-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpso_cuda_fg.cu
319 lines (269 loc) · 11.6 KB
/
pso_cuda_fg.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#include <stdio.h>
#include <time.h>
#include <math.h>
#include <curand_kernel.h>
#include "common.h"
#define HANDLE_ERROR(err) (HandleError(err, __FILE__, __LINE__))
// cuda constant memory
__constant__ double w_d;
__constant__ double c1_d;
__constant__ double c2_d;
__constant__ double max_pos_d;
__constant__ double min_pos_d;
__constant__ double max_v_d;
__constant__ int max_iter_d;
__constant__ int particle_cnt_d;
__constant__ int tile_size;
__constant__ int tile_size2;
__host__ __device__ double fit(double x)
{
return fabs(8000.0 + x * (-10000.0 + x * (-0.8 + x)));
}
__global__ void updateParticles(double *position_d, double *velocity_d, double *fitness_d,
double *pbest_pos_d, double *pbest_fit_d,
double *best_fitness_buf, double *best_positions_buf, int dim_d, double *gbest_position_d, double *gbest_fitness_d)
{
int particle_idx = blockIdx.x;
int dim_idx = threadIdx.x;
extern __shared__ double shared_mem[];
double *particle_pos = &shared_mem[0];
double *particle_vel = &shared_mem[dim_d];
double *particle_pbest = &shared_mem[2 * dim_d];
int idx = particle_idx * dim_d + dim_idx;
if (dim_idx < dim_d)
{
particle_pos[dim_idx] = position_d[idx];
particle_vel[dim_idx] = velocity_d[idx];
particle_pbest[dim_idx] = pbest_pos_d[idx];
}
__syncthreads();
if (dim_idx < dim_d)
{
curandState state;
curand_init((unsigned long long)clock() + idx, 0, 0, &state);
double r1 = curand_uniform_double(&state);
double r2 = curand_uniform_double(&state);
double v = particle_vel[dim_idx];
double pos = particle_pos[dim_idx];
double pbest = double(particle_pbest[dim_idx]);
double gbest_pos = double(gbest_position_d[dim_idx]);
v = w_d * v +
c1_d * r1 * (pbest - pos) +
c2_d * r2 * (gbest_pos - pos);
v = max(min(v, max_v_d), -max_v_d);
pos = pos + v;
pos = max(min(pos, max_pos_d), min_pos_d);
particle_pos[dim_idx] = pos;
particle_vel[dim_idx] = v;
position_d[idx] = pos;
velocity_d[idx] = v;
}
__syncthreads();
if (threadIdx.x == 0 && particle_idx < particle_cnt_d)
{
double fitness = 0.0;
for (int i = 0; i < dim_d; i++)
{
fitness += fit(particle_pos[i]);
}
fitness_d[particle_idx] = fitness;
if (fitness > pbest_fit_d[particle_idx])
{
pbest_fit_d[particle_idx] = fitness;
// Store all dimensions of this particle's position
for (int i = 0; i < dim_d; i++)
{
pbest_pos_d[particle_idx * dim_d + i] = particle_pos[i];
}
}
// Store fitness and all position dimensions for global best finding
best_fitness_buf[particle_idx] = fitness;
for (int i = 0; i < dim_d; i++)
{
best_positions_buf[particle_idx * dim_d + i] = particle_pos[i];
}
}
}
__global__ void findGlobalBest(double *best_fitness_buf, double *best_positions_buf, int particle_count, int dim_d, double *gbest_fitness_d, double *gbest_position_d)
{
extern __shared__ double shared_data[];
double *s_fitness = &shared_data[0];
double *s_indices = &shared_data[blockDim.x];
int tid = threadIdx.x;
int gid = blockIdx.x * blockDim.x + threadIdx.x;
if (gid < particle_count)
{
s_fitness[tid] = best_fitness_buf[gid];
s_indices[tid] = gid;
}
else
{
s_fitness[tid] = -INFINITY;
s_indices[tid] = -1;
}
__syncthreads();
for (int stride = blockDim.x / 2; stride > 0; stride >>= 1)
{
if (tid < stride && gid < particle_count)
{
if (s_fitness[tid] < s_fitness[tid + stride])
{
s_fitness[tid] = s_fitness[tid + stride];
s_indices[tid] = s_indices[tid + stride];
