label manually. But it differs from traditional models in
that it does not use word vectors but Sentence Transformer (or SBERT) [66] em-
beddings. BERTopic further uses dimension reduction and clustering techniques.
SBERT is a modification of the pre-trained BERT model that uses siamese and
triplet network structures to derive semantically meaningful sentence embeddings
that can be compared using cosine-similarity. This reduces the effort for finding
the most similar pair of sentences significantly, while maintaining the accuracy
from BERT [66].

74

BERTopic [38] is a modular system in the sense that individual components can
be substituted depending on the dataset and use case. The modules and main
steps to compose BERTopic [38] are:

1. Embeddings: Choose and apply an embedding component, typically SBERT
[66]

2. Dimension Reduction: Choose and apply a dimension reduction method
on the embeddings

3. Clustering: Choose and apply a clustering algorithm on the dimension-
reduced embeddings

4. Aggregate Text: Aggregate the text of all documents within each cluster

5. Apply TF-IDF Vectorization: Apply TF-IDF vectorization to each of
the per-Cluster-aggregated texts 1

6. Most Frequent Words: Get the most frequent words for each cluster
according to TF-IDF

This approach ensures that the distinction of Topic Clusters is made on the
basis of contextual embeddings (Step 1). But it also ensures, that the Topic that
each Cluster represents, can also be presented as a collection of its most frequent
words (Step 4 and 5).
BERTopic [38] can be downloaded and is pip-installable. Most of the compo-

nents in BERTopic are built with existing libraries such as Scikit-Learn. I also
wanted to compare it with traditional Topic modelling approaches, so I decided
to implement it myself. In this proprietary implementation not only word embed-
dings can be used, but also traditional word vectors such as those used in a classic
Bag-of-Word (Sec.3.3.2) or TF-IDF (Sec.3.3.5) approach.

The modules for the self-implemented models can be found in the

src/E topic model/traditional

directory. The model follows the modularity and architecture of BERTopic in that
the steps to build the model are similar:

1. topic prepare: If desired, preprocesses the text to reduce the dimension of
the Vocabulary as described in Section 3.3.4.

1In BERTopic, this is called class-based TF-IDF or c-TF-IDF

75

2. topic vectorize: Choose between TF-IDF (Sec.3.3.5), Bag-of-Word (Sec.3.3.2),
One-Hot (Sec.3.3.1) vectorization or Sentence Transformers embeddings

3. topic dim reduce: Choose between multiple dimension reduction methods
such as PCA, NMF, UMAP, etc.

4. topic cluster: Choose between multiple cluster methods such as HDB-
SCAN, KMEANS, MEANSHIFT, etc.

5. topic model: Run all of the above components and calculate Topics by
presenting the most frequent words of each Cluster

6. topic visualize: Reduce the dimension of the word vectors or embeddings
to three and display the data and Clusters in a Plotly Scatter-3d-Graph.

In the same directory, there are two Jupyter notebooks that can be used for
model training and prediction: topic model train.ipynb and topic model test.ipynb.
The Jupyter Notebook topic model train.ipynb was used to extensively test dif-

ferent combinations of text processing approaches, vectorization methods and clus-
ter algorithms, but the results were disappointing.

Sentence Transformer Embeddings When using the Sentence Transformer em-
bedding method as BERTopic does by default, the Cluster algorithms all had dif-
ficulties in separating the data points, not only visually (see Figure 6.7), but also
by separating semantically coherent words and sentences into different Clusters.

Figure 6.7.: SBERT/Sentence Transformer embedding Cluster

76

In Figure 6.7, UMAP was used to reduce the dimension to 20 and HDBSCAN
was used to find clusters. Although there are some clusters that are clearly sepa-
rate from others, most of the clusters are within a close distance and the separation
of datapoints changes quickly with slightly different model parameters. The same
words appear in many clusters and manually looking at some individual sentences
leads to the conclusion that sentences within clusters are not coherent. The re-
sults were similar for other combinations of dimension reduction and clustering
algorithms.

Word Vectors Looking at models were word vectors instead of embeddings were
used, the performance of these models is not better:

Figure 6.8.: TF-IDF Cluster

In Figure 6.8, TF-IDF was used for vectorization, PCA for dimension reduction
and KMEANS for clustering. The models suffer from the same shortcomings as the
embedding based model above: same words appear in many clusters and sentences
within clusters are not coherent.

Performance Although the financial news domain spreads across a wide range
of topics, these topics are very nuanced and all have to do with company news.
I attribute the performance problems of the above methods to the fact that the
differences between the individual sentences expressed as distances in vector space
are probably too small to extract meaningful clusters.

77

6.4. Topic Modelling with Generative LLMs

Similar to creating a Generative LLM model for Coreference Resolution, the Gen-
erative LLM for Topic Modelling was also created with LangChain [71]. As the
problem of unresolvable dependency conflicts with existing Python libraries pre-
vailed, the approach was again isolated with Docker. The files for building the
Docker container can be found in the

/src/E topic model/img llm extract topics

directory.

Data Model The data models.py file in this directory contains the Python Enum
TopicExplain with the desired topic classes and a short description of each topic:

9 class TopicExplain(str, Enum):

10 """ The Topic of the sentence. Topics can only be one of the following: """

11 topic1 = ("Sätze mit konkreten Zahlenangaben aus Quartals- oder Jahresberichten. Die genannten Zahlen beziehen sich auf die

Bilanz, den Umsatz- oder die Gewinn- und Verlustrechnung (GuV). "↪→
12 "Beispiele dafür sind EBIT, EBITDA, Gewinn oder Verlust vor Steuern, Gewinn- oder Verlustmargen, der Umsatz,

Veränderungen der Größen über einen Zeitraum, etc.")↪→
13 topic2 = "Sätze mit allgemeinen Aussagen und Einschätzungen zu Unternehmensergebnissen, die Bilanzerung und den Umsatz. Dies

sind Wertungen, oft von Verantwortlichen im Unternehmen, die keine konkreten Zahlen beinhalten. "↪→
14 topic3 = ("Sätze, die sich auf eine bevorstehende oder vergangene Hauptversammlung oder die Veröffentlichung von

Unternehmensergebnissen beziehen, ohne dass dabei konkrete Zahlen genannt werden. "↪→
15 "Beispiele dafür sind die Ankündigung einer Veröffentlichung von Quartals- oder Jahresberichten oder Informationen zu

bzw. über eine Hauptversammlung.")↪→
16 topic4 = "Zukunftsgerichteter Ausblick, Prognosen, Ziele, Strategie und Pläne der Unternehmensleitung."

17 topic5 = "Sätze, die Kennzahlen zu Unternehmensergebnissen beinhalten, ohne dass dabei ganze Sätze gebildet werden oder die

Zahlen beschrieben und erläutert werden. Beispiele dafür sind tabellenartige Angaben von Kennzahlenvariablen und deren

Werte wie: 'EBITDA EUR 23 Mio.'"

↪→
↪→

18 topic6 = "Sätze, in denen die Aktivitäten und das Profil des Unternehmens dargestellt wird. Oft dienen die Sätze der positiven

Selbstdarstellung seitens des Managements, dem Brand-Marketing oder einer allgemeinen Unternehmensbeschreibung."↪→
19 topic7 = "Stimmrechte, Kapitalveränderungen, Dividenden, Finanzierung, Listing an Börsen, Marktkapitalisierung."

20 topic8 = "Sätze, in denen das vom Unternehmen angebotene Produkt, eine Produktentwicklung oder ein neue Neuerung im Hinblick

auf ein Produkt des Unternehmens beschrieben wird."↪→
21 topic9 = "Sätze, in denen die Herstellung des Produkts, der Produkt-Forschung, die Exploration vn Bodenschätzen, Produkt- oder

Medikamenten-Zulassungen, dem Finden neuer Resourcen oder anderen dem Herstellungsprozess nahen Themen geht."↪→
22 topic10 = "Konzernumbau, wichtige organisatorische Veränderungen, Restrukturierung, Werksstilllegung, strategische

Partnerschaften, Übernahmen"↪→
23 topic11 = "Personalveränderungen im Vorstand, Aufsichtsrat, Betriebsrat oder anderer Organe im Unternehmen, Personal,

Gewerkschaftem, Streiks"↪→
24 topic12 = "Kunden, Marktanteile, Absatzmärkte, Umsätze, Absatzpreise"

25 topic13 = "Einflüsse von Aussen auf die Erfolgsaussichten von Unternehmen etwa durch Subventionen, Staatliche Eingriffe,

Umbrüche im Markt, politische Veränderungen, Umwelteinflüsse, etc."↪→
26 topic14 = "Einschätzungen Unternehmensfremder/Analysten zu einem Unternehmen"

27 topic15 = "Unfälle, Gewalt, Katastrophen"

28 topic16 = "Unvollständige Sätze mit einzelnen, nicht-zusammenhängenen Worten, ohne Kontext, die wahrscheinlich falsch

formattiert oder im vorangehenden Text-Reinigungsprozess falsch gesplittet wurden. "↪→
29 topic17 = "Alle anderen topics, die den oben genannten 16 topics nicht zugeordnet werden können."

Python-Code 14: Topic Model: Pre-Defined topics

There are 17 pre-defined topics formulated in German that were manually crafted
by reading some of the article’s sentences. topic16 is dedicated to sentences that

78

are incomplete and topic17 to all topics that are not covered by the previous 16
topics.

The process of defining topics could be facilitated by letting an LLM classify a
set of sample sentences into an arbitrary number of topics, summarize each topic
and express its overarching theme in a short sentence. If manually crafted though,
for a production use case, a more thorough semantic analysis of the article sen-
tences and a re-assessment over the number of topics was also necessary.

The directory also contains a topics.py file that provides sample sentences for
each topic which are later used in the Prompt as few-shot examples. Some of these
few-shot examples are shown in Python-Code 15:

80 # Note: Sätze, in denen die Aktivitäten und das Profil des Unternehmens dargestellt wird. Oft

dienen die Sätze der positiven Selbstdarstellung seitens des Managements, dem Brand-Marketing

oder einer allgemeinen Unternehmensbeschreibung.

↪→

↪→

81 top6 = [

82 'Die Comp@Name@Placeholder ist aufgrund ihrer zwei Jahrzehnte langen Erfahrung im Hanfanbau

optimal in der Lage, Privatpersonen und gemeinschaftliche Anbauvereinigungen zu beliefern.',↪→

83 'Die aktuellen Weiterentwicklungen von Comp@Name@Placeholder eroeffnen uns neue Optionen unter

anderem in der Visualisierung von Business Intelligence, der Datenzuordnung und

-modellierung.',

↪→

↪→

84 'Comp@Name@Placeholder gilt mit einer Flotte von 250 Containerschiffen und einer

Transportkapazitaet von 1,8 Millionen TEU als fuenftgroesste Reederei der Wel, hinter

Comp@Name@Placeholder, Comp@Name@Placeholder, Comp@Name@Placeholder und dem Primus

Comp@Name@Placeholder.',

↪→

↪→

↪→

85 'Die Comp@Name@Placeholder ist in Europa und Nordamerika der fuehrende Omnichannel-Haendler fuer

Geschaeftsausstattung.',↪→

86 'Die Gruppe ist mit den Divisions Industrial & Packaging, Office Furniture & Displays und

FoodService in mehr als 25 Laendern vertreten.',↪→

87 'Im ersten Quartal begann Comp@Name@Placeholder mit der Implementierung neuer Technologien im

Bereich Document Workflow Management, um die operative Effizienz zu staerken und den Kunden

digitale Loesungen mit hoeherem Mehrwert zu bieten.',

↪→

↪→

88 'Basierend auf der vorhandenen Produktpalette, die auf das Segment kleinerer Briefvolumina

ausgerichtet ist, und dank des hohen Anteils an wiederkehrenden Umsaetzen, verfuegt das

Unternehmen ueber ein robustes Geschaeftsmodell und investiert in die weitere Entwicklung des

Frankiergeschaefts.',

↪→

↪→

↪→

89]

Python-Code 15: Topic Model: Few Shot Examples

As the few-shot examples often contain concrete company names, these com-
pany names therein were replaced by a Comp@Name@Placeholder mask to avoid
that the Generative LLM tries to match the company name of the sample sentence.

79

LangChain Code The LangChain code used in the Docker container is laid out
in the topic langchain.py file of the same directory, see Python-Code 16:

20 class TopicLangchain:

21 def __init__(self, prompt_template: str, model_name: str = "gpt-4o"):

22 nest_asyncio.apply()

23 self.prompt = PromptTemplate(template=prompt_template, input_variables=["user_data",

"topics"]).partial(pattern=re.compile(r"\`\`\`\n\`\`\`"))↪→

24 self.llm = ChatOpenAI(temperature=0, model=model_name,

openai_api_key=os.getenv('OPENAI_API_KEY'))↪→

25 self.llm = self.llm.with_structured_output(schema=Frame)

26 self.chain = self.prompt | self.llm

27 self.examples: list[BaseMessage] = convert_examples_to_messages()

28 self.topics: str = str({i.name: i.value for i in TopicExplain})

29

30 def make_frame(self, df: pd.DataFrame) -> Frame:

31 return Frame(indexes=df.index.values, sentences=df.sentences.values)

32

33 def format_prompt_template(self, df: pd.DataFrame):

34 frame = self.make_frame(df)

35 prompt_template = self.prompt.template.format(user_data=frame, topics=self.topics,

examples=self.examples)↪→

36 return prompt_template

37

38 def get_topics(self, df: pd.DataFrame):

39 frame = self.make_frame(df)

40 return self.chain.invoke({"user_data": frame, "topics": self.topics, "examples":

self.examples})↪→

Python-Code 16: LangChain Topic Model

In line 26, the chain is built by piping or connecting LangChain’s Prompt com-
ponent with the LLM component. The Prompt contains the previously discussed
few-shot examples (line 27) compiled and organized by a Python function into an
appropriate format. It also contains the topics and their short descriptions (line
28) coming from the Python Enum TopicExplain discussed above.

The sentences to be topic-classified are inserted into the Prompt (line 40) via
an instance of a Python Frame class (see Python-Code 17) that inherits from
Pydantic’s BaseClass [70]. The same class in line 25 is also used in LangChain’s
ChatOpenAI module function

80

llm.with structured output(schema=Frame)

to force the LLM to return its response in the format of this class, as explained in
Section 5.3.2.

53 class Frame(BaseModel):

54 """ DataFrame that contains the index of the DataFrame and the column "top_sent" which contains

the sentences for which a topic shall be determined. """↪→

55 indexes: list[int] = Field(description='The indexes of the rows in the pandas DataFrame')

56 sentences: list[str] = Field(default=None, description='List of sentences each for which the

Topic shall be determined.')↪→

57 topics: list[Topic] = Field(default=None, description='List of Topic enums for each sentence

in "sentences". List must be of same length as "sentences" list.')↪→

Python-Code 17: Frame: A Pydantic BaseModel class

Aggregation of Sentences The Frame class, as the name implies, shall carry
the data of a pandas DataFrame, namely the row indexes of the DataFrame,
the name of the column that contains the sentences to be topic-classified and
the topics classes of those sentences to be returned by the Generative LLM. The
sentences to be classified are aggregated within a pandas DataFrame because the
few-shot examples baked into the Prompt are rather long. It would be very costly
if the Prompt with its long few-shot examples would be sent for each sentence
individually and separately.

The Token Limit Problem If there are many and long sentences to be topic-
classified, the token limit that all Generative LLMs have imposed, will be reached.
To avoid that, the pandas DataFrame, later to be converted to a Frame instance,
first must be split into chunks.

This is what the function

get topics from gen llm() (Python-Code 18)

in the main process.py file will do.

81

124 raise ValueError('No "top_sent" columns')

125 indexes = []

126 topics = []

127 for idx_start in range(0, len(df.index), chunk_size):

128 df_chunk = df.iloc[idx_start:idx_start + chunk_size]

129 frame = Frame.df_to_instance(df_chunk)

130 try:

131 resp = requests.post(url=self.topic_gen_llm_docker_container_url,

json=frame.dict(exclude_none=True))↪→

132 if resp.ok:

133 indexes.extend(resp.json()['indexes'])

134 topics.extend(resp.json()['topics'])

135 else:

136 print(f'Error occurred. Will try again... ')

137 time.sleep(2)

138 resp = requests.post(url=self.topic_gen_llm_docker_container_url,

json=frame.dict(exclude_none=True))↪→

139 if resp.ok:

140 indexes.extend(resp.json()['indexes'])

141 topics.extend(resp.json()['topics'])

142 else:

143 print(f'Error occured the second time, could not be cured: {resp.text}')

144 indexes.extend([i for i in range(idx_start, idx_start + chunk_size)])

145 topics.extend(['topic17' for _ in range(idx_start, idx_start +

chunk_size)])↪→

146 print('DEBUG INFO:', topics)

147 except:

148 print(f'Error occured: {traceback.format_exc()}')

149 indexes.extend([i for i in range(idx_start, idx_start + chunk_size)])

150 topics.extend(['topic17' for _ in range(idx_start, idx_start + chunk_size)])

151

152 time.sleep(1)

153

154 df[df_col_name] = topics

155 return df

156

157

Python-Code 18: Frame: A Pydantic BaseModel class

It first chunks the passed DataFrame into a default size of 30 rows (line 130),
converts it to a Frame instance (line 131) and sends the JSON-ized instance to the
Docker container waiting for requests (line 133). The LangChain model, as de-
scribed above, in the Docker container forwards the Examples- and Topic-enhanced
Prompt request to an OpenAI server and returns the response from there, ideally
in JSON-format (that complies with the Frame class format), in line 140.

82

If the procedure succeeds, the topic classification of the Generative LLM for
each DataFrame chunk first gets appended to a Python list that later will be used
to create a new topics column in the DataFrame. If the procedure fails, it is tried
once again and the request is resend. If the procedure still fails, topic17 as the
default spare class will be appended to the Python list in line 152.
The function returns the pandas DataFrame with an extra topics column that

contain one of the 17 Enum topics for each sentence.

6.4.1. Comparing Pre-Trained vs. Generative LLM approach

As outlined above, the cluster based methods such as the self-implemented BERTopic
model, did not perform well on the Topic Modelling task. In addition, they require
to manually formulate a topic based on the most frequent words of a cluster.
The Generative LLM on the other side did perform well on the sentences I

tested it with. Most of the sentences were classified correctly. For sentences that
were expected to be classified differently, the actual and expected topic classes and
examples were ambiguous and probably need some refinement.
I attribute the good performance of the Generative LLM to the power of a really

large LLM (such as OpenAI’s 4o model) that has the capacity to understand and
distinguish even the most nuanced context.
I would expect a pre-trained LLM, such as those available on HuggingFace,

to perform equally well after fine-tuning it with domain-specific topic labels and
training data.
But as I did not go through the extensive process to compile and label such

training data, in the project the Generative LLM was used for Topic Modelling.

6.5. Information Extraction Pipeline

After the Topic Modelling component has run, the Generative LLM has filled
the pandas DataFrame column topics in respect to each sentence in the column
top sent :

83

Figure 6.9.: DataFrame after Topic component

In the example above, the DataFrame contains all the information coming from
the NER and Coreference components and one of the 17 possible topics for each
sentence in which a company was found.

84

7. Knowledge Graph1

7.1. Introduction

As outlined in Chapter 1, the goal of this project was to extract structured infor-
mation from unstructured text and store this information in a Knowledge Graph.
A Knowledge Graph is an organized representation of real-world entities and their
relationships which is typically stored in a graph database such as neo4j [85]. A
graph database stores data as Nodes, Relationships and Properties in a graph-like
[26] structure instead of in tables or documents [84]. This enables the database
to traverse Nodes and Relationships more quickly than relational databases, that
would use computationally expensive JOIN operations to retrieve inter-related
information [85].
All the files for this chapter can be found in the src/F knowledge graph directory.

7.2. Knowledge Graph Creation

A Knowledge Graph is defined by an Organizing Principle [85] or a Schema. The
schema of the Knowledge Graph in this project is depicted in Figure 7.1.

Figure 7.1.: Knowledge Graph Schema

1Part of the Python code for this section was adopted from [37]

85

The schema contains four Nodes (Article, Sentence, Company, Topic) and three
relationships (mentions, is part of, is about), as described in Section 1.

Ontology A Knowledge Graph Schema can be outlined in different ways, for
instance by using an Ontology. An Ontology uses a modelling language to formally
specify the concepts and relationships in a human- and machine-understandable
way [85].
The most widely used ontology modelling languages are OWL (Web Ontology

Language) [27] and RDFS (Resource Description Framework Schema) [96]. Their
most fundamental construct is a triple [28] consisting of

Subject - Predicate - Object

tuples. Multiple triples can be composed into a graph structure because objects can
be subjects and vice versa and both can be connected via predicate relationships.
The textual presentation of the Ontology in this project is done with a Turtle
[30] file (suffix: .ttl), a common data serialization format for storing triples. The
NewsArticles.ttl Ontology file (Python-Code 19-21) was created with Protege [86],
an open-source ontology editor by Stanford University.

1 @prefix rainergo: <http://www.semanticweb.org/rainergo/ontologies/NewsArticles#> .

2 @prefix owl: <http://www.w3.org/2002/07/owl#> .

3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

5 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

6 @base <http://www.semanticweb.org/rainergo/ontologies/NewsArticles/> .

7

8 rainergo: rdf:type owl:Ontology .