}
}
__syncthreads();
}
if (tid == 0)
{
if (s_fitness[0] > gbest_fitness_d[0])
{
int best_idx = (int)s_indices[0];
if (best_idx >= 0)
{
gbest_fitness_d[0] = s_fitness[0];
for (int d = 0; d < dim_d; d++)
{
gbest_position_d[d] = best_positions_buf[best_idx * dim_d + d];
}
}
}
}
}
void ParticleInitCoal(particle_Coal *p, int dimensions)
{
const double pos_range = max_pos - min_pos;
srand((unsigned)time(NULL));
p->position = (double *)malloc(sizeof(double) * particle_cnt * dimensions);
p->velocity = (double *)malloc(sizeof(double) * particle_cnt * dimensions);
p->fitness = (double *)malloc(sizeof(double) * particle_cnt);
p->pbest_pos = (double *)malloc(sizeof(double) * particle_cnt * dimensions);
p->pbest_fit = (double *)malloc(sizeof(double) * particle_cnt);
for (int i = 0; i < particle_cnt; i++)
{
double fitness = 0.0;
for (int d = 0; d < dimensions; d++)
{
int idx = i * dimensions + d;
p->position[idx] = double(RND() * pos_range + min_pos);
p->velocity[idx] = RND() * max_v;
p->pbest_pos[idx] = double(p->position[idx]);
fitness += fit(p->position[idx]);
}
p->fitness[i] = fitness;
p->pbest_fit[i] = fitness;
if (fitness > gbest->g_fitness[0])
{
gbest->g_fitness[0] = fitness;
for (int d = 0; d < dimensions; d++)
{
gbest->position[d] = p->position[i * dimensions + d];
}
}
}
}
int main(int argc, char **argv)
{
arguments args = {10000, 1024, 1024, 4, 3, 4};
int retError = pargeArgs(&args, argc, argv);
cudaEvent_t start, stop;
HANDLE_ERROR(cudaEventCreate(&start));
HANDLE_ERROR(cudaEventCreate(&stop));
float exe_time;
clock_t begin_app = clock();
clock_t begin_init = begin_app;
particle_Coal *p; // p : 粒子群
p = (particle_Coal *)malloc(sizeof(particle_Coal));
double *position_d;
double *velocity_d;
double *fitness_d;
double *pbest_pos_d;
double *pbest_fit_d;
double *aux, *aux_pos;
double *gbest_position_d;
double *gbest_fitness_d;
int *lock_d; // block level lock for gbest
int block_size = min(1024, args.blocks_per_grid);
int dim_d = args.dimensions;
min_pos = -100.0, max_pos = +100.0;
w = 1, c1 = 2.0, c2 = 2.0;
particle_cnt = args.particle_cnt;
max_v = (max_pos - min_pos) * 1.0;
HANDLE_ERROR(cudaMalloc((void **)&gbest_position_d, sizeof(double) * args.dimensions));
HANDLE_ERROR(cudaMalloc((void **)&gbest_fitness_d, sizeof(double) * 1));
gbest = (particle *)malloc(sizeof(particle));
initialize_gbest(gbest, args.dimensions);
ParticleInitCoal(p, args.dimensions);
int dimensions = args.dimensions;
HANDLE_ERROR(cudaMalloc((void **)&position_d, sizeof(double) * particle_cnt * dimensions));
HANDLE_ERROR(cudaMalloc((void **)&velocity_d, sizeof(double) * particle_cnt * dimensions));
HANDLE_ERROR(cudaMalloc((void **)&fitness_d, sizeof(double) * particle_cnt));
HANDLE_ERROR(cudaMalloc((void **)&pbest_pos_d, sizeof(double) * dimensions * particle_cnt));
HANDLE_ERROR(cudaMalloc((void **)&pbest_fit_d, sizeof(double) * particle_cnt));
HANDLE_ERROR(cudaMalloc((void **)&lock_d, sizeof(int)));
HANDLE_ERROR(cudaMalloc((void **)&aux, sizeof(double) * args.blocks_per_grid));
HANDLE_ERROR(cudaMalloc((void **)&aux_pos, sizeof(double) * args.blocks_per_grid));