Python-Code 19: NewsArticles.ttl - Prefixes

Turtle files usually start with prefixes that refer to other Ontology namespaces
[89] and their vocabulary [89].
In line 8 of the NewsArticles.ttl file, the triple

subject predicate object
rainergo: rdf:type owl:Ontology

states that the prefix rainergo in line 1 is of type Ontology where type and Ontology
themselves are defined in triples that are accessible through their public IRIs in
lines 2 and 3.

86

87 ###

88 # Classes

89 ###

90

91 ### http://www.semanticweb.org/rainergo/ontologies/NewsArticles/Article

92 rainergo:Article rdf:type owl:Class .

93

94 ### http://www.semanticweb.org/rainergo/ontologies/NewsArticles/Company

95 rainergo:Company rdf:type owl:Class .

96

97 ### http://www.semanticweb.org/rainergo/ontologies/NewsArticles/Sentence

98 rainergo:Sentence rdf:type owl:Class .

99

100 ### http://www.semanticweb.org/rainergo/ontologies/NewsArticles/Topic

101 rainergo:Topic rdf:type owl:Class .

Python-Code 20: NewsArticles.ttl - Classes or Nodes

In lines 87 to 101, the classes or Nodes of the Knowledge Graph schema are
defined, again with triples.

10 ###

11 # Object Properties

12 ###

13

14 ### http://www.semanticweb.org/rainergo/ontologies/NewsArticles/is_about

15 rainergo:is_about rdf:type owl:ObjectProperty ;

16 rdfs:domain rainergo:Sentence ;

17 rdfs:range rainergo:Topic .

18

19 ### http://www.semanticweb.org/rainergo/ontologies/NewsArticles/is_part_of

20 rainergo:is_part_of rdf:type owl:ObjectProperty ;

21 rdfs:domain rainergo:Sentence ;

22 rdfs:range rainergo:Article .

23

24 ### http://www.semanticweb.org/rainergo/ontologies/NewsArticles/mentions

25 rainergo:mentions rdf:type owl:ObjectProperty ;

26 rdfs:domain rainergo:Sentence ;

27 rdfs:range rainergo:Company .

Python-Code 21: NewsArticles.ttl - Relationships

In lines 10 to 27, the relationships are defined with three triples for each rela-
tionship where the second (predicate: domain) and third (predicate: range) triple

87

represent its source and target Node.

29 ###

30 # Data properties

31 ###

32 ### http://www.semanticweb.org/rainergo/ontologies/NewsArticles/art_id

33 rainergo:art_id rdf:type owl:DatatypeProperty ;

34 rdfs:domain rainergo:Article ;

35 rdfs:range xsd:int .

36

37 ### http://www.semanticweb.org/rainergo/ontologies/NewsArticles#art_datetime

38 rainergo:art_datetime rdf:type owl:DatatypeProperty ;

39 rdfs:domain rainergo:Article ;

40 rdfs:range xsd:dateTime .

41

42 ### http://www.semanticweb.org/rainergo/ontologies/NewsArticles#art_text

43 rainergo:art_text rdf:type owl:DatatypeProperty ;

44 rdfs:domain rainergo:Article ;

45 rdfs:range xsd:string .

46

47 ### http://www.semanticweb.org/rainergo/ontologies/NewsArticles#art_source

48 rainergo:art_source rdf:type owl:DatatypeProperty ;

49 rdfs:domain rainergo:Article ;

50 rdfs:range xsd:string .

Python-Code 22: NewsArticles.ttl - Properties

In Python Code 22, lastly the Node’s properties and their data types are defined
(only shown for the Node type Article).

The Turtle file represents the human- and machine-readable presentation of the
Schema that in Figure 7.1 was visualized as chart.

Graph Preparation To translate the Ontology into a neo4j schema and lay the
foundation for the Knowledge Graph, the Python library rdflib [87] was used in
the

F knowledge graph/A rdf graph.py

module. The functions in the RDFGraph class parse the triples in the NewsAr-
ticles.ttl file into an RDF [96] graph and construct Cypher [95] query templates
based on this graph for subsequent data imports. Cypher [95] is a declarative
graph query language whose query commands are similar to those of the popular

88

SQL [97] database language used for relational databases.

The functions to operate on the neo4j graph database and to run Cypher queries
can be found in the

F knowledge graph/B graph construction

module within the GraphConstruction class. They require the neo4j database and
the neo4j Python driver to be installed [84].

Data Preparation In order to align the Knowledge Graph schema (Fig.7.1) with
the extracted data in the pandas DataFrame and insert the data into the Knowl-
edge Graph, some data preparation is necessary.
For the Topic Modelling task, the pandas DataFrame must contain one row for

each sentence to be topic-classified and this was achieved by the

convert nested ner coref dict() function (Python-Code 13)

as outlined in Section 5.3.2. But each sentence might contain multiple company
references as shown in Python-Code 23 where two companies, Hypoport SE and
JDC Group AG, are mentioned in one sentence:

1 [

2 {

3 "entities": [

4 {

5 "comp_name": "Hypoport SE",

6 "comp_symbol": "HYQ.DE",

7 "df_index": 12,

8 "start_char": 504,

9 "end_char": 515,

10 "ent_text": "Hypoport",

11 "set_in": "own_regex_search"

12 },

13 {

14 "comp_name": "JDC Group AG",

15 "comp_symbol": "JDC.DE",

16 "df_index": 12,

17 "start_char": 583,

18 "end_char": 595,

19 "ent_text": "JDC Group AG",

20 "set_in": "own_regex_search"

21 }

22],

23 "sentence": "Digitalplattform-Experte Marcus Rex, der zuvor bei Hypoport SE die Versicherungsaktivitaeten leitete, verstaerkt

den Vorstand der JDC Group AG als neuer CSO CMO."↪→
24 },

Python-Code 23: Company information for each sentence

89

To prepare the DataFrame for the Knowledge Graph, the information in the
Python list of dictionaries (line 4-20 in Python-Code 23) must be further resolved
so that each DataFrame row only contains one company mention.
This is what the function prepare df for kg() in the main process.py file does:

91 def prepare_df_for_kg(self, df: pd.DataFrame) -> pd.DataFrame:

92 df['ner_coref_entities'] = df.ner_coref.str['entities']

93 df = df.explode('ner_coref_entities').reset_index(drop=True)

94 df['comp_symbol'] = df.ner_coref_entities.str['comp_symbol']

95 df['comp_name'] = df.ner_coref_entities.str['comp_name']

96 df['top_description'] = df.topic.apply(lambda x: TopicExplain[x].value)

97 df.drop_duplicates(subset=['top_sent', 'comp_symbol', 'comp_name'], keep='last',

inplace=True)↪→

98 df = self._drop_nans(df)

99 df = self._get_isin(df)

100 return df

Python-Code 24: Function: prepare df for kg()

It extracts and inserts the entities list into the new DataFrame column ner coref entities
(line 92), inserts new rows that accommodate each company information separately
(line 93) and therefrom extracts and pastes the comp symbol and comp name into
new columns (line 94-95). There are also news articles in the DataFrame that
are only updates of previous articles and in which only a few words might have
changed. It is therefore possible, that same sentences appear in more than one
DataFrame row, i.e. that there are duplicates which must be removed (line 97).

Company Symbol and ISIN The comp symbol refers to the stock ticker symbol
that a company has on a certain stock exchange. Unfortunately, these ticker sym-
bols without their country suffixes are unique only within each stock exchange but
not across stock exchanges. ISINs on the other side are unique but unfortunately
are not provided by the company data provider OpenBB [15].
Company symbols thus first must be mapped to ISINs to have unique identi-

fiers later to be used for external data retrieval. The function prepare df for kg()
(Python-Code 24) does this (line 99) based on a manually compiled list and also
inserts the ISIN as a new column into the DataFrame.
The data there is now ready to be inserted into the Knowledge Graph.

Data Loading After the GraphConstruction method init graph() has set some
general parameters for neo4j, the method load data into knowledge graph() in Python-
Code 25:

90

229 def load_data_into_knowledge_graph(self, df: pd.DataFrame, show_queries: bool = False):

230

231 def check_if_df_and_onto_match(df: pd.DataFrame, nodes_with_attrs: dict, nodes_without_attrs):

232 if nodes_without_attrs:

233 raise ValueError(f'There are Nodes in the Ontology that do not have any attributes (owl:DatatypeProperty):

{nodes_without_attrs}. Please check!')↪→
234 df_columns: list = df.columns.tolist()

235 node_attributes: list = [self.ONTO_ATTR_TO_DF_ATTR_MAP[col] for cols in nodes_with_attrs.values() for col in cols]

236 not_in_df = [col for col in node_attributes if col not in df_columns]

237 if not_in_df:

238 raise ValueError(f'The following Node attributes are not a column in the DataFrame: {not_in_df}')

239

240 def get_data_from_df(df: pd.DataFrame, nodes: dict[str, list], relationships: list[dict[str, str]], unique_node_keys:

dict[str, list[str]]) -> tuple[list, list]:↪→
241 nodes_data: list = list()

242 relationships_data: list = list()

243 for ind, row in df.iterrows():

244 for node, attrs in nodes.items():

245 row_template = {node: {attr: row[self.ONTO_ATTR_TO_DF_ATTR_MAP[attr]] for attr in attrs}}

246 if row_template not in nodes_data:

247 nodes_data.append(row_template)

248 for rel in relationships:

249 relationship = {rel['SOURCE'] + '_' + rel['REL'] + '_' + rel['TARGET']: {"source": {rel['SOURCE']: {attr:

row[self.ONTO_ATTR_TO_DF_ATTR_MAP[attr]] for attr in unique_node_keys[rel['SOURCE']]}}, "target":

{rel['TARGET']: {attr: row[self.ONTO_ATTR_TO_DF_ATTR_MAP[attr]] for attr in

unique_node_keys[rel['TARGET']]}}}}

↪→
↪→
↪→

250 relationships_data.append(relationship)

251 return nodes_data, relationships_data

252

253 # Note: 1. Get graph and data structure from Ontology

254 nodes_with_attrs, nodes_without_attrs = self.rdf_graph.get_nodes_and_node_props()

255 check_if_df_and_onto_match(df=df, nodes_with_attrs=nodes_with_attrs, nodes_without_attrs=nodes_without_attrs)

256 constraint_queries, node_queries, rel_queries, ns_queries = self.rdf_graph.create_query_templates()

257 relationships = self.rdf_graph.get_relationships()

258

259 # Note: 2. Get data from pandas dataframe

260 nodes_data, rels_data = get_data_from_df(df=df, nodes=nodes_with_attrs, relationships=relationships,

unique_node_keys=self.unique_node_keys)↪→
261

262 # Note: 3. Load data into Knowledge Graph

263 session = self.driver.session(database=self.neo4j_db_name)

264

265 for ns_query in ns_queries:

266 if show_queries:

267 print('ns_query:', ns_query)

268 session.run(ns_query)

269

270 for constraint_query in constraint_queries:

271 if show_queries:

272 print('Constraint_Query: ', constraint_query)

273 res0 = session.run(constraint_query)

274

275 for node_data in nodes_data:

276 node = list(node_data.keys())[0]

277 node_query = node_queries[node]

278 if show_queries:

279 print('node:', node)

280 print('Node_Query:', node_query)

281 res1 = session.run(node_query, parameters={'node_data': node_data})

282

283 for rel_data in rels_data:

284 rel = list(rel_data.keys())[0]

285 rel_query = rel_queries[rel]

286 if show_queries:

287 print('rel:', rel)

288 print('Rels_Query: ', rel_query)

289 res2 = session.run(rel_query, parameters={'rel_data': rel_data})

Python-Code 25: Function: load data into knowledge graph()

91

loads the DataFrame data into the neo4j graph database. It first retrieves the
structural information from the Ontology (lines 254, 256 and 257) that was stored
in the RDF graph (see Section 7.2), checks if the Node properties of the Knowl-
edge Graphs are present in the DataFrame (lines 255, 231-238), extracts the unique
Node and Relationship data from the DataFrame (lines 260, 240-251) and finally
uses this data to fill and execute (lines 263-281) the previously created Cypher
query templates (see Section 7.2).

The data is now loaded into the neo4j database and can be visually inspected
in a browser (URL: http://localhost:7474/browser/), see Figure 7.2. For visual
clarity, only a few datapoints are loaded and highlighted in the next few charts:

Figure 7.2.: Knowledge Graph after Data Loading

Zooming into an exemplary and disconnected Sub-Graph reveals some Relation-
ships and Node properties, see Figure 7.3:

92

Figure 7.3.: Exemplary, Disconnected Sub-Graph

In the Sub-Graph (Fig.7.3), a pink Topic Node with its top id, four green Sen-
tence Nodes with their sent id, a yellow Article Node with its art id and a red
Company Node with its comp name properties are displayed.
The information for each Node can be displayed individually once they are

selected in the browser:

93

(a) Article (b) Sentence

(c) Topic (d) Company

Figure 7.4.: neo4j: Nodes and their Properties

The four boxes in Figure 7.4 show the Node properties for the respective Nodes
that were previously loaded.

7.3. External Data

Publicly accessible triple stores [29], such as DBPedia [24] or WikiData [25], can
be used to enrich the Knowledge Graph with external data. For external data
to be added to the existing Knowledge Graph, a unique and common identifier
that exists in these triple stores, is necessary. The previously discussed ISIN, that
was mapped from the Company Symbol (see Section 7.2), is such an identifier.
The import wikidata id() function in Python-Code 26 uses the ISIN to retrieve
the Wikidata entity id [91] for each of the companies in the Knowledge Graph.

94

84 def import_wikidata_id(self, node: str, node_prop: str, node_prop_wikidata_id: str,

wikidata_id_is_part_of: str or None = None):↪→

85 if wikidata_id_is_part_of:

86 predicate = (f'(p:{wikidata_id_is_part_of}/pq:{node_prop_wikidata_id})|'

87 f'(p:{node_prop_wikidata_id}/ps:{node_prop_wikidata_id})')

88 else:

89 predicate = f'wdt:{node_prop_wikidata_id}'

90

91 query = rf"""

92 MATCH (node:{node})

93 WITH

94 "SELECT ?{node_prop} ?{self.label_wikidata_id}

95 WHERE {{

96 FILTER (?{node_prop} = \"" + node.{node_prop} + "\")

97 ?{self.label_wikidata_id} {predicate} ?{node_prop} .

98 }}"

99 AS sparql

100 CALL apoc.load.jsonParams(

101 "https://query.wikidata.org/sparql?query=" +

102 apoc.text.urlencode(sparql),

103 {{ Accept: "application/sparql-results+json"}}, null)

104 YIELD value

105 UNWIND value['results']['bindings'] AS row

106 WITH row['{node_prop}']['value'] AS prop_val,

107 row['{self.label_wikidata_id}']['value'] AS new_prop_val

108 MERGE (n:{node} {{ {node_prop}: prop_val }})

109 SET n.{self.label_wikidata_id} = new_prop_val;

110 """

111 # print(query)

112 self.driver.execute_query(query_=query, database_=self.neo4j_db_name)

113 self.import_wikidata_id_was_run = True

114 # Note: For Companies that do not have an ISIN (and thus no wikidataID), we must fill the

wikidataID attribute with values. Otherwise, there is no attribute at all which later

causes problems.

↪→

↪→

Python-Code 26: Function: import wikidata id()

SPARQL The function in lines 94-98 embeds a SPARQL [88] query that is sent
via an http-request to the Wikidata Query Service with the URL

https://query.wikidata.org/sparql

referenced in line 101. SPARQL is a query language to query and retrieve stored
RDF data such as Wikidata or DBPedia entities [88]. Wikidata and DBPedia are
considered publicly available triple stores [29].
neo4j’s apoc [83] library processes the SPARQL response (lines 106-109) and in-
serts the wikidataID into the respective property of each Company Node, if the

95

Wikidata entity page contains this information.

There are two other functions that can enrich the Knowledge Graph via SPARQL
queries, namely import data from wikidata() and import data from dbpedia() in
the GraphConstruction class. They can load any available information from triple
stores that have a link to a Wikidata entity id [91] or ISIN.
To show some examples, I have used these functions to load the Industry category,
the home Country and a short Abstract about the companies from Wikidata and
DBPedia. The respective SPARQL queries, that are automatically generated by
the two functions, for demonstration purposes were manually composed and are
shown in Figure 7.5.

(a) P452 - Industry

(b) P17 - Country

(c) dbo:abstract - Abstract

Figure 7.5.: SPARQL: Queries to enrich Knowledge Graph

96

In the neo4j Subgraph 7.6, the Company Node properties for Kloeckner & Co
SE now include the information for Industry, Country and an Abstract.

Figure 7.6.: Company Node after Data Enrichment

7.4. Information Retrieval

With the data from the DataFrame and from external sources loaded, the Knowl-
edge Graph can now be queried to retrieve information.

Cypher Queries Cypher queries provide a visual way to reveal patterns and
relationships by using a human-friendly ASCII-based type of syntax [84].

(:nodes) - [:ARE CONNECTED TO] � (:otherNodes)

Round brackets are used to represent (:Nodes), and -[:ARROWS]� to represent
a relationship between the (:Nodes). Cypher queries can be used to reveal a wide
range of Knowledge Graph information ranging from simple property values to
complex, multi-hop relations.
A user, for instance, could be interested in news articles about a particular com-
pany such as Brenntag SE or all companies that are mentioned in sentences about
Topic12 on a specific day and so would compose the following Cyper queries:

97

(a) Cypher Query 1: Articles about Brenntag SE

(b) Cypher Query 2: Companies, Sentences about Topic12

Figure 7.7.: Cypher Queries 1-2

Another user could be interested only in certain industry news for a particular
day or only in sentences with certain topics and about companies that are located
in Germany. He could compile these Cypher queries:

(a) Cypher Query 3: Sentences about Industry Wholesale

(b) Cypher Query 4: German Companies, Sentences about Topic12

Figure 7.8.: Cypher Queries 3-4

The queries could be even more specific and nested and so reveal deep interre-
lations between Companies, Articles, Topics and Sentences and their particular
properties. The queries can be executed via the Python plugin or directly in the
browser console and will be returned either as Graph visualization or as String in
JSON format.

98

7.5. Sentence Embeddings and Sentiment

So far, the Sentence information is only stored as text in the Node’s property
sent text. But the Embedder class in the F knowledge graph directory allows to
contextually embed (see Section 3.4.2) these sentences.
The method create text embedding() (Python-Code 27) in the previously cited

GraphConstruction class conveniently embeds all the sentences in the Knowledge
Graph and stores the embedding vector of size 768 in the new Sentence Node
property sent text embedding :

201 def create_text_embedding(self, node_label: str, node_primary_prop_name: str, prop_to_embed:

str,↪→

202 vector_size: int = 768,

203 similarity_method: str = "cosine"):

204 name_embedded_prop = prop_to_embed + "_embedding"

205 query_index = f"""CALL db.index.vector.createNodeIndex('{"NodeIndex" + "_" + node_label +

"_" + prop_to_embed}',↪→

206 '{node_label}', '{name_embedded_prop}', {vector_size},

'{similarity_method}') ; """↪→

207 query_prop_to_embed = f"""

208 MATCH (n:{node_label})

209 RETURN n.{node_primary_prop_name} AS {node_primary_prop_name}, n.{prop_to_embed} AS

{prop_to_embed}↪→

210 """

211 session = self.driver.session(database=self.neo4j_db_name)

212 try:

213 res = self.driver.execute_query(query_=query_index, database_=self.neo4j_db_name)

214 except Exception as e:

215 print(f'INFO: Index not created again as index already exists: {e}.')

216 embed_nodes_and_props: list[dict] = session.run(query=query_prop_to_embed).data()

217

218 embedder = Embedder()

219 for item in embed_nodes_and_props:

220 embedding = embedder.get_embedding(text=item[f'{prop_to_embed}'])

221 query_set_embed_prop = f"""

222 MATCH (n:{node_label})

223 WHERE n.{node_primary_prop_name} = {item[f'{node_primary_prop_name}']}

224 SET n.{name_embedded_prop} = {embedding} ;

225 """

226 # print(query_set_embed_prop)

227 session.run(query=query_set_embed_prop)

Python-Code 27: Function: create text embedding()

Once the function has run, each Sentence text has been embedded and added

99

to the Sentence properties. It again can be shown in the browser by selecting the
respective Sentence Node:

Figure 7.9.: BERT Sentence Embedding

As here a BERT (bert-base-uncased) model was used for the embeddings, the
dimension of the embedding vector is 768.

With such sentence embeddings, it is possible to train a Sentiment Model to
classify these sentences into different categories. For instance, a Sentiment Model
could be trained with three classes such as:

� POSITIVE

� NEUTRAL

� NEGATIVE

Afterward, this model can predict the sentiment of all sentences based on their
embeddings, and the respective Sentiment Class would be added to the Sentence
Node properties. Cypher queries could then retrieve and filter sentences with a
certain sentiment.
A user who wanted to see

”only NEGATIVE news sentences about German companies”

could run the following exemplary Cypher query:

100

Figure 7.10.: Sentence: Sentiment Classification

Every such data enrichment of the Knowledge Graph, here the enrichment with
sentence embeddings and sentiment classes, can enhance the Knowledge Graph’s
capability to retrieve complex information.