HANDLE_ERROR(cudaMemcpy(position_d, p->position, sizeof(double) * particle_cnt * dimensions, cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(velocity_d, p->velocity, sizeof(double) * particle_cnt * dimensions, cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(fitness_d, p->fitness, sizeof(double) * particle_cnt, cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(pbest_pos_d, p->pbest_pos, sizeof(double) * dimensions * particle_cnt, cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(pbest_fit_d, p->pbest_fit, sizeof(double) * particle_cnt, cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(gbest_position_d, gbest->position, sizeof(double) * args.dimensions, cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(gbest_fitness_d, gbest->g_fitness, sizeof(double), cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpyToSymbol(w_d, &w, sizeof(double)));
HANDLE_ERROR(cudaMemcpyToSymbol(c1_d, &c1, sizeof(double)));
HANDLE_ERROR(cudaMemcpyToSymbol(c2_d, &c2, sizeof(double)));
HANDLE_ERROR(cudaMemcpyToSymbol(max_pos_d, &max_pos, sizeof(double)));
HANDLE_ERROR(cudaMemcpyToSymbol(min_pos_d, &min_pos, sizeof(double)));
HANDLE_ERROR(cudaMemcpyToSymbol(max_v_d, &max_v, sizeof(double)));
HANDLE_ERROR(cudaMemcpyToSymbol(max_iter_d, &args.max_iter, sizeof(int)));
HANDLE_ERROR(cudaMemcpyToSymbol(particle_cnt_d, &args.particle_cnt, sizeof(int)));
HANDLE_ERROR(cudaMemcpyToSymbol(tile_size, &args.threads_per_block, sizeof(int)));
HANDLE_ERROR(cudaMemcpyToSymbol(tile_size2, &block_size, sizeof(int)));
HANDLE_ERROR(cudaMemset(lock_d, 0, sizeof(int)));
clock_t end_init = clock();
HANDLE_ERROR(cudaEventRecord(start));
double *best_fitness_buf_d;
double *best_positions_buf_d;
HANDLE_ERROR(cudaMalloc((void **)&best_fitness_buf_d,
sizeof(double) * particle_cnt));
HANDLE_ERROR(cudaMalloc((void **)&best_positions_buf_d,
sizeof(double) * particle_cnt * dimensions));
size_t particle_shared_mem = 3 * dimensions * sizeof(double);
size_t reduction_shared_mem = 2 * block_size * sizeof(double);
for (unsigned int i = 0; i < args.max_iter; i++)
{
updateParticles<<<particle_cnt, dimensions, particle_shared_mem>>>(
position_d, velocity_d, fitness_d,
pbest_pos_d, pbest_fit_d,
best_fitness_buf_d, best_positions_buf_d, dim_d, gbest_position_d, gbest_fitness_d);
// Find global best
findGlobalBest<<<1, block_size, reduction_shared_mem>>>(
best_fitness_buf_d, best_positions_buf_d, particle_cnt, dim_d, gbest_fitness_d, gbest_position_d);
}
HANDLE_ERROR(cudaEventRecord(stop));
HANDLE_ERROR(cudaMemcpy(p->position, position_d, sizeof(double) * particle_cnt * dimensions, cudaMemcpyDeviceToHost));
HANDLE_ERROR(cudaMemcpy(p->velocity, velocity_d, sizeof(double) * particle_cnt * dimensions, cudaMemcpyDeviceToHost));
HANDLE_ERROR(cudaMemcpy(p->fitness, fitness_d, sizeof(double) * particle_cnt, cudaMemcpyDeviceToHost));
HANDLE_ERROR(cudaMemcpy(p->pbest_pos, pbest_pos_d, sizeof(double) * dimensions * particle_cnt, cudaMemcpyDeviceToHost));
HANDLE_ERROR(cudaMemcpy(p->pbest_fit, pbest_fit_d, sizeof(double) * particle_cnt, cudaMemcpyDeviceToHost));
HANDLE_ERROR(cudaMemcpy(gbest->g_fitness, gbest_fitness_d, sizeof(double), cudaMemcpyDeviceToHost));
clock_t end_exe = clock();
HANDLE_ERROR(cudaEventSynchronize(stop));
HANDLE_ERROR(cudaEventElapsedTime(&exe_time, start, stop));
free(p);
cudaFree(position_d);
cudaFree(velocity_d);
cudaFree(fitness_d);
cudaFree(pbest_pos_d);
cudaFree(pbest_fit_d);
cudaFree(lock_d);
printf("best result: %lf\n", gbest->g_fitness[0]);
printf("[Initial time]: %lf (sec)\n", (double)(end_init - begin_init) / CLOCKS_PER_SEC);
printf("[Cuda Exec time]: %f (sec)\n", exe_time / 1000);
printf("[Elapsed time]: %lf (sec)\n", (double)(clock() - begin_app) / CLOCKS_PER_SEC);
cudaFree(best_fitness_buf_d);
cudaFree(best_positions_buf_d);
free_gbest();
return 0;
}