7.6. Graph Bot

The query language Cypher is relatively easy to learn and user-friendly, but not
as friendly as the human language itself.
neo4j [84] via the LangChain [71] library offers a GraphCypherQAChain and
Neo4jGraph module. These modules, together with other LangChain components
(see Section 5.3.2), can be used to create a ChatBot that converts human language
to Cypher queries, and Cypher responses back to human language. This was done
in the D graph bot.py (Python-Codes 28 to 31) module in the F knowledge graph
directory.

70 def __init__(self):

71 path_to_secrets: pathlib.Path = ConfigBasic.path_to_secrets

72 try:

73 load_dotenv(dotenv_path=path_to_secrets) # Load secrets/env variables

74 except:

75 print('secrets could not be loaded!')

76 uri = "neo4j://localhost:7687"

77 neo4j_user = os.getenv('NEO4J_USER')

78 neo4j_pw = os.getenv('NEO4J_PW')

79 openai_key = os.getenv("OPENAI_API_KEY")

80 self.graph = Neo4jGraph(url=uri, username=neo4j_user, password=neo4j_pw)

81 self.graph.refresh_schema()

82 self.chat_llm = ChatOpenAI(temperature=0, openai_api_key=openai_key)

Python-Code 28: Knowledge Graph Chatbot: init

The LangChain pipeline or chain uses an LLM (line 84 of Python-Code 28) and

101

explanatory Examples of which some are shown in Python-Code 29:

14 rels_explanation = """

15 # Relationship 1: (:Sentence)-[:is_about {{top_id}}]->(:Topic)

16 # Relationship 1 explanation: A Sentence is about a particular Topic that has a Topic identification number or "top_id".

17 # Relationship 2: (:Sentence)-[:is_part_of {{art_id}}]->(:Article)

18 # Relationship 2 explanation: A Sentence is contained in and part of an Article that has an Article identification number or

"art_id".↪→
19 # Relationship 3: (:Sentence)-[:mentions {{comp_symbol}}]->(:Company)

20 # Relationship 3 explanation: A Sentence mentions the name of a Company that has a stock exchange ticker symbol

("comp_symbol").↪→
21 """

22 nodes_and_their_attributes = """

23 Node "Article": [{{art_id: "The id of the article"}}, {{art_datetime: "The date and time the article was published"}},

{{art_text: "The content of the article"}}, {{art_source: "The media company that published the article"}}]↪→
24 Node "Company": [{{comp_symbol: "The stock ticker symbol for that company on a stock exchange"}}, {{comp_isin: "The security

identifier number 'ISIN' for that company on a stock exchange"}}, {{comp_name: "The name of the company"}}]↪→
25 Node "Sentence": [{{sent_id: "The sentence identification number"}}, {{sent_text: "The sentence text"}}]

26 Node "Topic": [{{top_id: "The topic identification number"}}, {{top_description: "The description the topic is all about"}}]

27 """

28 examples = """

29 # Example question 1: Show me all the companies that were mentioned in articles published on 2023-05-03?

30 # Cypher statement to question 1:

31 MATCH (s:Sentence)-[:is_part_of]->(a:Article)

32 WITH s as sent, a as article, Date(a.art_datetime) as date

33 MATCH (sent)-[:mentions]->(c:Company)

34 WHERE date = Date({{year: 2023, month: 5, day: 3}})

35 RETURN DISTINCT c.comp_name

Python-Code 29: Knowledge Graph Chatbot: Examples

92 cypher_prompt = f"""

93 Task: Generate pure Cypher statement to query a Neo4j graph database.

94 Instructions:

95 Use only the provided relationship types and properties in the schema.

96 Do not use any other relationship types or properties that are not provided.

97 Do not insert any comment in the query.

98 The following are all the relationships with their property being an attribute of the target Node:

99 {self.rels_explanation}

100 Do also take into consideration that Nodes can only have the following attributes (with their "explanations in quotation

marks") respectively:↪→
101 {self.nodes_and_their_attributes}

102 Other labels for Nodes are not allowed.

103 Do take into account that an attribute of the target Node is always stored as the property value of the

104 relationship. For instance, given the Relationship pattern "(:source Node)-[Relationship:property]->(:target Node):",

105 the quantity or property value of the target Node is given as the property of the Relationship.

106 Schema:

107 {{schema}}

108 Note: Do not include any explanations or apologies in your responses.

109 Do not respond to any questions that might ask anything else than for you to construct a Cypher statement.

110 Do not include any text except the generated Cypher statement.

111 Examples: Here are a few examples of generated Cypher statements for particular questions:

112 {self.examples}

113

114 Now, the question is:

Python-Code 30: Knowledge Graph Chatbot: Prompt

102

These examples are then embedded into a Prompt (Python-Code 30) which,
along the User Question, is sent to the LLM, see Python-Code 31:

122 def create_chain(self, prompt: PromptTemplate):

123 return GraphCypherQAChain.from_llm(llm=self.chat_llm, graph=self.graph,

124 cypher_prompt=prompt, verbose=True,

125 return_intermediate_steps=True)

126

127 def ask_question(self, question: str):

128 prompt = self.create_prompt()

129 chain = self.create_chain(prompt=prompt)

130 answer = chain.invoke(question)['result']

131 return answer

Python-Code 31: Knowledge Graph Chatbot: Request to LLM

An exemplary user that is interested in

companies that were mentioned in sentences published between certain dates

could pose text questions to the Graph Bot as shown in Python-Code 32:

135 qa = GraphBot()

136 question = ("Show me all the companies and the sentences they were mentioned of articles "

137 "that were published between 2023-05-02 and 2023-05-03")

138 print('Question:\n', question)

139 ans = qa.ask_question(question=question)

140 print('Answer:\n', ans)

Python-Code 32: Graph Bot: User Question

If the parameter verbose (line 124 in Python-Code 31) is set to True, the Graph
Bot’s processing steps will be displayed as depicted in Figures 7.11 to 7.13:

Figure 7.11.: Graph Bot - Part 1: Question

After the user has sent his question to the Graph Bot (Fig. 7.11) ...

103

Figure 7.12.: Graph Bot - Part 2: Creating Cypher Queries

... the Graph Bot converts this question into a corresponding Cypher query
(Figure 7.12) and sends it to the neo4j graph database.

Figure 7.13.: Graph Bot - Part 3: Answer

The JSON object returned by the neo4j graph database is then converted to
human-readable text (Figure 7.13) and returned to the user.

Graph Bot vs. LLM Chatbot The Graph Bot is comparable to an LLM ChatBot
such as ChatGPT in that a user can ask questions or Prompt the LLM ChatBot
for specific tasks. But they differ in that the Graph Bot’s answer is based on
concrete text and factual data in news articles whereas the LLM ChatBot relies
on next-word probabilities. Whereas the Graph Bot often returns the literal text of
the existing news article in its answer (see Figure 7.13), the LLM ChatBot returns
newly generated text that might be contextually correct, but is often factually
incorrect.
This lies in the nature of LLMs as they are trained to generalize well, but not

to memorize the data they were trained with (as discussed in Section 3.5).
Checking and validating the returned text from the LLM ChatBot is tedious

and cumbersome, whereas for the GraphBot, this can easily be done with Cypher
queries.

104

In this sense, the Graph Bot is superior to a general LLM ChatBot if the user
expects actual facts instead of newly generated text.

Production Use Case The Graph Bot currently only uses a few examples in its
Prompt which are probably not enough to constantly get satisfactory and correct
answers. For a production use case, the provided examples would need some
enhancement and refinement.
Apart from this, the Graph Bot is a useful human interaction tool for users that do
not want to write Cypher queries, but use human language to retrieve information
from the Knowledge Graph.

Knowledge Graph as RAG The Knowledge Graph served the Graph Bot as a
data retriever and thus can be considered a RAG system (see Section 3.5). While
typical RAG systems might distinguish documents with strongly different context,
they usually suffer from the following shortcomings [103]:

� Misunderstanding of documents that contain nuanced context differences.

� Chunking of document breaks its context.

� Vector database contains irrelevant information.

These issues are addressed by the Knowledge Graph in this project: The Gen-
erative LLM in the Coreference Resolution and Topic Modelling pipeline could
also semantically misunderstand the news article sentences, but this is less likely
as both pipeline components are tightly defined and accompanied by dedicated
Prompt examples. It was shown in the Topic Modelling section (see Section 6.4)
that the Generative LLM component can indeed distinguish nuanced differences
in context. The relevant sentences are much shorter, more focused and less generic
than typical documents in a vector database. Both, the chunking and semantic
interpretation is done on the sentence level so that the chunking cannot split the
sentence’s context 2. Each sentence with a found company is all relevant and thus
cannot contain irrelevant information.
Thus, the vector database could be replaced by such a Knowledge Graph. This
is also supported by a recent research paper from Microsoft: GraphRAG [33]. In-
stead of feeding the news article text to a vector database, it could be extracted
and inserted into a Knowledge Graph, as it was shown in this project.

2Under the assumption that sentence splitting works correctly

105

8. Conclusion

The goal of this Master-Thesis project was to extract structured information from
unstructured text and store this information in a Knowledge Graph.

In this thesis and the accompanying Python code, it was shown how a predefined
set of corporate entity names and their Coreferences can be found in financial news
articles. It was also shown, how sentences that contained this company informa-
tion, were classified with a Topic model and stored in a Knowledge Graph. In the
Information Extraction Pipeline, different approaches were studied, implemented
in code and compared with each other. It was learned, that Generative LLMs can
be used for a wide range of extraction tasks and that these models often outper-
form other approaches.

The conversion of formerly unstructured text in files to structured data in a
Knowledge Graph facilitates information retrieval. Information that was previ-
ously stored in an inaccessible form can, after conversion, be more readily accessed
through the use of structured Cypher queries or a Graph Bot. The retrieved in-
formation from the Knowledge Graph should also be more accurate than the in-
formation coming from a Generative LLM ChatBot, even if the Generative LLM
ChatBot has a typical RAG system attached to it. This is because the Knowl-
edge Graph’s response is more based on actual news articles and less on next-word
probabilities.

As already mentioned, the few-shot examples provided to the Coreference Res-
olution, Topic Modelling and Graph Bot models, would need to be improved in
a production use case. Given the more limited scope of a Master-Thesis and to
present the process rather than the result, I nevertheless deem the state of the
current models sufficient.

Evaluation of the different models was done by individually comparing their
performance on some exemplary data. The exemplary data was randomly sam-
pled and might not represent the feature/data distribution of all scraped financial
news articles or financial news articles in general very well. The comparison of the
different models was also done manually and individually without using common
performance measurement metrics such as accuracy, precision or recall. A key rea-

106

son for this was the challenge of categorizing model prediction outcomes into clear
binary classes of correct and incorrect and the extensive nature of the performance
evaluation process: each prediction from every component within the Information
Extraction Pipeline for each sentence would require manual assessment and veri-
fication. In a production use case, a more thorough performance assessment was
necessary. But again: Given the more limited scope of a Master-Thesis, I never-
theless deem the model evaluation process sufficient.

In hindsight, I would approach some tasks differently. The usage of a spacy
pipeline was motivated by the initial assumption that pre-trained spacy pipelines
were among the best-performing models. This assumption must be abandoned,
at least for the given data samples, as none of spacy’s models or external plugins
could compete with either Generative LLMs or other pre-trained models. The In-
formation Extraction Pipeline could have been fully built without the spacy library.

I would also focus more on LLM frameworks such as LangChain [71], LlamaIn-
dex [82] or DSPy [80] and their ever-growing capabilities. The usage of tools,
agents and other innovative concepts and components could probably further im-
prove the performance of Generative LLMs for all kinds of extraction tasks.

107

A. Explanation of MAIN.ipynb file

This is a short explanation about the Jupiter Notebook MAIN.ipynb in the root
directory of the project’s repository. The Notebook aggregates and condenses all
functionalities of the Python code.

Figure A.1.: STEP 1: Import libraries

Figure A.2.: STEP 2: Start Docker container

108

Figure A.3.: STEP 3: Load News Articles

Figure A.4.: STEP 4: Run spacy pipeline (NER, COREF)

Figure A.5.: STEP 5: Convert Nested Dictionary

Figure A.6.: STEP 6: Start Topic Modelling Process

109

Figure A.7.: STEP 7: Prepare DataFrame for Knowledge Graph

Figure A.8.: STEP 8: Initialize Knowledge Graph and load Data

110

Figure A.9.: STEP 9: Enrich Knowledge Graph with Data from Wikidata

Figure A.10.: STEP 10: Enrich Knowledge Graph with Data from DBPedia

111

Figure A.11.: STEP 11: Create Sentence Text Embeddings

Figure A.12.: STEP 12: Communicate with Graph Bot

112

List of Figures

1.1. Information Extraction Pipeline . 12
1.2. Knowledge Graph Schema . 13

2.1. Spacy Pipeline . 17

3.1. Sample Documents . 21
3.2. Document Term Matrix . 21
3.3. Document Term Matrix with TF-IDF 24
3.4. One-Hot example . 25
3.5. Manually Crafted Features . 25
3.6. Word vector for the word horse . 26
3.7. Exemplary Cosine Similarity Matrix based on Fig.3.5. 26
3.8. word2vec: Masked words learned by a shallow, two-layer ANN. . . . 27
3.9. The learned parameters/weights represent the feature values. 27
3.10. Homophone bank dependent on its context 28
3.11. Transformer Architecture: Encoder and Decoder 29
3.12. Multi-Head Attention. Image from: [31] and [59] 30
3.13. InputEmbeddings · LinearLayer = Query , Key , Value 30

3.14. Query · Key = Attention Filter 31

3.15. Attention Filter · Value = Filtered Value 31
3.16. Filtered Value : time flies like an arrow 32
3.17. Filtered Value : fruit flies like a banana 33

4.1. HMM: transition/emission probabilities: ptrans, pemit 37
4.2. Linear Chain CRF . 37
4.3. ChatGPT NER Prompt - Part 1 . 46
4.4. ChatGPT NER Prompt - Part 2 . 47
4.5. ChatGPT JSON Response . 47
4.6. spacy pipeline after NER component 49

5.1. Coreferences. Image from: [34] . 50
5.2. End-to-end Neural Coreference Resolution: Part 1 53
5.3. End-to-end Neural Coreference Resolution: Part 2 53
5.4. Bilinear function: start/end Mention embeddings: ms, me 54

113

5.5. Bilinear function: start/end Antecedent embeddings: as, ae 54
5.6. spacy pipeline after COREF component 68

6.1. Triple: Subject: Person - Relation: Founded - Object: Apple 70
6.2. 10 Topics and their most frequent words. Source: [11] 71
6.3. NMF: Source: [11] . 71
6.4. SVD: Source: [11] . 72
6.5. Hugging Face Topic Models. Source: [20] 73
6.6. Hugging Face Topic Models - Typical labels. Sources: [16][17] . . . 74
6.7. SBERT/Sentence Transformer embedding Cluster 76
6.8. TF-IDF Cluster . 77
6.9. DataFrame after Topic component 84

7.1. Knowledge Graph Schema . 85
7.2. Knowledge Graph after Data Loading 92
7.3. Exemplary, Disconnected Sub-Graph 93
7.4. neo4j: Nodes and their Properties . 94
7.5. SPARQL: Queries to enrich Knowledge Graph 96
7.6. Company Node after Data Enrichment 97
7.7. Cypher Queries 1-2 . 98
7.8. Cypher Queries 3-4 . 98
7.9. BERT Sentence Embedding . 100
7.10. Sentence: Sentiment Classification 101
7.11. Graph Bot - Part 1: Question . 103
7.12. Graph Bot - Part 2: Creating Cypher Queries 104
7.13. Graph Bot - Part 3: Answer . 104

A.1. STEP 1: Import libraries . 108
A.2. STEP 2: Start Docker container . 108
A.3. STEP 3: Load News Articles . 109
A.4. STEP 4: Run spacy pipeline (NER, COREF) 109
A.5. STEP 5: Convert Nested Dictionary 109
A.6. STEP 6: Start Topic Modelling Process 109
A.7. STEP 7: Prepare DataFrame for Knowledge Graph 110
A.8. STEP 8: Initialize Knowledge Graph and load Data 110
A.9. STEP 9: Enrich Knowledge Graph with Data from Wikidata 111
A.10.STEP 10: Enrich Knowledge Graph with Data from DBPedia . . . 111
A.11.STEP 11: Create Sentence Text Embeddings 112
A.12.STEP 12: Communicate with Graph Bot 112

114

Bibliography

[1] Allenai: The allen institute for artificial intelligence. https://allenai.

org/. Accessed: November 10, 2024.

[2] Allennlp: Coreference model. https://github.com/allenai/

allennlp-models/blob/main/allennlp_models/modelcards/

coref-spanbert.json. Accessed: November 10, 2024.

[3] Crosslingual-coreference: minlm. https://huggingface.co/microsoft/

Multilingual-MiniLM-L12-H384. Accessed: November 10, 2024.

[4] Facebook: Llama3 model. https://ai.meta.com/blog/meta-llama-3/.
Accessed: November 10, 2024.

[5] Medium: How to make an effective coreference res-
olution model. https://towardsdatascience.com/

how-to-make-an-effective-coreference-resolution-model-55875d2b5f19.
Accessed: November 10, 2024.

[6] Ollama: Running llms locally. https://ollama.com/. Accessed: November
10, 2024.

[7] Kaggle: German news datasets. https://www.kaggle.com/datasets?

search=news+german, 2024.

[8] pandas: Documentation. https://pandas.pydata.org/docs/index.html,
2024.

[9] parquet: Documentation. https://parquet.apache.org/, 2024.

[10] parquet: Documentation. https://www.bloomberg.com/company/, 2024.

[11] Jens Albrecht, Sidharth Ramachandran, and Christian Winkler.
Blueprints for text analytics using python. https://github.com/

blueprints-for-text-analytics-python/blueprints-text, 2020.

[12] Dhananjay Ashok and Zachary Chase Lipton. Promptner: Prompting
for fewshot named entity recognition. https://openreview.net/pdf?id=

WDQ9ZzsgDL.

115

https://allenai.org/
https://allenai.org/
https://github.com/allenai/allennlp-models/blob/main/allennlp_models/modelcards/coref-spanbert.json
https://github.com/allenai/allennlp-models/blob/main/allennlp_models/modelcards/coref-spanbert.json
https://github.com/allenai/allennlp-models/blob/main/allennlp_models/modelcards/coref-spanbert.json
https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384
https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384
https://ai.meta.com/blog/meta-llama-3/
https://towardsdatascience.com/how-to-make-an-effective-coreference-resolution-model-55875d2b5f19
https://towardsdatascience.com/how-to-make-an-effective-coreference-resolution-model-55875d2b5f19
https://ollama.com/
https://www.kaggle.com/datasets?search=news+german
https://www.kaggle.com/datasets?search=news+german
https://pandas.pydata.org/docs/index.html
https://parquet.apache.org/
https://www.bloomberg.com/company/
https://github.com/blueprints-for-text-analytics-python/blueprints-text
https://github.com/blueprints-for-text-analytics-python/blueprints-text
https://openreview.net/pdf?id=WDQ9ZzsgDL
https://openreview.net/pdf?id=WDQ9ZzsgDL

[13] Bernd Bohnet, Chris Alberti, and Michael Collins. Coreference resolution
through a seq2seq transition-based system. https://doi.org/10.48550/

arxiv.2211.12142, 2023.

[14] Kevin Clark and Christopher D Manning. Entity-centric coreference res-
olution with model stacking. https://aclanthology.org/P15-1136.pdf,
2015.

[15] Openbb platform. https://openbb.co/products/platform. Accessed:
November 10, 2024.

[16] Cardiff nlp - pre-trained topic model. https://huggingface.co/

cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all.
Accessed: November 10, 2024.

[17] Dimos stefanidis - pre-trained topic model. https://huggingface.

co/dstefa/roberta-base_topic_classification_nyt_news. Accessed:
November 10, 2024.

[18] dpa afx wirtschaftsnachrichten gmbh. https://www.dpa-afx.de/. Ac-
cessed: November 10, 2024.

[19] Eqs group ag. https://www.eqs-news.com/. Accessed: November 10, 2024.

[20] Hugging face - website. https://huggingface.co/. Accessed: November
10, 2024.

[21] Berenstein David. Crosslingual Coreference - a multi-lingual approach to
AllenNLP CoReference Resolution along with a wrapper for spaCy. https:
//github.com/davidberenstein1957/crosslingual-coreference, 2022.

[22] Paperswithcode: Leaderboard ner models. https://paperswithcode.com/
sota/named-entity-recognition-ner-on-bc5cdr. Accessed: November
10, 2024.

[23] Wikipedia: N-gram. https://en.wikipedia.org/wiki/N-gram. Accessed:
November 10, 2024.

[24] Dbpedia. https://www.dbpedia.org/. Accessed: November 10, 2024.

[25] Wikidata. https://www.wikidata.org/wiki/Wikidata:Main_Page. Ac-
cessed: November 10, 2024.

[26] Wikipedia: Graph: Discrete mathmatics. https://en.wikipedia.org/

wiki/Graph_(discrete_mathematics). Accessed: November 10, 2024.

116

https://doi.org/10.48550/arxiv.2211.12142
https://doi.org/10.48550/arxiv.2211.12142
https://aclanthology.org/P15-1136.pdf
https://openbb.co/products/platform
https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all
https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all
https://huggingface.co/dstefa/roberta-base_topic_classification_nyt_news
https://huggingface.co/dstefa/roberta-base_topic_classification_nyt_news
https://www.dpa-afx.de/
https://www.eqs-news.com/
https://huggingface.co/
https://github.com/davidberenstein1957/crosslingual-coreference
https://github.com/davidberenstein1957/crosslingual-coreference
https://paperswithcode.com/sota/named-entity-recognition-ner-on-bc5cdr
https://paperswithcode.com/sota/named-entity-recognition-ner-on-bc5cdr
https://en.wikipedia.org/wiki/N-gram
https://www.dbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

[27] Wikipedia: Owl: Web ontology language. https://de.wikipedia.org/

wiki/Web_Ontology_Language. Accessed: November 10, 2024.

[28] Wikipedia: Triples: Subject-predicate-object. https://en.wikipedia.

org/wiki/Semantic_triple. Accessed: November 10, 2024.

[29] Wikipedia: Triplestore. https://en.wikipedia.org/wiki/Triplestore.
Accessed: November 10, 2024.

[30] Wikipedia: Turtle - terse rdf triple language. https://en.wikipedia.org/
wiki/Turtle_(syntax). Accessed: November 10, 2024.

[31] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
https://arxiv.org/abs/1810.04805, 2019.

[32] Vladimir Dobrovolskii. Word-level coreference resolution. https://

aclanthology.org/2021.emnlp-main.605, 2021.

[33] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva
Mody, Steven Truitt, and Jonathan Larson. From local to global: A graph
rag approach to query-focused summarization. https://arxiv.org/pdf/

2404.16130, 2024.

[34] Explosion. spacy. https://spacy.io/. Accessed: November 10, 2024.

[35] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi,
Nelson Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. Al-
lennlp: A deep semantic natural language processing platform. https:

//arxiv.org/abs/1803.07640, 2018.

[36] Rainer Gogel. Talk 15: Transformer applications in nlp. https:

//github.com/rainergo/Fileserver/blob/master/transformer_

applications_in_nlp.pdf?raw=true, 2023. Frankfurt UAS, Master
Program in Computer Science, Module: Learning from Data, Prof.Dr.Joerg
Schaefer.

[37] Rainer Gogel, Priya Singh, and Christopher Unkart. Projekt digitalisierung:
Information extraction from unstructured data. https://github.com/

rainergo/UASFRA-MS-PROJDIGI, 2024. Frankfurt UAS, Master Program
in Computer Science, Projekt Digitalisierung, Prof.Dr.Martin Simon.

[38] Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based
tf-idf procedure. https://maartengr.github.io/BERTopic/index.html,
2022.

117

https://de.wikipedia.org/wiki/Web_Ontology_Language
https://de.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/Semantic_triple
https://en.wikipedia.org/wiki/Semantic_triple
https://en.wikipedia.org/wiki/Triplestore
https://en.wikipedia.org/wiki/Turtle_(syntax)
https://en.wikipedia.org/wiki/Turtle_(syntax)
https://arxiv.org/abs/1810.04805
https://aclanthology.org/2021.emnlp-main.605
https://aclanthology.org/2021.emnlp-main.605
https://arxiv.org/pdf/2404.16130
https://arxiv.org/pdf/2404.16130
https://spacy.io/
https://arxiv.org/abs/1803.07640
https://arxiv.org/abs/1803.07640
https://github.com/rainergo/Fileserver/blob/master/transformer_applications_in_nlp.pdf?raw=true
https://github.com/rainergo/Fileserver/blob/master/transformer_applications_in_nlp.pdf?raw=true
https://github.com/rainergo/Fileserver/blob/master/transformer_applications_in_nlp.pdf?raw=true
https://github.com/rainergo/UASFRA-MS-PROJDIGI
https://github.com/rainergo/UASFRA-MS-PROJDIGI
https://maartengr.github.io/BERTopic/index.html

[39] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta:
Decoding-enhanced bert with disentangled attention. https://arxiv.org/
abs/2006.03654, 2020.

[40] S Hochreiter. Long short-term memory. https://blog.xpgreat.com/file/
lstm.pdf, 1997.

[41] Richard Paul Hudson. Coreferee. https://github.com/

richardpaulhudson/coreferee. Accessed: November 10, 2024.

[42] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer,
and Omer Levy. Spanbert: Improving pre-training by representing and pre-
dicting spans. https://arxiv.org/abs/1907.10529, 2020.

[43] Mandar Joshi, Omer Levy, Daniel S Weld, and Luke Zettlemoyer. Bert for
coreference resolution: Baselines and analysis. https://arxiv.org/abs/

1908.09091, 2019.

[44] Daniel Jurafsky and James H. Martin. Speech and language processing:
An introduction to natural language processing, computational linguistics,
and speech recognition with language models. https://web.stanford.edu/

~jurafsky/slp3/, 2024. Chapter 23: Coreference Resolution and Entity
Linking.

[45] Daniel Jurafsky and James H. Martin. Speech and language processing:
An introduction to natural language processing, computational linguistics,
and speech recognition with language models. https://web.stanford.edu/

~jurafsky/slp3/, 2024. Chapter 17: Sequence Labeling for Parts of Speech
and Named Entities.

[46] Yuval Kirstain, Ori Ram, and Omer Levy. Coreference resolution without
span representations. https://arxiv.org/abs/2101.00434, 2021.

[47] Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. End-to-end
neural coreference resolution. https://arxiv.org/abs/1707.07045, 2017.

[48] Kenton Lee, Luheng He, and Luke Zettlemoyer. Higher-order coreference res-
olution with coarse-to-fine inference. https://arxiv.org/abs/1804.05392,
2018.

[49] David S. Lim. bert-base-ner. https://huggingface.co/dslim/

bert-base-NER. Accessed: October 24, 2024.

118

https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://blog.xpgreat.com/file/lstm.pdf
https://blog.xpgreat.com/file/lstm.pdf
https://github.com/richardpaulhudson/coreferee
https://github.com/richardpaulhudson/coreferee
https://arxiv.org/abs/1907.10529
https://arxiv.org/abs/1908.09091
https://arxiv.org/abs/1908.09091
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://arxiv.org/abs/2101.00434
https://arxiv.org/abs/1707.07045
https://arxiv.org/abs/1804.05392
https://huggingface.co/dslim/bert-base-NER
https://huggingface.co/dslim/bert-base-NER

[50] Ruicheng Liu, Rui Mao, Anh Tuan Luu, and Erik Cambria. A brief sur-
vey on recent advances in coreference resolution. https://sentic.net/

survey-on-coreference-resolution.pdf, 2023.

[51] Y Liu, M Ott, N Goyal, J Du, M Joshi, D Chen, O Levy, M Lewis, L Zettle-
moyer, and V Stoyanov. Roberta: A robustly optimized bert pretraining ap-
proach. arxiv [preprint](2019). https://arxiv.org/abs/1907.11692, 1907.

[52] Zihan Liu, Feijun Jiang, Yuxiang Hu, Chen Shi, and Pascale Fung. Ner-bert:
a pre-trained model for low-resource entity tagging. https://arxiv.org/

pdf/2112.00405, 2021.

[53] Varun Magesh, Faiz Surani, Matthew Dahl, Mirac Suzgun, Christopher D
Manning, and Daniel E Ho. Hallucination-free? assessing the reliability of
leading ai legal research tools. https://arxiv.org/abs/2405.20362, 2024.

[54] Martijn Meeter, Yousri Marzouki, Arthur E Avramiea, Joshua Snell, and
Jonathan Grainger. The role of attention in word recognition: Re-
sults from ob1-reader. https://onlinelibrary.wiley.com/doi/full/10.
1111/cogs.12846, 2020.

[55] Tomas Mikolov. Efficient estimation of word representations in vec-
tor space. https://www.khoury.northeastern.edu/home/vip/teach/

DMcourse/4_TF_supervised/notes_slides/1301.3781.pdf, 2013.

[56] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. https://proceedings.neurips.cc/paper/2013/file/

9aa42b31882ec039965f3c4923ce901b-Paper.pdf, 2013.

[57] Lester James Miranda, Ákos Kádár, Adriane Boyd, Sofie Van Landeghem,
Anders Søgaard, and Matthew Honnibal. Multi hash embeddings in spacy.
https://arxiv.org/abs/2212.09255, 2022.

[58] Lawyer used chatgpt in court—and cited fake cases. a judge is considering
sanctions. https://www.forbes.com/sites/mollybohannon/2023/06/08/
lawyer-used-chatgpt-in-court-and-cited-fake-cases-a-judge-is-considering-sanctions/.
Accessed: September 7, 2024.

[59] Hedu AI Math of Intelligence. Visual guide to transformer neural networks
series - episode 2. https://www.youtube.com/watch?v=mMa2PmYJlCo. Ac-
cessed: 2024-08-15.

119

https://sentic.net/survey-on-coreference-resolution.pdf
https://sentic.net/survey-on-coreference-resolution.pdf
https://arxiv.org/abs/1907.11692
https://arxiv.org/pdf/2112.00405
https://arxiv.org/pdf/2112.00405
https://arxiv.org/abs/2405.20362
https://onlinelibrary.wiley.com/doi/full/10.1111/cogs.12846
https://onlinelibrary.wiley.com/doi/full/10.1111/cogs.12846
https://www.khoury.northeastern.edu/home/vip/teach/DMcourse/4_TF_supervised/notes_slides/1301.3781.pdf
https://www.khoury.northeastern.edu/home/vip/teach/DMcourse/4_TF_supervised/notes_slides/1301.3781.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://arxiv.org/abs/2212.09255
https://www.forbes.com/sites/mollybohannon/2023/06/08/lawyer-used-chatgpt-in-court-and-cited-fake-cases-a-judge-is-considering-sanctions/
https://www.forbes.com/sites/mollybohannon/2023/06/08/lawyer-used-chatgpt-in-court-and-cited-fake-cases-a-judge-is-considering-sanctions/
https://www.youtube.com/watch?v=mMa2PmYJlCo

[60] Shon Otmazgin, Arie Cattan, and Yoav Goldberg. F-coref: Fast, accu-
rate and easy to use coreference resolution. https://arxiv.org/abs/2209.
04280, 2022.

[61] Gerhard Paaß and Sven Giesselbach. Foundation models for infor-
mation extraction. https://link.springer.com/content/pdf/10.1007/

978-3-031-23190-2.pdf, 2023.

[62] Haoruo Peng, Daniel Khashabi, and Dan Roth. Solving hard coreference
problems. https://arxiv.org/abs/1907.05524, 2019.

[63] Papers with code: Topic models - leaderboard. https://paperswithcode.
com/task/topic-models. Accessed: November 10, 2024.

[64] Ian Porada, Xiyuan Zou, and Jackie Chi Kit Cheung. A controlled reevalu-
ation of coreference resolution models. https://aclanthology.org/2024.
lrec-main.23, May 2024.

[65] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. https://arxiv.
org/abs/1910.10683v4, 2020.

[66] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings us-
ing siamese bert-networks. https://arxiv.org/abs/1908.10084, 11 2019.

[67] Richard Socher. Stanford nlp: Cs224n lecture slides. https:

//web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/

lectures/lecture3.pdf. Accessed: November 10, 2024.

[68] Cosine similarity. https://scikit-learn.org/stable/modules/metrics.
html#cosine-similarity. Accessed: November 10, 2024.

[69] Nmf. https://scikit-learn.org/dev/modules/generated/sklearn.

decomposition.NMF.html. Accessed: November 10, 2024.

[70] Pydantic website. https://docs.pydantic.dev/2.9/. Accessed: Novem-
ber 10, 2024.

[71] Python langchain website. https://python.langchain.com/docs/

introduction/. Accessed: November 10, 2024.

[72] Wikipedia: Content words. https://en.wikipedia.org/wiki/Content_

word. Accessed: November 10, 2024.

120

https://arxiv.org/abs/2209.04280
https://arxiv.org/abs/2209.04280
https://link.springer.com/content/pdf/10.1007/978-3-031-23190-2.pdf
https://link.springer.com/content/pdf/10.1007/978-3-031-23190-2.pdf
https://arxiv.org/abs/1907.05524
https://paperswithcode.com/task/topic-models
https://paperswithcode.com/task/topic-models
https://aclanthology.org/2024.lrec-main.23
https://aclanthology.org/2024.lrec-main.23
https://arxiv.org/abs/1910.10683v4
https://arxiv.org/abs/1910.10683v4
https://arxiv.org/abs/1908.10084
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture3.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture3.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/lectures/lecture3.pdf
https://scikit-learn.org/stable/modules/metrics.html#cosine-similarity
https://scikit-learn.org/stable/modules/metrics.html#cosine-similarity
https://scikit-learn.org/dev/modules/generated/sklearn.decomposition.NMF.html
https://scikit-learn.org/dev/modules/generated/sklearn.decomposition.NMF.html
https://docs.pydantic.dev/2.9/
https://python.langchain.com/docs/introduction/
https://python.langchain.com/docs/introduction/
https://en.wikipedia.org/wiki/Content_word
https://en.wikipedia.org/wiki/Content_word

[73] Wikipedia: Coreference. https://en.wikipedia.org/wiki/Coreference.
Accessed: November 10, 2024.

[74] Wikipedia: Entropy in information theory. https://en.wikipedia.org/

wiki/Entropy_(information_theory). Accessed: November 10, 2024.

[75] Wikipedia: Function words. https://en.wikipedia.org/wiki/Function_
word. Accessed: November 10, 2024.

[76] Wikipedia: Hallucination in ai. https://en.wikipedia.org/wiki/

Hallucination_(artificial_intelligence). Accessed: November 10,
2024.

[77] Wikipedia: Lemmatization. https://en.wikipedia.org/wiki/

Lemmatization. Accessed: November 10, 2024.

[78] Wikipedia: Stemming. https://en.wikipedia.org/wiki/Stemming. Ac-
cessed: November 10, 2024.

[79] Wikipedia: Stop words. https://en.wikipedia.org/wiki/Stop_word. Ac-
cessed: November 10, 2024.

[80] Dspy: Llm framework. https://dspy-docs.vercel.app/intro/. Ac-
cessed: November 10, 2024.

[81] Gabor melli’s research: Coreference cluster. https://www.gabormelli.

com/RKB/Coreference_Cluster. Accessed: November 10, 2024.

[82] Llamaindex: Llm framework. https://www.llamaindex.ai/. Accessed:
November 10, 2024.

[83] neo4j apoc: Awesome procedures on cypher. https://neo4j.com/labs/

apoc/. Accessed: November 10, 2024.

[84] neo4j: Getting started. https://neo4j.com/docs/getting-started/. Ac-
cessed: November 10, 2024.

[85] neo4j: What is a knowledge graph. https://neo4j.com/blog/

what-is-knowledge-graph/. Accessed: November 10, 2024.

[86] Protege: An open-source ontology editor. https://protege.stanford.

edu/. Accessed: November 10, 2024.

[87] Rdflib: Python package for working with rdf. https://rdflib.

readthedocs.io/en/stable/. Accessed: November 10, 2024.

121

https://en.wikipedia.org/wiki/Coreference
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Function_word
https://en.wikipedia.org/wiki/Function_word
https://en.wikipedia.org/wiki/Hallucination_(artificial_intelligence)
https://en.wikipedia.org/wiki/Hallucination_(artificial_intelligence)
https://en.wikipedia.org/wiki/Lemmatization
https://en.wikipedia.org/wiki/Lemmatization
https://en.wikipedia.org/wiki/Stemming
https://en.wikipedia.org/wiki/Stop_word
https://dspy-docs.vercel.app/intro/
https://www.gabormelli.com/RKB/Coreference_Cluster
https://www.gabormelli.com/RKB/Coreference_Cluster
https://www.llamaindex.ai/
https://neo4j.com/labs/apoc/
https://neo4j.com/labs/apoc/
https://neo4j.com/docs/getting-started/
https://neo4j.com/blog/what-is-knowledge-graph/
https://neo4j.com/blog/what-is-knowledge-graph/
https://protege.stanford.edu/
https://protege.stanford.edu/
https://rdflib.readthedocs.io/en/stable/
https://rdflib.readthedocs.io/en/stable/

[88] Sparql: Sparql protocol and rdf query language. https://www.w3.org/TR/
sparql11-query/. Accessed: November 10, 2024.

[89] W3c: Owl web ontology language guide. https://www.w3.org/TR/

owl-guide/. Accessed: November 10, 2024.

[90] W3c: World wide web consortium. https://www.w3.org/. Accessed:
November 10, 2024.

[91] Wikidata entity identifier. https://www.wikidata.org/wiki/Wikidata:

Identifiers. Accessed: November 10, 2024.

[92] Wikipedia: Anaphora. https://en.wikipedia.org/wiki/Anaphora_

(linguistics). Accessed: November 10, 2024.

[93] Wikipedia: Antecedent. https://en.wikipedia.org/wiki/Antecedent_

(grammar). Accessed: November 10, 2024.

[94] Wikipedia: Cataphora. https://en.wikipedia.org/wiki/Cataphora. Ac-
cessed: November 10, 2024.

[95] Wikipedia: Cypher query language. https://en.wikipedia.org/wiki/

Cypher_(query_language). Accessed: November 10, 2024.

[96] Wikipedia: Rdfs: Resource description framework schema. https://en.

wikipedia.org/wiki/RDF_Schema. Accessed: November 10, 2024.

[97] Wikipedia: Sql. https://en.wikipedia.org/wiki/SQL. Accessed: Novem-
ber 10, 2024.

[98] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all
you need. https://arxiv.org/pdf/1706.03762.pdf, 2017. Google Brain,
Google Research, University of Totonto.

[99] Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei
Zhang, Jiwei Li, and Guoyin Wang. Gpt-ner: Named entity recognition via
large language models. https://arxiv.org/pdf/2304.10428, 2023.

[100] Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable:
An innate limitation of large language models. https://arxiv.org/abs/

2401.11817, 2024.

[101] Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and Thierry Charnois. Gliner:
Generalist model for named entity recognition using bidirectional trans-
former. https://arxiv.org/pdf/2311.08526, 2023.

122

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/owl-guide/
https://www.w3.org/TR/owl-guide/
https://www.w3.org/
https://www.wikidata.org/wiki/Wikidata:Identifiers
https://www.wikidata.org/wiki/Wikidata:Identifiers
https://en.wikipedia.org/wiki/Anaphora_(linguistics)
https://en.wikipedia.org/wiki/Anaphora_(linguistics)
https://en.wikipedia.org/wiki/Antecedent_(grammar)
https://en.wikipedia.org/wiki/Antecedent_(grammar)
https://en.wikipedia.org/wiki/Cataphora
https://en.wikipedia.org/wiki/Cypher_(query_language)
https://en.wikipedia.org/wiki/Cypher_(query_language)
https://en.wikipedia.org/wiki/RDF_Schema
https://en.wikipedia.org/wiki/RDF_Schema
https://en.wikipedia.org/wiki/SQL
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/2304.10428
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817
https://arxiv.org/pdf/2311.08526

[102] Wenzheng Zhang, Sam Wiseman, and Karl Stratos. Seq2seq is all you need
for coreference resolution. https://aclanthology.org/2023.emnlp-main.
704.pdf, 2023.

[103] Leon Zucchini. Why your rag system is failing — and
how to fix it. https://blog.curiosity.ai/%EF%B8%

8F-why-your-rag-system-is-failing-and-how-to-fix-it-7fe66780a335.
Accessed: November 10, 2024.

123

https://aclanthology.org/2023.emnlp-main.704.pdf
https://aclanthology.org/2023.emnlp-main.704.pdf
https://blog.curiosity.ai/%EF%B8%8F-why-your-rag-system-is-failing-and-how-to-fix-it-7fe66780a335
https://blog.curiosity.ai/%EF%B8%8F-why-your-rag-system-is-failing-and-how-to-fix-it-7fe66780a335

	Introduction
	Overview
	Thesis and Code
	Thesis Outline

	Project Setup
	Data
	News Articles
	Company Data

	Spacy
	Usage

	Text Representation
	Overview
	Definitions
	Traditional Methods
	One-Hot-Encoding
	Bag-of-Words
	Document Similarities
	Feature Dimension Reduction
	TF-IDF

	Word EmbeddingsThis section was mainly taken from LfdTalk15
	Static Word Vectors
	Contextual Word Embeddings

	Is a gen-llm all you need?

	ner - Named Entity Recognition
	Background
	Rule-Based Models
	Machine Learning Models
	Deep Learning Models

	Code-Implementation
	Implementation of Pre-Trained Model
	Implementation of Rule-Base Model
	Implementation of gen-llm model
	Information Extraction Pipeline

	corefresolutiondefinition
	Background
	Definitions
	Methods

	Models
	Pre-Trained Models
	gen-llm Models

	Code Implementation
	Implementation of Pre-Trained Model
	Implementation of gen-llm Model
	Comparing Pre-Trained vs. gen-llm approach
	Information Extraction Pipeline

	Topic Modelling
	Information Extraction Types
	Traditional Topic Modelling
	nmf
	svd
	lda

	Embedding-based Topic Modelling
	Pre-Trained Topic Models
	BERTopic

	Topic Modelling with gen-llms
	Comparing Pre-Trained vs. gen-llm approach

	Information Extraction Pipeline

	Knowledge GraphPart of the Python code for this section was adopted from projdigi
	Introduction
	Knowledge Graph Creation
	External Data
	Information Retrieval
	Sentence Embeddings and Sentiment
	graph-bot

	Conclusion
	Explanation of MAIN.ipynb file

